organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1591-o1592

(E)-1-(4-Bromo­phen­yl)ethan-1-one semicarbazone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 10 June 2009; accepted 11 June 2009; online 17 June 2009)

In the title compound, C9H10BrN3O, the hydrazone portion and aliphatic chain are essentially coplanar [maximum deviation 0.057 (15) Å] and the mean plane makes a dihedral angle of 70.9 (6)° with the benzene ring. The main feature of the crystal structure is the inter­molecular N—H⋯O hydrogen bond, which links mol­ecules into zigzag chains along the a axis. These chains are further stacked along the b axis. The crystal structure features non-classical inter­molecular C—H⋯O inter­actions. The crystal studied was a nonmerohedral twin, with a twin ratio of 0.505 (1):0.495 (1).

Related literature

For general background and applications of semicarbazone derivatives, see: Chandra & Gupta (2005[Chandra, S. & Gupta, L. K. (2005). Spectrochim Acta, A62, 1089-1094.]); Jain et al. (2002[Jain, V. K., Handa, A., Pandya, R., Shrivastav, P. & Agrawal, Y. K. (2002). React. Funct. Polym. 51, 101-110.]); Pilgram (1978[Pilgram, K. H. G. (1978). US Patent No. 4 108 399.]); Warren et al. (1977[Warren, J. D., Woodward, D. L. & Hargreaves, R. T. (1977). J. Med. Chem. 20, 1520-1521.]); Yogeeswari et al. (2004[Yogeeswari, P., Sriram, D., Pandeya, S. N. & Stables, J. P. (2004). Farmaco, 59, 609-613.]). For the preparation, see: Furniss et al. (1978[Furniss, B. S., Hannaford, A. J., Rogers, V., Smith, P. W. G. & Tatchell, A. R. (1978). Vogel's Textbook of Practical Organic Chemistry, 4th ed., p. 1112. London: ELBS.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structure, see: Fun et al. (2009[Fun, H.-K., Quah, C. K., Sujith, K. V. & Kalluraya, B. (2009). Acta Cryst. E65, o1184-o1185.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10BrN3O

  • Mr = 256.11

  • Monoclinic, P 21 /c

  • a = 17.6700 (8) Å

  • b = 7.3426 (4) Å

  • c = 7.9082 (4) Å

  • β = 102.953 (3)°

  • V = 999.93 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.08 mm−1

  • T = 100 K

  • 0.22 × 0.12 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.466, Tmax = 0.733

  • 12017 measured reflections

  • 2945 independent reflections

  • 2105 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.249

  • S = 1.16

  • 2945 reflections

  • 129 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 3.03 e Å−3

  • Δρmin = −1.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O1i 0.86 2.21 3.052 (12) 168
N3—H3A⋯O1ii 0.86 2.03 2.885 (13) 171
C9—H9A⋯O1iii 0.96 2.51 3.34 (2) 144
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In organic chemistry, a semicarbazone is a derivative of an aldehyde or ketone formed by a condensation between a ketone or aldehyde and semicarbazide. Semicarbazones find immerse applications in the field of synthetic chemistry, such as in medicinal chemistry (Warren et al., 1977), organometalics (Chandra & Gupta, 2005), polymers (Jain et al., 2002) and herbicides (Pilgram, 1978). 4-Sulphamoylphenyl semicarbazones were synthesized and were found to posses anticonvulsant activity (Yogeeswari et al., 2004). We hereby report the crystal structure of the semicarbazone of commercial importance keeping in view of their synthetic importance.

The bond lengths (Allen et al., 1987) and angles in the molecule (Fig. 1) are within normal ranges and are comparable to a closely related structure (Fun et al., 2009). Atoms C7, C8, N1, N2, N3 and O1 lie on the same plane with a maximum deviation of 0.057 (15) Å for atom N1. This plane makes dihedral angle of 70.9 (6)° with the C1-C6 benzene ring.

In the crystal packing (Fig. 2), N3—H3A···O1 hydrogen bonds link the molecules into one-dimensional zig-zag extended chains along the a axis. These chains are further stacked along the b axis and thus forming two-dimensional extended networks parallel to the ab plane. The crystal structure is further stabilized by intermolecular C9—H9A···O1 interactions.

Related literature top

For general background and applications of semicarbazone derivatives, see: Chandra & Gupta (2005); Jain et al. (2002); Pilgram (1978); Warren et al. (1977); Yogeeswari et al. (2004). For the preparation, see: Furniss et al. (1978). For bond-length data, see: Allen et al. (1987). For a related structure, see: Fun et al. (2009). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

0.57 g (5.11 mmol) of semicarbazide hydrochloride and 0.54 g (6.60 mmol) of crystallized sodium acetate was dissolved in 10 ml of water (Furniss et al., 1978). The reaction mixture was stirred at room temperature for 10 minutes. 1 g (5.02 mmol) 4-Bromoacetophenone was added to this and shaken well. A little alcohol was added to dissolve the turbidity. It was shaken for 10 more minutes and allowed to stand. The semicarbazone crystallizes on standing for 6 h. The separated crystals were filtered, washed with cold water and recrystallized from alcohol. Yield was found to be 1.158 g, 90.05 %. M.p. 479-481 K.

Refinement top

The H-atoms bound to N2 and N3 was located from the difference Fourier map and refined freely. The rest of the hydrogen atoms were placed in calculated positions, with C—H = 0.93 Å, Uiso = 1.2Ueq(C) for aromatic, and C—H = 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atom. A rotating group model was used for the methyl group. The N1—N2 bond was restrained with a N—N bond distance of 1.37 (1) Å. The crystal studied was a twin with the refined BASF parameter of 0.495 (1).

The final difference Fourier map had a peak/hole in the vicnity of Br1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. Intermolecular interactions are shown as dashed lines.
(E)-1-(4-Bromophenyl)ethan-1-one semicarbazone top
Crystal data top
C9H10BrN3OF(000) = 512
Mr = 256.11Dx = 1.701 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3514 reflections
a = 17.6700 (8) Åθ = 3.0–28.2°
b = 7.3426 (4) ŵ = 4.08 mm1
c = 7.9082 (4) ÅT = 100 K
β = 102.953 (3)°Block, colourless
V = 999.93 (9) Å30.22 × 0.12 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2945 independent reflections
Radiation source: fine-focus sealed tube2105 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 30.2°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2424
Tmin = 0.466, Tmax = 0.733k = 1010
12017 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.249H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.1217P)2 + 9.4338P]
where P = (Fo2 + 2Fc2)/3
2945 reflections(Δ/σ)max < 0.000
129 parametersΔρmax = 3.03 e Å3
1 restraintΔρmin = 1.11 e Å3
Crystal data top
C9H10BrN3OV = 999.93 (9) Å3
Mr = 256.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.6700 (8) ŵ = 4.08 mm1
b = 7.3426 (4) ÅT = 100 K
c = 7.9082 (4) Å0.22 × 0.12 × 0.08 mm
β = 102.953 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2945 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2105 reflections with I > 2σ(I)
Tmin = 0.466, Tmax = 0.733Rint = 0.053
12017 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0801 restraint
wR(F2) = 0.249H-atom parameters constrained
S = 1.16Δρmax = 3.03 e Å3
2945 reflectionsΔρmin = 1.11 e Å3
129 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.03467 (5)0.43707 (10)0.2675 (2)0.0212 (2)
N30.4198 (6)0.1238 (13)0.8352 (16)0.034 (2)
H3A0.44300.02370.82140.041*
H3B0.37720.12140.87040.041*
N10.3450 (5)0.4205 (11)0.899 (2)0.039 (3)
N20.4105 (5)0.4401 (11)0.8290 (14)0.027 (2)
H2B0.42570.54590.80380.032*
O10.5113 (4)0.2902 (11)0.7512 (13)0.032 (2)
C10.1856 (7)0.6630 (14)0.6881 (14)0.026 (2)
H1A0.18940.77290.74790.032*
C20.1231 (6)0.6387 (14)0.5429 (16)0.027 (2)
H2A0.08760.73170.50500.032*
C30.1165 (6)0.4722 (15)0.4594 (13)0.023 (2)
C40.1698 (7)0.3367 (14)0.5184 (14)0.025 (2)
H4A0.16380.22360.46420.030*
C50.2310 (7)0.3651 (14)0.6544 (16)0.028 (2)
H5A0.26710.27250.68850.033*
C60.2409 (6)0.5321 (14)0.7448 (17)0.027 (2)
C70.3094 (5)0.5625 (12)0.911 (3)0.0244 (19)
C80.4503 (7)0.2840 (13)0.8017 (14)0.025 (2)
C90.3368 (5)0.7556 (12)0.914 (3)0.030 (2)
H9A0.39110.76100.96820.045*
H9B0.30810.82920.97790.045*
H9C0.32880.80040.79710.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0269 (4)0.0173 (4)0.0201 (8)0.0037 (3)0.0067 (17)0.0023 (5)
N30.039 (5)0.013 (4)0.057 (7)0.000 (4)0.026 (5)0.004 (5)
N10.019 (3)0.015 (4)0.083 (11)0.001 (3)0.011 (6)0.004 (6)
N20.033 (5)0.009 (4)0.043 (6)0.001 (3)0.018 (4)0.004 (4)
O10.029 (3)0.037 (5)0.038 (4)0.003 (3)0.021 (4)0.001 (5)
C10.043 (6)0.013 (4)0.023 (5)0.003 (4)0.008 (5)0.004 (4)
C20.023 (5)0.019 (4)0.039 (6)0.005 (4)0.008 (5)0.003 (5)
C30.020 (4)0.034 (6)0.016 (4)0.001 (4)0.008 (4)0.005 (4)
C40.035 (5)0.019 (5)0.019 (5)0.008 (4)0.002 (4)0.004 (4)
C50.033 (5)0.013 (4)0.034 (6)0.000 (4)0.004 (5)0.005 (4)
C60.024 (5)0.020 (5)0.040 (6)0.000 (4)0.014 (5)0.004 (4)
C70.021 (3)0.016 (3)0.036 (6)0.003 (3)0.005 (8)0.016 (6)
C80.046 (6)0.007 (4)0.024 (5)0.007 (4)0.009 (5)0.002 (4)
C90.022 (4)0.011 (3)0.060 (8)0.003 (3)0.018 (8)0.009 (8)
Geometric parameters (Å, º) top
Br1—C31.865 (10)C2—C31.382 (16)
N3—C81.344 (14)C2—H2A0.9300
N3—H3A0.8600C3—C41.378 (15)
N3—H3B0.8600C4—C51.359 (15)
N1—C71.233 (11)C4—H4A0.9300
N1—N21.397 (9)C5—C61.410 (15)
N2—C81.387 (12)C5—H5A0.9300
N2—H2B0.8600C6—C71.59 (2)
O1—C81.232 (13)C7—C91.496 (12)
C1—C61.373 (15)C9—H9A0.9600
C1—C21.415 (16)C9—H9B0.9600
C1—H1A0.9300C9—H9C0.9600
C8—N3—H3A120.0C4—C5—C6121.4 (11)
C8—N3—H3B120.0C4—C5—H5A119.3
H3A—N3—H3B120.0C6—C5—H5A119.3
C7—N1—N2115.2 (10)C1—C6—C5116.4 (11)
C8—N2—N1118.1 (8)C1—C6—C7121.7 (9)
C8—N2—H2B121.0C5—C6—C7121.8 (9)
N1—N2—H2B121.0N1—C7—C9129.3 (10)
C6—C1—C2123.1 (10)N1—C7—C697.0 (12)
C6—C1—H1A118.5C9—C7—C6109.2 (13)
C2—C1—H1A118.5O1—C8—N3121.0 (9)
C3—C2—C1117.8 (10)O1—C8—N2122.1 (9)
C3—C2—H2A121.1N3—C8—N2116.9 (10)
C1—C2—H2A121.1C7—C9—H9A109.5
C4—C3—C2119.9 (10)C7—C9—H9B109.5
C4—C3—Br1121.5 (8)H9A—C9—H9B109.5
C2—C3—Br1118.6 (8)C7—C9—H9C109.5
C5—C4—C3121.3 (10)H9A—C9—H9C109.5
C5—C4—H4A119.4H9B—C9—H9C109.5
C3—C4—H4A119.4
C7—N1—N2—C8176.1 (14)C4—C5—C6—C7176.3 (13)
C6—C1—C2—C32.4 (17)N2—N1—C7—C920 (3)
C1—C2—C3—C40.1 (15)N2—N1—C7—C6101.6 (13)
C1—C2—C3—Br1179.9 (8)C1—C6—C7—N1174.6 (12)
C2—C3—C4—C52.4 (16)C5—C6—C7—N19.4 (17)
Br1—C3—C4—C5177.5 (9)C1—C6—C7—C938.6 (17)
C3—C4—C5—C62.4 (18)C5—C6—C7—C9145.3 (12)
C2—C1—C6—C52.4 (17)N1—N2—C8—O1175.3 (12)
C2—C1—C6—C7178.7 (12)N1—N2—C8—N33.9 (16)
C4—C5—C6—C10.0 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1i0.862.213.052 (12)168
N3—H3A···O1ii0.862.032.885 (13)171
C9—H9A···O1iii0.962.513.34 (2)144
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC9H10BrN3O
Mr256.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)17.6700 (8), 7.3426 (4), 7.9082 (4)
β (°) 102.953 (3)
V3)999.93 (9)
Z4
Radiation typeMo Kα
µ (mm1)4.08
Crystal size (mm)0.22 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.466, 0.733
No. of measured, independent and
observed [I > 2σ(I)] reflections
12017, 2945, 2105
Rint0.053
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.249, 1.16
No. of reflections2945
No. of parameters129
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.03, 1.11

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1i0.86002.21003.052 (12)168.00
N3—H3A···O1ii0.86002.03002.885 (13)171.00
C9—H9A···O1iii0.96002.51003.34 (2)144.00
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and JHG thank Universiti Sains Malaysia for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). JHG thanks the Malaysia Government and Universiti Sains Malaysia for a student assistantship under the Science Fund (Grant No. 305/PFIZIK/613312). AMI is grateful to the Head of the Department of Chemistry and the Director, NITK, Surathkal, India, for providing research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandra, S. & Gupta, L. K. (2005). Spectrochim Acta, A62, 1089–1094.  CrossRef Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Sujith, K. V. & Kalluraya, B. (2009). Acta Cryst. E65, o1184–o1185.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFurniss, B. S., Hannaford, A. J., Rogers, V., Smith, P. W. G. & Tatchell, A. R. (1978). Vogel's Textbook of Practical Organic Chemistry, 4th ed., p. 1112. London: ELBS.  Google Scholar
First citationJain, V. K., Handa, A., Pandya, R., Shrivastav, P. & Agrawal, Y. K. (2002). React. Funct. Polym. 51, 101–110.  Web of Science CrossRef CAS Google Scholar
First citationPilgram, K. H. G. (1978). US Patent No. 4 108 399.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWarren, J. D., Woodward, D. L. & Hargreaves, R. T. (1977). J. Med. Chem. 20, 1520–1521.  CrossRef CAS PubMed Web of Science Google Scholar
First citationYogeeswari, P., Sriram, D., Pandeya, S. N. & Stables, J. P. (2004). Farmaco, 59, 609–613.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1591-o1592
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds