metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m838-m839

A one-dimensional cadmium(II) complex supported by a sulfur–nitro­gen mixed-donor ligand

aCollege of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022, People's Republic of China
*Correspondence e-mail: xieyabo@bjut.edu.cn

(Received 7 June 2009; accepted 20 June 2009; online 27 June 2009)

In the title compound, catena-poly[cadmium(II)-bis­(μ-5-am­ino-1,3,4-thia­diazole-2-thiol­ato)-κ2N3:S2;κ2S2:N3], [Cd(C2H2N3S2)2]n, the CdII ion is coordinated by two N atoms of the 1,3,4-thia­diazole rings from two ligands and two S atoms of sulfhydryl from two other ligands in a slightly distorted tetra­hedral geometry. The ligands bridge CdII ions, forming one-dimensional chains along [001], which are connected by N—H⋯N and N—H⋯S hydrogen bonds into a three-dimensional network.

Related literature

For self-assembled coordination polymeric complexes with versatile structure features, see: Mulfort & Hupp(2007[Mulfort, K. L. & Hupp, J. T. (2007). J. Am. Chem. Soc. 129, 9604-9605.]); Liu et al. (2003[Liu, T.-F., Fu, D., Gao, S., Zhang, Y.-Z., Sun, H.-L., Su, G. & Liu, Y.-J. (2003). J. Am. Chem. Soc. 125, 13976-13977.]); Bauer et al. (2007[Bauer, C. A., Timofeeva, T. V., Settersten, T. B., Patterson, B. D., Liu, V. H., Simmons, B. A. & Allendorf, M. D. (2007). J. Am. Chem. Soc. 129, 7136-7144.]). For the effect of hydrogen bonding in stabilizing and regulating the supra­molecular construction, see: Dalrymple & Shimidzu (2007[Dalrymple, S. A. & Shimizu, G. K. H. (2007). J. Am. Chem. Soc. 129, 12114-12116.]); Dong et al. (2006[Dong, Y.-B., Sun, T., Ma, J.-P., Zhao, X.-X. & Huang, R.-Q. (2006). Inorg. Chem. 45, 10613-10628.]); Wang et al. (2005[Wang, Y., Cao, R., Bi, W., Li, X., Li, X. & Sun, D. (2005). J. Mol. Struct. 738, 51-57.]). For similar stuctures and bond lengths, see: Tzeng, Lee et al. (2004[Tzeng, B.-C., Lee, G.-H. & Peng, S.-M. (2004). Inorg. Chem. Commun. 7, 151-154.]); Tzeng et al. (1999[Tzeng, B.-C., Schier, A. & Schmidbaur, H. (1999). Inorg. Chem. 38, 3978-3984.]); Tzeng, Huang et al. (2004[Tzeng, B.-C., Huang, Y.-C., Wu, W.-M., Lee, S.-Y., Lee, G.-H. & Peng, S.-M. (2004). Cryst. Growth Des. 4, 63-70.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C2H2N3S2)2]

  • Mr = 376.77

  • Monoclinic, C 2/c

  • a = 12.6419 (11) Å

  • b = 10.8341 (10) Å

  • c = 7.7241 (7) Å

  • β = 92.795 (1)°

  • V = 1056.66 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.83 mm−1

  • T = 293 K

  • 0.24 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS ; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.550, Tmax = 0.602 (expected range = 0.519–0.568)

  • 3155 measured reflections

  • 1232 independent reflections

  • 1198 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.015

  • wR(F2) = 0.043

  • S = 1.01

  • 1232 reflections

  • 70 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N2i 0.86 2.25 3.064 (2) 158
N3—H3B⋯N2ii 0.86 2.66 3.119 (2) 114
N3—H3B⋯S1iii 0.86 2.74 3.4694 (17) 144
Symmetry codes: (i) -x+1, -y, -z; (ii) [x, -y, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Owing to their potential as new functional materials, interest in self-assembled coordination polymeric complexes with versatile structure features has grown rapidly (Mulfort et al., 2007; Liu et al., 2003; Bauer et al., 2007). Hydrogen bonding is one highly directional supramolecular force, and although weaker than coordinative bonds, have been recognized to play critical roles in stabilizing and regulating the supramolecular construction (Dalrymple et al., 2007). Crystal engineering studies of hydrogen bonding in low-dimensional materials, especially in one-dimensional transition metal complexes, have been reported by several groups (Dong et al., 2006; Wang et al., 2005). Tzeng and coworkers have reported 2-amino-5-mercapto-1,3,4-thiadiazolate (L), acting as an auxiliary ligand and displaying its active coordination properties with Pd(II) (Tzeng, Lee et al., 2004) and Au(I) (Tzeng et al., 1999; Tzeng, Huang et al., 2004) to form diverse crystal structures. The various hydrogen bonding interactions have also been investigated, and have shown important effects in forming large molecular arrays. However, in these compounds, the ligand had unidentate coordination to metal ions with the sulfur atom of sulfhydryl. Herein, we report the crystal structure of CdII complex, [Cd(C2H2N3S2)2]n (I), using 2-amino-5-mercapto-1,3,4-thiadiazolate (L) as the unique bridging ligand and exhibiting one-dimensional chain structure feature.

A perspective view of a tetranuclear fragment of the chain is shown in Fig. 1. There is one crystallographically independent CdII ion coordinated to two nitrogen atoms which belong to the 1,3,4-thiadiazole rings from two ligands, with N1A—Cd1—N1B angle of 103.50 (7)°, two sulfur atoms of sulfhydryl from two other ligands with S1—Cd1—S1A angle of 139.05 (2)°, and displaying a slightly distorted tetrahedron geometry. The bond length of Cd—S is 2.5264 (4) Å, which is significantly longer than that of unidentate coordination to metal ions (Pd—S 2.2793 (9) Å, Tzeng, Lee et al., 2004) (Au—S 2.295 (5)–2.323 (4) Å, Tzeng et al., 1999; Tzeng, Huang et al., 2004). Nitrogen atoms participating in coordination may cause the Cd—S bond to lengthen. Simultaneously, each ligand bridges two CdII ions to from a one-dimensional chain along the c axis.

There are two kinds of hydrogen bond in the complex. N—H···N hydrogen bonds exist between the hydrogen atom of the amidogen from one chain and the uncoordinated nitrogen atom of the 1,3,4-thiadiazole ring from the adjacent chain. This joins the chains along the c axis into a two-dimensional plane (Fig. 2). N—H···S hydrogen bonds occur between the other hydrogen atom of the same amidogen and the sulfur atom of the coordinated sulfhydryl from an adjacent chain. This joins the one-dimensional chains along the a axis to create a two-dimensional plane (Fig. 3). The parameters of hydrogen bonds are given in the Table 1.

Related literature top

For self-assembled coordination polymeric complexes with versatile structure features, see: Mulfort et al. (2007); Liu et al. (2003); Bauer et al. (2007). For the effect of hydrogen bonding in stabilizing and regulating the supramolecular construction, see: Dalrymple et al. (2007); Dong et al. (2006); Wang et al. (2005). For similar stuctures and bond lengths, see: Tzeng, Lee et al. (2004); Tzeng et al. (1999); Tzeng, Huang et al. (2004). [Scheme should show only 2 thiadiazole ligands in the repeat unit]

Experimental top

A mixture of 2-amino-5-mercapto-1,3,4-thiadiazole (39.95 mg, 0.3 mmol) (HL), LiOH.H2O (12.59 mg, 0.3 mmol) and Cd(NO3)2.4H2O (92.55 mg, 0.3 mmol) was dissolved in 25 ml MeOH/H2O. The resulting solution was filtered and the filtrate was allowed to stand for several days. Light yellow crystals were collected in about 30% yield (based on CdII).

Refinement top

H atoms of N were located in Fourier difference maps and refined with isotropic displacement parameters set at 1.2 times those of the parent N atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level for non-hydrogen atoms. Symmetry related atoms have the following symmetry codes: A = x, -y + 1, z + 1/2 B = -x + 1, -y + 1, -z AA= -x + 1, y, -z+1/2.
[Figure 2] Fig. 2. The complexes are linked by N—H···N hydrogen bonds along the c axis.
[Figure 3] Fig. 3. The complexes are connected by N—H···S hydrogen bonds along the a axis.
catena-poly[cadmium(II)-bis(µ-5-amino-1,3,4-thiadiazole-2-thiolato)- κ2N3:S2;κ2S2:N3] top
Crystal data top
[Cd(C2H2N3S2)2]F(000) = 728
Mr = 376.77Dx = 2.368 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2746 reflections
a = 12.6419 (11) Åθ = 2.5–27.9°
b = 10.8341 (10) ŵ = 2.83 mm1
c = 7.7241 (7) ÅT = 293 K
β = 92.795 (1)°Block, colorless
V = 1056.66 (16) Å30.24 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1232 independent reflections
Radiation source: fine-focus sealed tube1198 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 27.9°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS ; Bruker, 1998)
h = 1116
Tmin = 0.550, Tmax = 0.602k = 1414
3155 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.015H-atom parameters constrained
wR(F2) = 0.043 w = 1/[σ2(Fo2) + (0.0274P)2 + 0.7843P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
1232 reflectionsΔρmax = 0.39 e Å3
70 parametersΔρmin = 0.49 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0116 (5)
Crystal data top
[Cd(C2H2N3S2)2]V = 1056.66 (16) Å3
Mr = 376.77Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.6419 (11) ŵ = 2.83 mm1
b = 10.8341 (10) ÅT = 293 K
c = 7.7241 (7) Å0.24 × 0.24 × 0.20 mm
β = 92.795 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1232 independent reflections
Absorption correction: multi-scan
(SADABS ; Bruker, 1998)
1198 reflections with I > 2σ(I)
Tmin = 0.550, Tmax = 0.602Rint = 0.015
3155 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0150 restraints
wR(F2) = 0.043H-atom parameters constrained
S = 1.01Δρmax = 0.39 e Å3
1232 reflectionsΔρmin = 0.49 e Å3
70 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.582614 (14)0.25000.02585 (9)
C10.62301 (13)0.34405 (15)0.0808 (2)0.0238 (3)
C20.61171 (13)0.12413 (16)0.1243 (2)0.0267 (3)
N10.56499 (11)0.28638 (13)0.03734 (18)0.0262 (3)
N20.55650 (12)0.16022 (13)0.01418 (19)0.0289 (3)
N30.61723 (13)0.00640 (15)0.1767 (2)0.0384 (4)
H3A0.58340.04990.11820.046*
H3B0.65460.01290.26870.046*
S10.64750 (3)0.50104 (4)0.07269 (5)0.02700 (11)
S20.67601 (4)0.24382 (4)0.23801 (6)0.03215 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03358 (12)0.02365 (12)0.02017 (11)0.0000.00030 (7)0.000
C10.0249 (7)0.0262 (8)0.0202 (7)0.0030 (6)0.0006 (5)0.0004 (6)
C20.0242 (7)0.0278 (8)0.0282 (8)0.0013 (6)0.0016 (6)0.0024 (6)
N10.0326 (7)0.0236 (7)0.0219 (6)0.0002 (5)0.0033 (5)0.0001 (5)
N20.0349 (7)0.0234 (7)0.0281 (7)0.0002 (6)0.0027 (6)0.0004 (5)
N30.0346 (8)0.0297 (8)0.0500 (10)0.0012 (6)0.0079 (7)0.0144 (7)
S10.0292 (2)0.0257 (2)0.0261 (2)0.00241 (15)0.00115 (15)0.00137 (15)
S20.0341 (2)0.0325 (2)0.0287 (2)0.00058 (17)0.01070 (17)0.00401 (16)
Geometric parameters (Å, º) top
Cd1—N1i2.2927 (14)C2—N21.308 (2)
Cd1—N1ii2.2927 (14)C2—N31.339 (2)
Cd1—S12.5264 (4)C2—S21.7446 (18)
Cd1—S1iii2.5264 (4)N1—N21.383 (2)
C1—N11.302 (2)N1—Cd1ii2.2927 (14)
C1—S11.7304 (17)N3—H3A0.8600
C1—S21.7390 (16)N3—H3B0.8600
N1i—Cd1—N1ii103.50 (7)N3—C2—S2122.69 (13)
N1i—Cd1—S1110.90 (4)C1—N1—N2115.35 (13)
N1ii—Cd1—S194.38 (4)C1—N1—Cd1ii112.01 (11)
N1i—Cd1—S1iii94.38 (4)N2—N1—Cd1ii132.61 (10)
N1ii—Cd1—S1iii110.90 (4)C2—N2—N1111.06 (15)
S1—Cd1—S1iii139.05 (2)C2—N3—H3A120.0
N1—C1—S1122.83 (12)C2—N3—H3B120.0
N1—C1—S2111.98 (12)H3A—N3—H3B120.0
S1—C1—S2125.13 (9)C1—S1—Cd1100.73 (6)
N2—C2—N3123.33 (17)C1—S2—C287.62 (8)
N2—C2—S2113.98 (13)
S1—C1—N1—N2177.84 (12)S2—C1—S1—Cd190.15 (11)
S2—C1—N1—N20.51 (19)N1i—Cd1—S1—C1128.77 (6)
S1—C1—N1—Cd1ii0.59 (17)N1ii—Cd1—S1—C1124.98 (6)
S2—C1—N1—Cd1ii177.93 (7)S1iii—Cd1—S1—C14.38 (5)
N3—C2—N2—N1179.98 (16)N1—C1—S2—C20.11 (13)
S2—C2—N2—N11.14 (19)S1—C1—S2—C2177.15 (12)
C1—N1—N2—C21.1 (2)N2—C2—S2—C10.74 (14)
Cd1ii—N1—N2—C2176.95 (12)N3—C2—S2—C1179.63 (16)
N1—C1—S1—Cd192.87 (14)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2iv0.862.253.064 (2)158
N3—H3B···N2v0.862.663.119 (2)114
N3—H3B···S1vi0.862.743.4694 (17)144
Symmetry codes: (iv) x+1, y, z; (v) x, y, z+1/2; (vi) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C2H2N3S2)2]
Mr376.77
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)12.6419 (11), 10.8341 (10), 7.7241 (7)
β (°) 92.795 (1)
V3)1056.66 (16)
Z4
Radiation typeMo Kα
µ (mm1)2.83
Crystal size (mm)0.24 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS ; Bruker, 1998)
Tmin, Tmax0.550, 0.602
No. of measured, independent and
observed [I > 2σ(I)] reflections
3155, 1232, 1198
Rint0.015
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.043, 1.01
No. of reflections1232
No. of parameters70
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.49

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.862.253.064 (2)157.8
N3—H3B···N2ii0.862.663.119 (2)114.4
N3—H3B···S1iii0.862.743.4694 (17)144.1
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1/2; (iii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by Beijing Municipal Natural Science Foundation (No. 2082004), the Innovation project for Doctors of Beijing University of Technology (bcx-2009-048) and the Seventh Technology Fund for Postgraduates of Beijing University of Technology (ykj-2009-2374).

References

First citationBauer, C. A., Timofeeva, T. V., Settersten, T. B., Patterson, B. D., Liu, V. H., Simmons, B. A. & Allendorf, M. D. (2007). J. Am. Chem. Soc. 129, 7136–7144.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDalrymple, S. A. & Shimizu, G. K. H. (2007). J. Am. Chem. Soc. 129, 12114–12116.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDong, Y.-B., Sun, T., Ma, J.-P., Zhao, X.-X. & Huang, R.-Q. (2006). Inorg. Chem. 45, 10613–10628.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, T.-F., Fu, D., Gao, S., Zhang, Y.-Z., Sun, H.-L., Su, G. & Liu, Y.-J. (2003). J. Am. Chem. Soc. 125, 13976–13977.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMulfort, K. L. & Hupp, J. T. (2007). J. Am. Chem. Soc. 129, 9604–9605.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTzeng, B.-C., Huang, Y.-C., Wu, W.-M., Lee, S.-Y., Lee, G.-H. & Peng, S.-M. (2004). Cryst. Growth Des. 4, 63–70.  Web of Science CSD CrossRef CAS Google Scholar
First citationTzeng, B.-C., Lee, G.-H. & Peng, S.-M. (2004). Inorg. Chem. Commun. 7, 151–154.  Web of Science CSD CrossRef CAS Google Scholar
First citationTzeng, B.-C., Schier, A. & Schmidbaur, H. (1999). Inorg. Chem. 38, 3978–3984.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, Y., Cao, R., Bi, W., Li, X., Li, X. & Sun, D. (2005). J. Mol. Struct. 738, 51–57.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m838-m839
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds