organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Fluoro­phen­yl)-2,2,6-tri­methyl-4H-1,3-dioxin-4-one

aDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and bDepartamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo-SP, Brazil
*Correspondence e-mail: julio@power.ufscar.br

(Received 18 June 2009; accepted 19 June 2009; online 27 June 2009)

The 1,3-dioxine ring in the title compound, C13H13FO3, is in a half-boat conformation with the methyl-bonded C atom 0.612 (2) Å out of the plane defined by the remaining five atoms.

Related literature

For synthetic and structural background, see: Caracelli et al. (2007[Caracelli, I., Stefani, H. A., Vieira, A. S., Machado, M. M. P. & Zukerman-Schpector, J. (2007). Z. Kristallogr. New Cryst. Struct. 222, 345-346.]); Stefani et al. (2007[Stefani, H. A., Cella, R. & Vieira, A. S. (2007). Tetrahedron, 63, 3623-3658.]); Vieira et al. (2008[Vieira, A. S., Fiorante, P. F., Zukerman-Schpector, J., Alves, D., Botteselle, G. V. & Stefani, H. A. (2008). Tetrahedron, 64, 7234-7241.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Iulek & Zukerman-Schpector (1997[Iulek, J. & Zukerman-Schpector, J. (1997). Quim. Nova, 20, 433-434.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13FO3

  • Mr = 236.23

  • Monoclinic, P 21 /c

  • a = 11.865 (3) Å

  • b = 7.781 (2) Å

  • c = 12.780 (4) Å

  • β = 107.369 (5)°

  • V = 1126.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 98 K

  • 0.20 × 0.15 × 0.08 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.977, Tmax = 1 (expected range = 0.969–0.991)

  • 4071 measured reflections

  • 2058 independent reflections

  • 1895 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.150

  • S = 1.15

  • 2058 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrystalClear (Rigaku/MSC 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our on-going research interest efforts exploring the chemistry of potassium organotrifluoroborate salts including their potential use as intermediates in organic synthesis (Caracelli et al., 2007; Stefani et al., 2007; Vieira et al. 2008), herein the crystal structure of (I) is described. The molecular structure, Fig. 1, shows the six-membered ring to adopt a half-boat conformation with the C2 atom being 0.612 (2) Å out of the plane defined by the remaining five atoms. The ring-puckering parameters being q2 = 0.415 (2) Å, q3 = 0.189 (1) Å, Q = 0.456 (1) Å, and ϕ2 = 53.3 (2)°. The aryl ring is twisted with respect to the planar portion of the dioxin-4-one ring, as seen in the C4—C5—C7—C8 tosion angle of 55.8 (2)°.

Related literature top

For synthetic and structural background, see: Caracelli et al. (2007); Stefani et al. (2007); Vieira et al. (2008). For conformational analysis, see: Cremer & Pople (1975); Iulek & Zukerman-Schpector (1997).

Experimental top

Single crystals of (I) were obtained by slow evaporation from methanol.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å, and with Uiso set to 1.2 times (1.5 for methyl) Ueq(parent atom).

Computing details top

Data collection: CrystalClear (Rigaku/MSC 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).
5-(4-Fluorophenyl)-2,2,6-trimethyl-4H-1,3-dioxin-4-one top
Crystal data top
C13H13FO3F(000) = 496
Mr = 236.23Dx = 1.393 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2836 reflections
a = 11.865 (3) Åθ = 2.8–40.2°
b = 7.781 (2) ŵ = 0.11 mm1
c = 12.780 (4) ÅT = 98 K
β = 107.369 (5)°Prism, colourless
V = 1126.1 (5) Å30.20 × 0.15 × 0.08 mm
Z = 4
Data collection top
Rigaku AFC12/SATURN724
diffractometer
2058 independent reflections
Radiation source: fine-focus sealed tube1895 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω scansθmax = 25.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1411
Tmin = 0.977, Tmax = 1k = 69
4071 measured reflectionsl = 1015
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0872P)2 + 0.1727P]
where P = (Fo2 + 2Fc2)/3
2058 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C13H13FO3V = 1126.1 (5) Å3
Mr = 236.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.865 (3) ŵ = 0.11 mm1
b = 7.781 (2) ÅT = 98 K
c = 12.780 (4) Å0.20 × 0.15 × 0.08 mm
β = 107.369 (5)°
Data collection top
Rigaku AFC12/SATURN724
diffractometer
2058 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1895 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 1Rint = 0.058
4071 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.15Δρmax = 0.32 e Å3
2058 reflectionsΔρmin = 0.25 e Å3
157 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.63242 (13)0.0457 (2)0.70282 (12)0.0194 (4)
C40.70622 (13)0.1569 (2)0.56052 (13)0.0193 (4)
C50.71736 (13)0.0244 (2)0.53203 (12)0.0186 (4)
C60.65075 (13)0.1421 (2)0.56386 (12)0.0184 (4)
C70.79551 (13)0.0670 (2)0.46347 (12)0.0192 (4)
C80.77995 (14)0.0091 (2)0.36116 (13)0.0208 (4)
H80.71770.08540.33390.025*
C90.85535 (14)0.0266 (2)0.29960 (13)0.0237 (4)
H90.84470.02470.23160.028*
C100.94636 (15)0.1401 (2)0.34182 (14)0.0244 (4)
C110.96583 (14)0.2194 (2)0.44186 (14)0.0240 (4)
H111.02810.29600.46790.029*
C120.88968 (14)0.1817 (2)0.50293 (13)0.0216 (4)
H120.90140.23330.57100.026*
C130.53730 (14)0.0969 (2)0.75301 (13)0.0229 (4)
H13A0.51940.00140.79290.034*
H13B0.56440.19180.80210.034*
H13C0.46760.13010.69600.034*
C140.74870 (14)0.0007 (2)0.78687 (13)0.0224 (4)
H14A0.80810.01570.75070.034*
H14B0.77200.09240.83910.034*
H14C0.73970.10330.82410.034*
C150.63020 (15)0.3252 (2)0.52936 (13)0.0220 (4)
H15A0.66990.35020.47580.033*
H15B0.66050.39840.59200.033*
H15C0.54700.34500.49820.033*
O10.58727 (9)0.09857 (15)0.63304 (9)0.0209 (3)
O30.64762 (9)0.18821 (14)0.63603 (9)0.0198 (3)
O40.73951 (10)0.27917 (15)0.51946 (9)0.0251 (3)
F1.02109 (9)0.17542 (15)0.28148 (9)0.0337 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0239 (8)0.0180 (8)0.0181 (8)0.0005 (6)0.0090 (6)0.0009 (6)
C40.0173 (8)0.0235 (8)0.0169 (7)0.0010 (6)0.0046 (6)0.0016 (6)
C50.0192 (7)0.0209 (8)0.0152 (8)0.0004 (6)0.0042 (6)0.0001 (6)
C60.0175 (8)0.0226 (8)0.0153 (8)0.0019 (6)0.0049 (6)0.0002 (6)
C70.0194 (8)0.0195 (8)0.0182 (8)0.0042 (6)0.0048 (6)0.0034 (6)
C80.0215 (8)0.0197 (8)0.0208 (8)0.0021 (6)0.0056 (6)0.0005 (6)
C90.0266 (8)0.0280 (9)0.0175 (8)0.0073 (7)0.0083 (6)0.0031 (7)
C100.0211 (8)0.0305 (9)0.0246 (9)0.0076 (6)0.0115 (7)0.0092 (7)
C110.0190 (8)0.0264 (8)0.0257 (9)0.0003 (6)0.0051 (6)0.0043 (7)
C120.0211 (8)0.0242 (8)0.0188 (8)0.0021 (6)0.0050 (6)0.0019 (6)
C130.0231 (8)0.0257 (9)0.0222 (8)0.0009 (6)0.0104 (7)0.0022 (7)
C140.0253 (8)0.0252 (9)0.0181 (8)0.0027 (6)0.0085 (6)0.0005 (6)
C150.0257 (8)0.0210 (8)0.0212 (8)0.0017 (6)0.0098 (6)0.0010 (6)
O10.0231 (6)0.0218 (6)0.0205 (6)0.0022 (5)0.0106 (5)0.0030 (5)
O30.0237 (6)0.0181 (6)0.0192 (6)0.0014 (4)0.0090 (5)0.0014 (5)
O40.0313 (7)0.0208 (6)0.0265 (7)0.0005 (5)0.0140 (5)0.0027 (5)
F0.0276 (6)0.0474 (7)0.0327 (6)0.0013 (5)0.0191 (5)0.0079 (5)
Geometric parameters (Å, º) top
C2—O11.4345 (19)C9—H90.9300
C2—O31.4429 (19)C10—F1.3655 (19)
C2—C131.509 (2)C10—C111.375 (3)
C2—C141.515 (2)C11—C121.390 (2)
C4—O41.2081 (19)C11—H110.9300
C4—O31.3691 (18)C12—H120.9300
C4—C51.473 (2)C13—H13A0.9600
C5—C61.349 (2)C13—H13B0.9600
C5—C71.491 (2)C13—H13C0.9600
C6—O11.3643 (18)C14—H14A0.9600
C6—C151.490 (2)C14—H14B0.9600
C7—C81.397 (2)C14—H14C0.9600
C7—C121.401 (2)C15—H15A0.9600
C8—C91.385 (2)C15—H15B0.9600
C8—H80.9300C15—H15C0.9600
C9—C101.374 (3)
O1—C2—O3108.85 (12)C10—C11—C12118.05 (16)
O1—C2—C13106.44 (12)C10—C11—H11121.0
O3—C2—C13106.87 (12)C12—C11—H11121.0
O1—C2—C14110.59 (13)C11—C12—C7120.97 (15)
O3—C2—C14110.43 (12)C11—C12—H12119.5
C13—C2—C14113.46 (13)C7—C12—H12119.5
O4—C4—O3117.84 (14)C2—C13—H13A109.5
O4—C4—C5125.57 (15)C2—C13—H13B109.5
O3—C4—C5116.51 (14)H13A—C13—H13B109.5
C6—C5—C4118.14 (14)C2—C13—H13C109.5
C6—C5—C7123.34 (15)H13A—C13—H13C109.5
C4—C5—C7118.39 (14)H13B—C13—H13C109.5
C5—C6—O1120.89 (14)C2—C14—H14A109.5
C5—C6—C15128.21 (15)C2—C14—H14B109.5
O1—C6—C15110.85 (13)H14A—C14—H14B109.5
C8—C7—C12118.39 (14)C2—C14—H14C109.5
C8—C7—C5121.63 (14)H14A—C14—H14C109.5
C12—C7—C5119.94 (14)H14B—C14—H14C109.5
C9—C8—C7121.29 (15)C6—C15—H15A109.5
C9—C8—H8119.4C6—C15—H15B109.5
C7—C8—H8119.4H15A—C15—H15B109.5
C10—C9—C8118.12 (15)C6—C15—H15C109.5
C10—C9—H9120.9H15A—C15—H15C109.5
C8—C9—H9120.9H15B—C15—H15C109.5
F—C10—C9118.29 (16)C6—O1—C2114.91 (12)
F—C10—C11118.53 (15)C4—O3—C2117.38 (12)
C9—C10—C11123.18 (15)
O4—C4—C5—C6163.49 (15)C8—C9—C10—C110.0 (3)
O3—C4—C5—C613.0 (2)F—C10—C11—C12179.58 (14)
O4—C4—C5—C712.6 (2)C9—C10—C11—C120.3 (3)
O3—C4—C5—C7170.94 (12)C10—C11—C12—C70.3 (2)
C4—C5—C6—O18.8 (2)C8—C7—C12—C110.2 (2)
C7—C5—C6—O1175.29 (13)C5—C7—C12—C11178.08 (14)
C4—C5—C6—C15168.39 (15)C5—C6—O1—C225.3 (2)
C7—C5—C6—C157.5 (3)C15—C6—O1—C2157.02 (13)
C6—C5—C7—C8120.06 (18)O3—C2—O1—C652.77 (16)
C4—C5—C7—C855.8 (2)C13—C2—O1—C6167.62 (12)
C6—C5—C7—C1262.1 (2)C14—C2—O1—C668.72 (16)
C4—C5—C7—C12122.05 (16)O4—C4—O3—C2165.97 (14)
C12—C7—C8—C90.1 (2)C5—C4—O3—C217.28 (18)
C5—C7—C8—C9177.78 (14)O1—C2—O3—C448.96 (16)
C7—C8—C9—C100.2 (2)C13—C2—O3—C4163.53 (12)
C8—C9—C10—F179.84 (14)C14—C2—O3—C472.62 (16)

Experimental details

Crystal data
Chemical formulaC13H13FO3
Mr236.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)98
a, b, c (Å)11.865 (3), 7.781 (2), 12.780 (4)
β (°) 107.369 (5)
V3)1126.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.15 × 0.08
Data collection
DiffractometerRigaku AFC12/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.977, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
4071, 2058, 1895
Rint0.058
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.150, 1.15
No. of reflections2058
No. of parameters157
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.25

Computer programs: CrystalClear (Rigaku/MSC 2005), CrystalClear (Rigaku/MSC, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 1999).

 

Acknowledgements

We thank FAPESP (07/59404–2 to HAS, 08/02531–5 to JZ-S and 06/50190-7 to ASV), CNPq (300613/2007 to HAS and 307121/2006–0 to JZ-S) and CAPES for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCaracelli, I., Stefani, H. A., Vieira, A. S., Machado, M. M. P. & Zukerman-Schpector, J. (2007). Z. Kristallogr. New Cryst. Struct. 222, 345–346.  CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIulek, J. & Zukerman-Schpector, J. (1997). Quim. Nova, 20, 433–434.  CrossRef CAS Web of Science Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStefani, H. A., Cella, R. & Vieira, A. S. (2007). Tetrahedron, 63, 3623–3658.  Web of Science CrossRef CAS Google Scholar
First citationVieira, A. S., Fiorante, P. F., Zukerman-Schpector, J., Alves, D., Botteselle, G. V. & Stefani, H. A. (2008). Tetrahedron, 64, 7234–7241.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds