metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m833-m834

Poly[[hemi-μ4-oxalato-hemi-μ2-oxalato-bis­­(μ3-pyrazine-2-carboxyl­ato)neodymium(III)silver(I)] monohydrate]

aCollege of Mathematics, Physics and Software Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China, and bCollege of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: fengtj60@126.com

(Received 28 May 2009; accepted 4 June 2009; online 27 June 2009)

In the title coordination polymer, {[AgNd(C5H3N2O2)2(C2O4)]·H2O}n, the NdIII atom is coordinated in a distorted monocapped square-anti­prismatic geometry by two O and two N atoms of two N,O-bidentate pyrazine-2-carboxyl­ate (2-pzc) ligands, four O atoms of two bidentate oxalate ligands, and one O atom of a monodentate carboxyl­ate group of a 2-pzc ligand. The AgI ion is coordinated in a distorted tetra­hedral geometry by two N atoms from two monodentate 2-pzc ligands, one O atom from one monodentate oxalate ligand and one O atom of a bridging carboxyl­ate group of a 2-pzc ligand. The oxalate anions link neighbouring neodymium(III) metal centres into Nd–oxalate chains, which are inter­connected by Ag(2-pyz)2 units, forming a three-dimensional polymeric framework. Inter­molecular O—H⋯O and C—H⋯O hydrogen bonds are observed in the crystal structure.

Related literature

For general background to coordination polymers and open-framework materials, see: Barbour (2006[Barbour, L. J. (2006). Chem. Commun. pp. 1163-1168.]); Kepert (2006[Kepert, C. J. (2006). Chem. Commun. pp. 695-700.]); Kong et al. (2008[Kong, X. J., Ren, Y. P., Chen, W. X., Long, L. S., Zheng, Z. P., Huang, R. B. & Zheng, L. S. (2008). Angew. Chem. Int. Ed. 47, 2398-2401.]); Zhang et al. (2005[Zhang, M. B., Zhang, J., Zheng, S. T. & Yang, G. Y. (2005). Angew. Chem. Int. Ed. 44, 1385-1388.]); Gheorghe et al. (2002[Gheorghe, R., Andruh, M., Müller, A. & Schmidtmann, M. (2002). Inorg. Chem. 41, 5314-5316.]). For the synthesis and crystal structure of heterometallic complexes of pyrazine-2-carboxylic acid, see: Ciurtin et al. (2002[Ciurtin, D. M., Smith, M. D. & zur Loye, H.-C. (2002). Solid State Sci. 4, 461-465.]); Dong et al. (2000[Dong, Y. B., Smith, M. D. & zur Loye, H. C. (2000). Angew. Chem. Int. Ed. 39, 4271-4273.]).

[Scheme 1]

Experimental

Crystal data
  • [AgNd(C5H3N2O2)2(C2O4)]·H2O

  • Mr = 604.33

  • Monoclinic, P 21 /c

  • a = 10.112 (2) Å

  • b = 18.847 (4) Å

  • c = 8.0359 (16) Å

  • β = 95.47 (3)°

  • V = 1524.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.72 mm−1

  • T = 293 K

  • 0.32 × 0.26 × 0.21 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.241, Tmax = 0.370

  • 12072 measured reflections

  • 2747 independent reflections

  • 1946 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.111

  • S = 1.13

  • 2747 reflections

  • 244 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 1.59 e Å−3

  • Δρmin = −1.77 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O4i 0.84 2.31 2.975 (13) 137
C3—H3⋯O1ii 0.93 2.34 3.221 (12) 158
C3—H3⋯O8ii 0.93 2.49 3.150 (13) 128
C4—H4⋯O5 0.93 2.54 3.170 (13) 125
C9—H9⋯O2iii 0.93 2.47 3.270 (15) 145
C9—H9⋯O7iv 0.93 2.35 2.971 (15) 124
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z-1; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, much research work has been focused on the design and synthesis of new potentially multifunctional heterometallic materials with useful structural properties, such as porosity, gas storage abilities and ion exchange capabilities (Barbour, 2006; Kepert, 2006; Kong et al., 2008; Zhang et al., 2005; Gheorghe et al., 2002). Pyrazine-2-carboxylate (2-pzc) is such a potential multidentate ligand, which can be used to generate high-dimensional heterometallic frameworks (Ciurtin et al., 2002; Dong et al., 2000). On the basis of above considerations, we chose pyrazine-2-carboxylic acid, mixed 4d-4f metal ions and nitric acid as our building blocks. A new three-dimensional 4d-4f coordination framework resulted from the hydrothermal treatment of Nd2O3, AgNO3, oxalic acid, pyrazine-2-carboxylic acid and nitric acid in water.

As depicted in Fig. 1, the asymmetric unit of the title compound contains one neodymium(III) atom, one silver(I) atom, two crystallogaphically independent 2-pzc ligands, two halves of oxalate anions and one lattice water molecule. The neodymium(III) atom is nine-coordinated in a distorted monocapped square-antiprismatic geometry by two O and two N atoms of two N,O-bidentate pyrazine-2-carboxylate (2-pzc) ligands, four O atoms of two bidentate oxalate ligands, and one O atom of a monodentate carboxylate group of a 2-pzc ligand. Each silver(I) ion can be described as having a distorted tetrahedral coordination geometry provided by two N atoms from two monodentate 2-pzc ligands, one O atom from one monodentate oxalate ligand and one O atom of a bridging carboxylate group of a 2-pzc ligand. In the crystal structure, zigzag Nd–oxalate chains are formed via the oxalate ligands, with Nd···Nd separations of 6.290 (2) Å and 6.435 (3) Å. The interconnection of the Nd–oxalate chains and Ag(2-pyz)2 units result in the formation of a three-dimensional polymeric structure. Intermolecular O—H···O and C—H···O hydrogen bonds involving the non-coordinated water molecules are observed in the crystal structure (Table 1, Fig. 2).

Related literature top

For general background to coordination polymers and open-framework materials, see: Barbour (2006); Kepert (2006); Kong et al. (2008); Zhang et al. (2005); Gheorghe et al. (2002). For the synthesis and crystal structure of heterometallic complexes of pyrazine-2-carboxylic acid, see: Ciurtin et al. (2002); Dong et al. (2000).

Experimental top

A mixture of Nd2O3 (0.168 g, 0.5 mmol), AgNO3 (0.169 g, 1 mmol), pyrazine-2-carboxylic acid (0.124 g, 1 mmol), oxalic acid (0.09 g, 1 mmol), HNO3 (0.12 ml) and H2O (10 ml) was placed in a 23 ml Teflon-lined reactor, which was heated to 433 K for 3 d and then cooled to room temperature at a rate of 10 K h-1. The colourless crystals obtained were washed with water and dried in air (yield 46% based on Nd).

Refinement top

C-bound H atoms were placed at calculated positions and were treated as riding on their parent atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2 Ueq(C). The water H-atoms were located in a difference map, and were refined with a distance restraint of O—H = 0.84 Å and with Uiso(H) = 1.5 Ueq(O). The hightest peak is located 1.31 Å from O1 and the deepest hole is located 0.94 Å from Nd1.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity. [Symmetry codes: (i) 1 - x, 2 - y, 1 - z; (ii) 1 - x, 2 - y, -z; (iii) -1 + x,1.5 - y, -1/2 + z; (iv) -1 + x, y, z; (v) x, y, 1 + z; (vi) 2 - x, 2 - y, 1 - z.]
[Figure 2] Fig. 2. A partial packing diagram of the title compound showing the intermolecular hydrogen bonds as dashed lines. Hydrogen atoms not involved in hydrogen bonds are omitted.
Poly[[hemi-µ4-oxalato-hemi-µ2-oxalato-bis(µ3-pyrazine-2- carboxylato)neodymium(III)silver(I)] monohydrate] top
Crystal data top
[AgNd(C5H3N2O2)2(C2O4)]·H2OF(000) = 1148
Mr = 604.33Dx = 2.633 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2433 reflections
a = 10.112 (2) Åθ = 1.4–28.0°
b = 18.847 (4) ŵ = 4.72 mm1
c = 8.0359 (16) ÅT = 293 K
β = 95.47 (3)°Block, colourless
V = 1524.6 (5) Å30.32 × 0.26 × 0.21 mm
Z = 4
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2747 independent reflections
Radiation source: fine-focus sealed tube1946 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
ω scansθmax = 25.2°, θmin = 3.3°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 1212
Tmin = 0.241, Tmax = 0.370k = 2222
12072 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0182P)2 + 17.3537P]
where P = (Fo2 + 2Fc2)/3
2747 reflections(Δ/σ)max = 0.028
244 parametersΔρmax = 1.59 e Å3
3 restraintsΔρmin = 1.77 e Å3
Crystal data top
[AgNd(C5H3N2O2)2(C2O4)]·H2OV = 1524.6 (5) Å3
Mr = 604.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.112 (2) ŵ = 4.72 mm1
b = 18.847 (4) ÅT = 293 K
c = 8.0359 (16) Å0.32 × 0.26 × 0.21 mm
β = 95.47 (3)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2747 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
1946 reflections with I > 2σ(I)
Tmin = 0.241, Tmax = 0.370Rint = 0.093
12072 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0383 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0182P)2 + 17.3537P]
where P = (Fo2 + 2Fc2)/3
2747 reflectionsΔρmax = 1.59 e Å3
244 parametersΔρmin = 1.77 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag11.15900 (9)0.92327 (6)0.60684 (11)0.0369 (3)
C10.9481 (10)0.9114 (6)0.0822 (13)0.026 (3)
N10.8209 (8)0.9101 (5)0.0274 (10)0.027 (2)
Nd10.64656 (5)0.89514 (3)0.26047 (7)0.02128 (18)
O10.8807 (6)0.9057 (5)0.3541 (8)0.0298 (19)
O1W0.9655 (10)0.7408 (7)0.0126 (18)0.099 (5)
H1W0.91990.74310.09450.149*
H2W0.92620.75940.07340.149*
C21.0449 (10)0.9146 (6)0.0258 (13)0.029 (3)
H21.13370.91360.01680.035*
N21.0149 (9)0.9190 (5)0.1900 (11)0.030 (2)
O21.0988 (7)0.9106 (5)0.3253 (8)0.035 (2)
C30.8869 (11)0.9176 (7)0.2454 (13)0.037 (3)
H30.86220.91950.35980.045*
O31.6618 (7)0.8233 (4)0.5173 (9)0.034 (2)
C40.7896 (11)0.9134 (7)0.1356 (12)0.034 (3)
H40.70060.91300.17750.041*
O41.7098 (7)0.7193 (4)0.6421 (10)0.0317 (18)
C50.9806 (10)0.9093 (6)0.2720 (13)0.027 (3)
O50.5044 (7)0.9079 (4)0.0030 (9)0.0309 (18)
O60.3693 (7)0.9833 (4)0.1510 (9)0.0304 (19)
O70.5658 (7)1.0571 (4)0.6552 (9)0.0274 (18)
O80.6685 (7)0.9827 (4)0.4928 (8)0.0270 (18)
N101.2894 (9)0.8232 (6)0.6898 (12)0.039 (3)
C110.4622 (10)0.9689 (6)0.0439 (13)0.026 (3)
N111.4588 (8)0.7064 (5)0.7235 (10)0.024 (2)
C120.5689 (10)1.0120 (6)0.5441 (11)0.022 (2)
C61.4972 (10)0.7674 (6)0.6640 (13)0.027 (3)
C71.4155 (11)0.8253 (6)0.6552 (14)0.031 (3)
H71.44980.86850.62340.037*
C81.2491 (11)0.7609 (6)0.7402 (15)0.034 (3)
H81.16170.75600.76540.041*
C91.3340 (11)0.7018 (7)0.7569 (14)0.033 (3)
H91.30160.65870.79220.040*
C101.6348 (11)0.7698 (7)0.6033 (13)0.030 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0338 (5)0.0520 (7)0.0262 (4)0.0081 (4)0.0096 (4)0.0043 (4)
C10.028 (6)0.024 (7)0.026 (6)0.007 (5)0.006 (5)0.004 (5)
N10.028 (5)0.035 (6)0.018 (4)0.008 (4)0.002 (4)0.001 (4)
Nd10.0222 (3)0.0239 (3)0.0182 (3)0.0008 (3)0.0041 (2)0.0008 (3)
O10.009 (3)0.063 (6)0.017 (3)0.001 (4)0.001 (3)0.002 (4)
O1W0.052 (7)0.092 (11)0.155 (12)0.000 (6)0.020 (7)0.042 (9)
C20.019 (5)0.040 (8)0.028 (6)0.009 (5)0.003 (4)0.009 (5)
N20.032 (5)0.037 (6)0.022 (5)0.001 (4)0.008 (4)0.004 (4)
O20.021 (4)0.066 (7)0.017 (4)0.004 (4)0.004 (3)0.006 (4)
C30.033 (7)0.064 (10)0.014 (5)0.016 (6)0.003 (5)0.007 (5)
O30.036 (5)0.040 (6)0.027 (4)0.009 (4)0.005 (3)0.015 (4)
C40.036 (7)0.055 (9)0.012 (5)0.002 (6)0.007 (5)0.007 (5)
O40.034 (4)0.015 (4)0.048 (5)0.001 (3)0.013 (4)0.008 (4)
C50.027 (6)0.029 (7)0.025 (5)0.008 (5)0.010 (5)0.006 (5)
O50.039 (5)0.029 (5)0.025 (4)0.004 (4)0.000 (3)0.003 (4)
O60.022 (4)0.033 (5)0.035 (4)0.005 (3)0.007 (3)0.002 (4)
O70.024 (4)0.033 (5)0.024 (4)0.001 (3)0.000 (3)0.008 (4)
O80.026 (4)0.034 (5)0.021 (4)0.007 (3)0.006 (3)0.007 (3)
N100.029 (5)0.043 (7)0.043 (6)0.004 (5)0.001 (5)0.004 (5)
C110.024 (6)0.028 (7)0.027 (6)0.002 (5)0.003 (5)0.008 (5)
N110.018 (4)0.027 (6)0.029 (5)0.000 (4)0.010 (4)0.001 (4)
C120.034 (6)0.020 (6)0.012 (5)0.000 (5)0.003 (4)0.012 (4)
C60.026 (6)0.032 (7)0.023 (5)0.000 (5)0.002 (4)0.013 (5)
C70.034 (7)0.016 (7)0.043 (7)0.001 (5)0.003 (5)0.002 (5)
C80.033 (6)0.022 (7)0.050 (7)0.004 (5)0.019 (6)0.011 (6)
C90.038 (7)0.029 (7)0.032 (6)0.004 (5)0.006 (5)0.011 (5)
C100.044 (7)0.029 (8)0.019 (5)0.007 (6)0.010 (5)0.004 (5)
Geometric parameters (Å, º) top
Ag1—N2i2.291 (9)C3—H30.9300
Ag1—O22.299 (7)O3—C101.267 (13)
Ag1—N102.360 (10)O3—Nd1vii2.461 (7)
C1—N11.320 (13)C4—H40.9300
C1—C21.370 (14)O4—C101.240 (14)
C1—C51.530 (14)O4—Nd1viii2.465 (7)
N1—C41.319 (13)O5—C111.259 (13)
N1—Nd12.707 (8)O6—C111.242 (12)
Nd1—O12.423 (6)O6—Nd1ii2.455 (8)
Nd1—O6ii2.455 (8)O7—C121.235 (11)
Nd1—O52.456 (7)O7—Nd1v2.482 (7)
Nd1—O3iii2.461 (7)O8—C121.252 (12)
Nd1—O4iv2.465 (8)N10—C81.319 (15)
Nd1—O7v2.482 (7)N10—C71.332 (14)
Nd1—O82.486 (7)C11—C11ii1.53 (2)
Nd1—N11iv2.692 (9)N11—C91.317 (13)
O1—C51.260 (12)N11—C61.318 (14)
O1W—H1W0.8400N11—Nd1viii2.692 (9)
O1W—H2W0.8405C12—C12v1.57 (2)
C2—N21.328 (13)C6—C71.367 (15)
C2—H20.9300C6—C101.517 (15)
N2—C31.329 (13)C7—H70.9300
N2—Ag1vi2.291 (9)C8—C91.406 (16)
O2—C51.231 (12)C8—H80.9300
C3—C41.385 (15)C9—H90.9300
N2i—Ag1—O2124.8 (3)N2—C2—H2119.2
N2i—Ag1—N1098.4 (3)C1—C2—H2119.2
O2—Ag1—N10106.5 (3)C2—N2—C3117.0 (9)
N1—C1—C2121.5 (10)C2—N2—Ag1vi127.6 (7)
N1—C1—C5116.3 (9)C3—N2—Ag1vi115.3 (7)
C2—C1—C5122.3 (9)C5—O2—Ag1120.1 (7)
C1—N1—C4117.7 (9)N2—C3—C4121.1 (10)
C1—N1—Nd1116.7 (6)N2—C3—H3119.5
C4—N1—Nd1125.5 (7)C4—C3—H3119.5
O1—Nd1—O6ii93.6 (3)C10—O3—Nd1vii153.6 (7)
O1—Nd1—O5137.2 (2)N1—C4—C3121.1 (10)
O6ii—Nd1—O565.6 (2)N1—C4—H4119.4
O1—Nd1—O3iii78.7 (2)C3—C4—H4119.4
O6ii—Nd1—O3iii144.2 (3)C10—O4—Nd1viii126.5 (7)
O5—Nd1—O3iii139.7 (3)O2—C5—O1128.3 (10)
O1—Nd1—O4iv84.8 (3)O2—C5—C1117.1 (9)
O6ii—Nd1—O4iv133.5 (3)O1—C5—C1114.6 (9)
O5—Nd1—O4iv84.6 (3)C11—O5—Nd1118.1 (7)
O3iii—Nd1—O4iv81.1 (3)C11—O6—Nd1ii118.1 (7)
O1—Nd1—O7v136.9 (2)C12—O7—Nd1v122.0 (6)
O6ii—Nd1—O7v74.4 (2)C12—O8—Nd1121.6 (6)
O5—Nd1—O7v75.5 (2)C8—N10—C7114.8 (10)
O3iii—Nd1—O7v87.6 (3)C8—N10—Ag1128.1 (8)
O4iv—Nd1—O7v133.3 (2)C7—N10—Ag1116.0 (8)
O1—Nd1—O872.4 (2)O6—C11—O5126.5 (10)
O6ii—Nd1—O869.4 (2)O6—C11—C11ii117.6 (13)
O5—Nd1—O8125.8 (3)O5—C11—C11ii115.8 (11)
O3iii—Nd1—O875.0 (3)C9—N11—C6116.9 (9)
O4iv—Nd1—O8149.6 (2)C9—N11—Nd1viii127.6 (7)
O7v—Nd1—O864.6 (2)C6—N11—Nd1viii115.5 (6)
O1—Nd1—N11iv138.7 (3)O7—C12—O8128.2 (10)
O6ii—Nd1—N11iv127.1 (2)O7—C12—C12v116.3 (11)
O5—Nd1—N11iv68.0 (3)O8—C12—C12v115.5 (10)
O3iii—Nd1—N11iv71.9 (3)N11—C6—C7121.2 (10)
O4iv—Nd1—N11iv62.7 (3)N11—C6—C10117.0 (10)
O7v—Nd1—N11iv70.6 (3)C7—C6—C10121.9 (10)
O8—Nd1—N11iv124.5 (2)N10—C7—C6123.6 (11)
O1—Nd1—N161.6 (2)N10—C7—H7118.2
O6ii—Nd1—N171.3 (3)C6—C7—H7118.2
O5—Nd1—N176.1 (2)N10—C8—C9122.1 (11)
O3iii—Nd1—N1130.2 (3)N10—C8—H8118.9
O4iv—Nd1—N167.3 (3)C9—C8—H8118.9
O7v—Nd1—N1142.1 (3)N11—C9—C8121.1 (11)
O8—Nd1—N1115.7 (3)N11—C9—H9119.5
N11iv—Nd1—N1119.8 (3)C8—C9—H9119.5
C5—O1—Nd1130.6 (6)O4—C10—O3126.2 (11)
H1W—O1W—H2W111.8O4—C10—C6117.0 (10)
N2—C2—C1121.5 (10)O3—C10—C6116.8 (10)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+2, z; (iii) x1, y, z; (iv) x1, y+3/2, z1/2; (v) x+1, y+2, z+1; (vi) x, y, z1; (vii) x+1, y, z; (viii) x+1, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O4iv0.842.312.975 (13)137
C3—H3···O1vi0.932.343.221 (12)158
C3—H3···O8vi0.932.493.150 (13)128
C4—H4···O50.932.543.170 (13)125
C9—H9···O2ix0.932.473.270 (15)145
C9—H9···O7x0.932.352.971 (15)124
Symmetry codes: (iv) x1, y+3/2, z1/2; (vi) x, y, z1; (ix) x, y+3/2, z+1/2; (x) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[AgNd(C5H3N2O2)2(C2O4)]·H2O
Mr604.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.112 (2), 18.847 (4), 8.0359 (16)
β (°) 95.47 (3)
V3)1524.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)4.72
Crystal size (mm)0.32 × 0.26 × 0.21
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.241, 0.370
No. of measured, independent and
observed [I > 2σ(I)] reflections
12072, 2747, 1946
Rint0.093
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.111, 1.13
No. of reflections2747
No. of parameters244
No. of restraints3
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0182P)2 + 17.3537P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.59, 1.77

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O4i0.842.312.975 (13)136.8
C3—H3···O1ii0.932.343.221 (12)158
C3—H3···O8ii0.932.493.150 (13)128
C4—H4···O50.932.543.170 (13)125
C9—H9···O2iii0.932.473.270 (15)145
C9—H9···O7iv0.932.352.971 (15)124
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x, y, z1; (iii) x, y+3/2, z+1/2; (iv) x+2, y1/2, z+3/2.
 

Acknowledgements

The authors acknowledge Lanzhou Jiaotong University for supporting this work.

References

First citationBarbour, L. J. (2006). Chem. Commun. pp. 1163–1168.  Web of Science CrossRef Google Scholar
First citationCiurtin, D. M., Smith, M. D. & zur Loye, H.-C. (2002). Solid State Sci. 4, 461–465.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, Y. B., Smith, M. D. & zur Loye, H. C. (2000). Angew. Chem. Int. Ed. 39, 4271–4273.  Web of Science CrossRef CAS Google Scholar
First citationGheorghe, R., Andruh, M., Müller, A. & Schmidtmann, M. (2002). Inorg. Chem. 41, 5314–5316.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKepert, C. J. (2006). Chem. Commun. pp. 695–700.  Web of Science CrossRef Google Scholar
First citationKong, X. J., Ren, Y. P., Chen, W. X., Long, L. S., Zheng, Z. P., Huang, R. B. & Zheng, L. S. (2008). Angew. Chem. Int. Ed. 47, 2398–2401.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, M. B., Zhang, J., Zheng, S. T. & Yang, G. Y. (2005). Angew. Chem. Int. Ed. 44, 1385–1388.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m833-m834
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds