metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­aqua­(μ4-3,5-dicarb­oxyl­ato­pyra­zol-1-ido-κ6N1,O5:N2,O3:O3′:O5,O5′)lanthanum(III)]

aCollege of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China
*Correspondence e-mail: sumwindy@mail.nankai.edu.cn

(Received 25 May 2009; accepted 29 May 2009; online 6 June 2009)

In the title coordination polymer, [La(C5HN2O4)(H2O)2]n, the lanthanum(III) metal centre is nine-coordinated, with a distorted tricapped trigonal prismatic geometry, by the O atoms of two water mol­ecules and by two N and five O atoms of two N,O-bidentate, one O,O′-bidentate and one O-mono­dentate 3,5-dicarb­oxyl­ato­pyra­zol-1-ide ligands. The polymeric three-dimensional structure is stabilized by inter­molecular O—H⋯O hydrogen bonds.

Related literature

For other coordination complexes with pyrazole-3,5-dicarboxylic acid ligands, see: Sakagami et al. (1996[Sakagami, N., Nakahanada, M., Ino, K., Hioki, A. & Kaizaki, S. (1996). Inorg. Chem. 35, 683-688.]); Wang et al. (2007[Wang, J.-J., Zhang, B., Shu, H.-M., Du, C.-Q. & Hu, H.-M. (2007). Acta Cryst. E63, m2190.]); Yang et al. (2004[Yang, J.-H., Zheng, S.-L., Yu, X.-L. & Chen, X.-M. (2004). Cryst. Growth Des. 4, 831-836.]); King et al. (2003[King, P., Clerac, R., Anson, C. E., Coulon, C. & Powell, A. K. (2003). Inorg. Chem. 42, 3492-3500.]); Pan et al. (2000[Pan, L., Huang, X.-Y., Li, J., Wu, Y.-G. & Zheng, N.-W. (2000). Angew. Chem. Int. Ed. Engl. 39, 527-530.]).

[Scheme 1]

Experimental

Crystal data
  • [La(C5HN2O4)(H2O)2]

  • Mr = 328.02

  • Orthorhombic, P b c a

  • a = 12.5712 (8) Å

  • b = 8.4350 (6) Å

  • c = 16.0070 (10) Å

  • V = 1697.35 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.04 mm−1

  • T = 293 K

  • 0.32 × 0.24 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.239, Tmax = 0.365

  • 8554 measured reflections

  • 1496 independent reflections

  • 1316 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.041

  • S = 1.06

  • 1496 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O6 0.85 2.14 2.944 (3) 159
O5—H5B⋯O3i 0.85 1.82 2.667 (3) 174
O6—H6A⋯O1ii 0.85 2.20 2.999 (3) 155
O6—H6B⋯O1iii 0.85 2.12 2.908 (3) 153
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past decade, the design and synthesis of metal–organic frameworks have drawn great attention. Pyrazole-3,5-dicarboxylic acid (H3pdc) has been found to be a suitable ligand in this study for its various coordination modes and strong coordination ability. Some complexes of H3pdc have been reported recently (Sakagami et al., 1996; Wang et al., 2007; Yang et al., 2004; King et al., 2003; Pan et al., 2000). Herein, we report the synthesis and crystal structure of a new lanthanum complex with pdc3- anions.

The coordination environment of the lanthanum(III) metal centre (Fig. 1) is provided by two N atoms and seven O atoms, of which the N atoms are from two pyrazole rings, five O atoms are from four carboxyl groups, and two O atoms are from water molecules. These atoms define a distorted tricapped trigonal prism, as commonly observed for nine-coordinate lanthanides. In the title complex, the La—O and La—N bond lengths are in the range 2.424 (2)–2.739 (2) and 2.621 (2)–2.665 (2) Å, respectively. The pdc3- ligands link lanthanum(III) atoms to form a three-dimensional framework using a µ4 coordination mode (Fig. 2). The crystal structure is stabilized by O—H···O hydrogen bonds (Table 1).

Related literature top

For other coordination complexes with pyrazole-3,5-dicarboxylic acid ligands, see: Sakagami et al. (1996); Wang et al. (2007); Yang et al. (2004); King et al. (2003); Pan et al. (2000).

Experimental top

All chemicals used (reagent grade) were commercially avaiable. The compound was synthesized by heating a mixture of pyrazole-3,5-dicarboxylic acid (0.078 g, 0.5 mmol), lanthanum nitrate (0.129 g, 0.3 mmol) and water (10 ml) in a 20 ml acid digestion bomb at 180 °C for 3 d. Colourless single crystals suitable for X-ray analysis were obtained after cooling to room temperature.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93, O—H = 0.85 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of the lanthanum(III) atom, with the atom-numbering scheme, showing displacement ellipsoids drawn at the 30% probability level. H atoms are omitted for clarity. Symmetry codes: (A) 3/2-x, -1/2+y, z; (B) x, 1/2-y, 1/2+z; (C) 2-x, -y, 1-z.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the a axis. H atoms are omitted for clarity.
Poly[diaqua(µ4-3,5-dicarboxylatopyrazol-1-ido- κ6N1,O5:N2,O3:O3': O5,O5')lanthanum(III)] top
Crystal data top
[La(C5HN2O4)(H2O)2]F(000) = 1232
Mr = 328.02Dx = 2.567 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3962 reflections
a = 12.5712 (8) Åθ = 2.5–27.8°
b = 8.4350 (6) ŵ = 5.04 mm1
c = 16.007 (1) ÅT = 293 K
V = 1697.35 (19) Å3Block, colourless
Z = 80.32 × 0.24 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
1496 independent reflections
Radiation source: fine-focus sealed tube1316 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1413
Tmin = 0.239, Tmax = 0.365k = 1010
8554 measured reflectionsl = 1915
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.041 w = 1/[σ2(Fo2) + (0.0185P)2 + 2.3502P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.003
1496 reflectionsΔρmax = 0.52 e Å3
128 parametersΔρmin = 0.50 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00271 (13)
Crystal data top
[La(C5HN2O4)(H2O)2]V = 1697.35 (19) Å3
Mr = 328.02Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.5712 (8) ŵ = 5.04 mm1
b = 8.4350 (6) ÅT = 293 K
c = 16.007 (1) Å0.32 × 0.24 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
1496 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1316 reflections with I > 2σ(I)
Tmin = 0.239, Tmax = 0.365Rint = 0.023
8554 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0160 restraints
wR(F2) = 0.041H-atom parameters constrained
S = 1.06Δρmax = 0.52 e Å3
1496 reflectionsΔρmin = 0.50 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.968426 (12)0.009678 (17)0.662201 (9)0.01104 (9)
O10.80247 (17)0.1816 (2)0.67873 (12)0.0212 (5)
O20.68279 (17)0.3455 (3)0.62560 (14)0.0274 (5)
O30.9060 (2)0.5049 (2)0.31256 (13)0.0222 (5)
O40.98606 (16)0.2761 (2)0.29004 (12)0.0170 (4)
O51.0936 (2)0.2221 (3)0.60343 (15)0.0325 (6)
H5A1.09420.14420.63710.049*
H5B1.09730.30660.63220.049*
O61.15184 (19)0.0151 (2)0.73037 (16)0.0338 (6)
H6A1.17800.10470.74340.051*
H6B1.18510.06640.74750.051*
N10.89277 (19)0.1436 (3)0.52362 (14)0.0162 (5)
N20.93750 (19)0.1715 (3)0.44839 (14)0.0165 (5)
C10.7644 (2)0.2632 (3)0.61947 (19)0.0153 (6)
C20.8238 (2)0.2624 (3)0.53938 (17)0.0155 (6)
C30.8237 (2)0.3719 (3)0.47460 (18)0.0190 (7)
H30.78410.46460.46980.023*
C40.8967 (2)0.3099 (3)0.41903 (17)0.0160 (6)
C50.9322 (2)0.3675 (3)0.33671 (17)0.0154 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.01164 (12)0.01181 (12)0.00967 (12)0.00021 (6)0.00036 (6)0.00053 (6)
O10.0230 (12)0.0285 (11)0.0122 (11)0.0074 (9)0.0021 (9)0.0032 (9)
O20.0223 (12)0.0311 (12)0.0287 (13)0.0141 (10)0.0086 (10)0.0075 (10)
O30.0358 (13)0.0158 (11)0.0150 (10)0.0056 (9)0.0055 (10)0.0026 (8)
O40.0217 (11)0.0158 (10)0.0134 (11)0.0024 (8)0.0033 (8)0.0008 (8)
O50.0410 (15)0.0214 (11)0.0351 (13)0.0112 (11)0.0097 (12)0.0019 (10)
O60.0253 (13)0.0264 (12)0.0496 (16)0.0030 (10)0.0187 (12)0.0042 (10)
N10.0190 (13)0.0176 (12)0.0120 (12)0.0019 (10)0.0034 (10)0.0015 (9)
N20.0201 (13)0.0186 (12)0.0108 (12)0.0022 (10)0.0041 (10)0.0027 (10)
C10.0151 (16)0.0149 (14)0.0159 (15)0.0019 (12)0.0012 (11)0.0016 (11)
C20.0159 (15)0.0169 (14)0.0137 (15)0.0016 (12)0.0000 (12)0.0006 (11)
C30.0235 (17)0.0163 (14)0.0173 (16)0.0060 (12)0.0011 (12)0.0011 (12)
C40.0190 (16)0.0153 (13)0.0137 (15)0.0014 (12)0.0004 (12)0.0016 (11)
C50.0159 (15)0.0153 (14)0.0149 (16)0.0021 (11)0.0020 (11)0.0005 (12)
Geometric parameters (Å, º) top
La1—O2i2.424 (2)O4—La1iii2.5929 (19)
La1—O3ii2.535 (2)O4—La1v2.7388 (19)
La1—O12.554 (2)O5—H5A0.8500
La1—O62.559 (2)O5—H5B0.8500
La1—O52.564 (2)O6—H6A0.8500
La1—O4iii2.5929 (19)O6—H6B0.8499
La1—N2iii2.620 (2)N1—C21.349 (4)
La1—N12.665 (2)N1—N21.350 (3)
La1—O4ii2.7388 (19)N2—C41.360 (4)
La1—C5ii3.014 (3)N2—La1iii2.620 (2)
La1—H5A1.9874C1—C21.483 (4)
O1—C11.266 (4)C2—C31.389 (4)
O2—C11.242 (3)C3—C41.380 (4)
O2—La1iv2.424 (2)C3—H30.9300
O3—C51.266 (3)C4—C51.474 (4)
O3—La1v2.535 (2)C5—La1v3.014 (3)
O4—C51.269 (3)
O2i—La1—O3ii87.64 (7)O2i—La1—H5A154.3
O2i—La1—O173.08 (8)O3ii—La1—H5A117.8
O3ii—La1—O171.11 (7)O1—La1—H5A110.3
O2i—La1—O6139.71 (7)O6—La1—H5A54.3
O3ii—La1—O682.55 (8)O5—La1—H5A15.9
O1—La1—O6137.56 (7)O4iii—La1—H5A114.5
O2i—La1—O5142.39 (7)N2iii—La1—H5A80.6
O3ii—La1—O5124.93 (7)N1—La1—H5A82.7
O1—La1—O598.20 (7)O4ii—La1—H5A73.1
O6—La1—O570.16 (8)C5ii—La1—H5A96.4
O2i—La1—O4iii73.32 (7)C1—O1—La1122.68 (18)
O3ii—La1—O4iii75.12 (6)C1—O2—La1iv170.3 (2)
O1—La1—O4iii132.65 (6)C5—O3—La1v99.48 (17)
O6—La1—O4iii66.39 (6)C5—O4—La1iii120.58 (17)
O5—La1—O4iii128.50 (7)C5—O4—La1v89.78 (16)
O2i—La1—N2iii81.81 (8)La1iii—O4—La1v148.37 (8)
O3ii—La1—N2iii138.85 (7)La1—O5—H5B114.9
O1—La1—N2iii140.31 (7)H5A—O5—H5B107.7
O6—La1—N2iii80.43 (8)La1—O6—H6A121.7
O5—La1—N2iii83.25 (7)La1—O6—H6B120.9
O4iii—La1—N2iii63.74 (7)H6A—O6—H6B116.7
O2i—La1—N176.18 (7)C2—N1—N2107.8 (2)
O3ii—La1—N1134.47 (7)C2—N1—La1112.86 (17)
O1—La1—N163.52 (7)N2—N1—La1131.91 (17)
O6—La1—N1135.32 (8)N1—N2—C4107.5 (2)
O5—La1—N167.51 (8)N1—N2—La1iii133.56 (17)
O4iii—La1—N1135.91 (6)C4—N2—La1iii115.97 (17)
N2iii—La1—N181.13 (7)O2—C1—O1123.8 (3)
O2i—La1—O4ii128.39 (7)O2—C1—C2119.1 (3)
O3ii—La1—O4ii49.28 (6)O1—C1—C2117.0 (2)
O1—La1—O4ii67.31 (6)N1—C2—C3110.8 (3)
O6—La1—O4ii70.28 (7)N1—C2—C1119.2 (2)
O5—La1—O4ii76.32 (6)C3—C2—C1129.9 (3)
O4iii—La1—O4ii112.04 (2)C4—C3—C2103.2 (2)
N2iii—La1—O4ii148.53 (7)C4—C3—H3128.4
N1—La1—O4ii111.79 (6)C2—C3—H3128.4
O2i—La1—C5ii107.57 (8)N2—C4—C3110.7 (2)
O3ii—La1—C5ii24.47 (7)N2—C4—C5118.5 (2)
O1—La1—C5ii65.50 (7)C3—C4—C5130.8 (3)
O6—La1—C5ii76.66 (8)O3—C5—O4121.0 (3)
O5—La1—C5ii101.11 (7)O3—C5—C4119.7 (3)
O4iii—La1—C5ii94.58 (7)O4—C5—C4119.2 (2)
N2iii—La1—C5ii153.48 (8)O3—C5—La1v56.04 (14)
N1—La1—C5ii124.88 (7)O4—C5—La1v65.32 (14)
O4ii—La1—C5ii24.90 (7)C4—C5—La1v171.1 (2)
O2i—La1—O1—C189.3 (2)La1—N1—N2—La1iii55.4 (3)
O3ii—La1—O1—C1177.3 (2)La1—O1—C1—O2178.7 (2)
O6—La1—O1—C1122.6 (2)La1—O1—C1—C23.1 (3)
O5—La1—O1—C153.1 (2)N2—N1—C2—C30.9 (3)
O4iii—La1—O1—C1135.8 (2)La1—N1—C2—C3152.7 (2)
N2iii—La1—O1—C136.2 (3)N2—N1—C2—C1178.8 (2)
N1—La1—O1—C16.6 (2)La1—N1—C2—C125.2 (3)
O4ii—La1—O1—C1124.5 (2)O2—C1—C2—N1161.5 (3)
C5ii—La1—O1—C1151.7 (2)O1—C1—C2—N120.3 (4)
O2i—La1—N1—C293.7 (2)O2—C1—C2—C321.1 (5)
O3ii—La1—N1—C221.3 (2)O1—C1—C2—C3157.2 (3)
O1—La1—N1—C215.99 (18)N1—C2—C3—C40.4 (3)
O6—La1—N1—C2115.99 (19)C1—C2—C3—C4178.0 (3)
O5—La1—N1—C296.26 (19)N1—N2—C4—C30.9 (3)
O4iii—La1—N1—C2141.00 (17)La1iii—N2—C4—C3162.30 (19)
N2iii—La1—N1—C2177.4 (2)N1—N2—C4—C5179.6 (2)
O4ii—La1—N1—C232.5 (2)La1iii—N2—C4—C516.4 (3)
C5ii—La1—N1—C28.2 (2)C2—C3—C4—N20.3 (3)
O2i—La1—N1—N2120.8 (2)C2—C3—C4—C5178.8 (3)
O3ii—La1—N1—N2166.70 (19)La1v—O3—C5—O47.1 (3)
O1—La1—N1—N2161.4 (2)La1v—O3—C5—C4170.7 (2)
O6—La1—N1—N229.5 (3)La1iii—O4—C5—O3177.2 (2)
O5—La1—N1—N249.2 (2)La1v—O4—C5—O36.5 (3)
O4iii—La1—N1—N273.6 (2)La1iii—O4—C5—C40.7 (3)
N2iii—La1—N1—N237.1 (2)La1v—O4—C5—C4171.4 (2)
O4ii—La1—N1—N2113.0 (2)La1iii—O4—C5—La1v170.65 (16)
C5ii—La1—N1—N2137.2 (2)N2—C4—C5—O3171.1 (3)
C2—N1—N2—C41.1 (3)C3—C4—C5—O310.5 (5)
La1—N1—N2—C4145.6 (2)N2—C4—C5—O411.0 (4)
C2—N1—N2—La1iii157.9 (2)C3—C4—C5—O4167.4 (3)
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x, y+1/2, z+1/2; (iii) x+2, y, z+1; (iv) x+3/2, y+1/2, z; (v) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O60.852.142.944 (3)159
O5—H5B···O3vi0.851.822.667 (3)174
O6—H6A···O1vii0.852.202.999 (3)155
O6—H6B···O1viii0.852.122.908 (3)153
Symmetry codes: (vi) x+2, y+1, z+1; (vii) x+2, y1/2, z+3/2; (viii) x+1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formula[La(C5HN2O4)(H2O)2]
Mr328.02
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)12.5712 (8), 8.4350 (6), 16.007 (1)
V3)1697.35 (19)
Z8
Radiation typeMo Kα
µ (mm1)5.04
Crystal size (mm)0.32 × 0.24 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.239, 0.365
No. of measured, independent and
observed [I > 2σ(I)] reflections
8554, 1496, 1316
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.041, 1.06
No. of reflections1496
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.50

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O60.852.142.944 (3)159
O5—H5B···O3i0.851.822.667 (3)174
O6—H6A···O1ii0.852.202.999 (3)155
O6—H6B···O1iii0.852.122.908 (3)153
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y1/2, z+3/2; (iii) x+1/2, y, z+3/2.
 

Acknowledgements

The authors acknowledge financial support from the Young Teachers' Starting Fund of Tianjin Polytechnic University.

References

First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKing, P., Clerac, R., Anson, C. E., Coulon, C. & Powell, A. K. (2003). Inorg. Chem. 42, 3492–3500.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPan, L., Huang, X.-Y., Li, J., Wu, Y.-G. & Zheng, N.-W. (2000). Angew. Chem. Int. Ed. Engl. 39, 527–530.  CrossRef PubMed CAS Google Scholar
First citationSakagami, N., Nakahanada, M., Ino, K., Hioki, A. & Kaizaki, S. (1996). Inorg. Chem. 35, 683–688.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-J., Zhang, B., Shu, H.-M., Du, C.-Q. & Hu, H.-M. (2007). Acta Cryst. E63, m2190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, J.-H., Zheng, S.-L., Yu, X.-L. & Chen, X.-M. (2004). Cryst. Growth Des. 4, 831–836.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds