organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1634-o1635

(E)-1-(4-Chloro­phen­yl)ethanone semi­carbazone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, National Institute of Technology–Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 11 June 2009; accepted 13 June 2009; online 20 June 2009)

In the title compound, C9H10ClN3O, the semicarbazone group is approximately planar, with an r.m.s. deviation from the mean plane of 0.054 (1) Å. The dihedral angle between the least-squares planes through the semicarbazone group and the benzene ring is 30.46 (5)°. In the solid state, mol­ecules are linked via inter­molecular N—H⋯O and N—H⋯N hydrogen bonds, generating R22(9) ring motifs which, together with R22(8) ring motifs formed by pairs of inter­molecular N—H⋯O hydrogen bonds, lead to the formation of a seldom-observed mol­ecular trimer. Furthermore, N—H⋯O hydrogen bonds form R21(7) ring motifs with C—H⋯O hydrogen bonds, further consolidating the crystal structure. Mol­ecules are linked by these inter­molecular inter­actions, forming two-dimensional networks parallel to (100).

Related literature

For the synthetic utility and applications of semicarbazone derivatives, see: Warren et al. (1977[Warren, J. D., Woodward, D. L. & Hargreaves, R. T. (1977). J. Med. Chem. 20, 1520-1521.]); Chandra & Gupta (2005[Chandra, S. & Gupta, L. K. (2005). Spectrochim Acta Part A, 62, 1089-94.]); Jain et al. (2002[Jain, V. K., Handa, A., Pandya, R., Shrivastav, P. & Agrawal, Y. K. (2002). ReacT. Funct. Polym. 51, 101-110.]); Pilgram (1978[Pilgram, K. H. G. (1978). US Patent No. 4 108 399.]); Yogeeswari et al. (2004[Yogeeswari, P., Sriram, D., Pandeya, S. N. & Stables, J. P. (2004). Farmaco, 59, 609-613.]). For a related structure, see: Fun et al. (2009[Fun, H.-K., Yeap, C. S., Padaki, M., Malladi, S. & Isloor, A. M. (2009). Acta Cryst. E65, o1619-o1620.]). For the preparation, see: Furniss et al. (1978[Furniss, B. S., Hannaford, A. J., Rogers, V., Smith, P. W. G. & Tatchell, A. R. (1978). Vogel's Textbook of Practical Organic Chemistry, 4th ed., p. 1112. London:ELBS.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10ClN3O

  • Mr = 211.65

  • Monoclinic, C 2/c

  • a = 21.8191 (4) Å

  • b = 7.0484 (1) Å

  • c = 13.7249 (2) Å

  • β = 109.633 (1)°

  • V = 1988.04 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 100 K

  • 0.41 × 0.20 × 0.03 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.867, Tmax = 0.991

  • 28636 measured reflections

  • 3539 independent reflections

  • 2912 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.101

  • S = 1.04

  • 3539 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.884 (19) 2.007 (19) 2.8866 (12) 173.3 (19)
N3—H1N3⋯N1ii 0.835 (18) 2.264 (18) 3.0904 (14) 170.5 (16)
N3—H2N3⋯O1iii 0.826 (17) 2.316 (17) 3.0499 (13) 148.4 (15)
C9—H9C⋯O1i 0.94 (2) 2.55 (2) 3.2162 (16) 128.1 (16)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In organic chemistry, a semicarbazone is a derivative of an aldehyde or ketone formed by a condensation between a ketone or aldehyde and semicarbazide. Semicarbazones find numerous applications in the field of synthetic chemistry, such as medicinal chemistry (Warren et al., 1977), organometalics (Chandra & Gupta, 2005), polymers (Jain et al., 2002) and herbicides (Pilgram, 1978). 4-Sulphamoylphenyl semicarbazones were synthesized and were found to possess anticonvulsant activity (Yogeeswari et al., 2004). Herein we report the crystal structure of the title semicarbazone which may have commercial and synthetic importance.

The bond lengths (Allen et al., 1987) and angles in the molecule (Fig. 1) are within normal ranges, and are comparable to those observed in a closely related structure (Fun et al., 2009). The semicarbazone group (C9/C6/C7/N1/N2/C8/O1/N3) is approximately planar, with an r.m.s. deviation of 0.054 (1) Å for atom N2 while the dihedral angle between the least-squares planes through the semicarbazone group and the benzene ring is 30.46 (5)°.

In the solid state, the molecules are linked via intermolecular N3—H2N3···O1 and N3—H1N3···N1 hydrogen bonds to generate R22(9) ring motifs which, together with the R22(8) ring motifs formed by pairs of intermolecular N2—H1N2···O1 hydrogen bonds, lead to the formation of a seldom-observed molecular trimer (Fig. 2). Furthermore, N2—H1N2···O1 hydrogen bonds form R21(7) ring motifs (Fig. 2) with C9—H9C···O1 hydrogen bonds to further consolidated the crystal structure. The molecules are linked by these intermolecular interactions to form two-dimensional networks parallel to the (1 0 0) plane.

Related literature top

For the synthetic utility and applications of semicarbazone derivatives, see: Warren et al. (1977); Chandra & Gupta (2005); Jain et al. (2002); Pilgram (1978); Yogeeswari et al. (2004). For a related structure, see: Fun et al. (2009). For the preparation, see: Furniss et al. (1978). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

0.780 g (7.0 mmol) of semicarbazide hydrochloride and 0.698 g (8.5 mmol) of crystallized sodium acetate was dissolved in 10 ml of water (Furniss et al., 1978). The reaction mixture was stirred at room temperature for 10 minutes. To this (1 g, 6.5 mmol) of 4-choloacetophenone was added and shaken well. A little alcohol was added to dissolve the turbidity. It was shaken for 10 more minutes and allowed to stand. The semicarbazone crystallizes on standing for 6 h. The separated crystals were filtered, washed with cold water and recrystallized from alcohol. Yield was found to be 1.1 g, 80.35%. M.p. 478–479 K.

Refinement top

All hydrogen atoms were located from the difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008)L; molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound, viewed along the a axis, showing the formation of a molecular trimer. Atom-numbering is shown for those non-H atoms involved in hydrogen bonds and intermolecular interactions are shown as dashed lines. Molecule A is is related to molecules B and C via symmetry codes of -x + 1/2, -y + 1/2, -z and -x + 1/2, y + 1/2, -z + 1/2, respectively.
(E)-1-(4-Chlorophenyl)ethanone semicarbazone top
Crystal data top
C9H10ClN3OF(000) = 880
Mr = 211.65Dx = 1.414 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6351 reflections
a = 21.8191 (4) Åθ = 3.1–32.1°
b = 7.0484 (1) ŵ = 0.35 mm1
c = 13.7249 (2) ÅT = 100 K
β = 109.633 (1)°Plate, colourless
V = 1988.04 (6) Å30.41 × 0.20 × 0.03 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3539 independent reflections
Radiation source: fine-focus sealed tube2912 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 32.3°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 3232
Tmin = 0.867, Tmax = 0.991k = 1010
28636 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.049P)2 + 1.2937P]
where P = (Fo2 + 2Fc2)/3
3539 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C9H10ClN3OV = 1988.04 (6) Å3
Mr = 211.65Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.8191 (4) ŵ = 0.35 mm1
b = 7.0484 (1) ÅT = 100 K
c = 13.7249 (2) Å0.41 × 0.20 × 0.03 mm
β = 109.633 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3539 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2912 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.991Rint = 0.052
28636 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.45 e Å3
3539 reflectionsΔρmin = 0.27 e Å3
167 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.023375 (16)0.37949 (4)0.13113 (2)0.02330 (9)
O10.28038 (4)0.80096 (12)0.13075 (6)0.01675 (17)
N10.18652 (5)0.38677 (13)0.08164 (7)0.01332 (18)
N20.22047 (5)0.53956 (13)0.06342 (7)0.01416 (18)
N30.24395 (6)0.61942 (14)0.23627 (8)0.0176 (2)
C10.11370 (6)0.05633 (16)0.01844 (9)0.0167 (2)
C20.08397 (6)0.21004 (16)0.01146 (10)0.0178 (2)
C30.06045 (6)0.18847 (16)0.09274 (9)0.0172 (2)
C40.06590 (6)0.01713 (17)0.14505 (9)0.0184 (2)
C50.09612 (6)0.13476 (16)0.11541 (9)0.0167 (2)
C60.12052 (6)0.11705 (15)0.03359 (9)0.0136 (2)
C70.15469 (6)0.27915 (15)0.00516 (9)0.0137 (2)
C80.24965 (6)0.65995 (15)0.14448 (8)0.0136 (2)
C90.15172 (7)0.30648 (18)0.10430 (9)0.0189 (2)
H10.1299 (8)0.071 (2)0.0751 (13)0.022 (4)*
H20.0807 (8)0.332 (3)0.0235 (13)0.029 (4)*
H40.0472 (8)0.007 (2)0.2047 (13)0.026 (4)*
H50.0998 (8)0.254 (2)0.1502 (13)0.024 (4)*
H9A0.1211 (11)0.237 (3)0.1478 (18)0.053 (6)*
H9B0.1901 (12)0.271 (3)0.1107 (18)0.064 (7)*
H9C0.1416 (9)0.433 (3)0.1261 (15)0.036 (5)*
H1N20.2197 (8)0.579 (3)0.0019 (14)0.028 (4)*
H1N30.2668 (8)0.684 (2)0.2863 (13)0.022 (4)*
H2N30.2271 (8)0.522 (2)0.2487 (12)0.020 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02608 (17)0.01993 (15)0.02367 (16)0.00699 (11)0.00806 (12)0.00422 (10)
O10.0227 (4)0.0154 (4)0.0128 (4)0.0054 (3)0.0067 (3)0.0010 (3)
N10.0157 (4)0.0121 (4)0.0120 (4)0.0013 (3)0.0044 (3)0.0007 (3)
N20.0202 (5)0.0127 (4)0.0100 (4)0.0042 (3)0.0056 (4)0.0007 (3)
N30.0272 (6)0.0163 (4)0.0102 (4)0.0065 (4)0.0076 (4)0.0015 (3)
C10.0176 (5)0.0165 (5)0.0163 (5)0.0024 (4)0.0064 (4)0.0024 (4)
C20.0183 (6)0.0141 (5)0.0204 (6)0.0024 (4)0.0055 (4)0.0019 (4)
C30.0165 (5)0.0148 (5)0.0188 (5)0.0024 (4)0.0039 (4)0.0037 (4)
C40.0200 (6)0.0194 (5)0.0166 (5)0.0019 (4)0.0074 (4)0.0013 (4)
C50.0200 (6)0.0151 (5)0.0158 (5)0.0013 (4)0.0073 (4)0.0010 (4)
C60.0138 (5)0.0142 (5)0.0121 (5)0.0004 (4)0.0034 (4)0.0013 (4)
C70.0158 (5)0.0127 (4)0.0121 (5)0.0006 (4)0.0040 (4)0.0003 (4)
C80.0164 (5)0.0129 (4)0.0109 (5)0.0002 (4)0.0040 (4)0.0005 (4)
C90.0266 (7)0.0185 (5)0.0124 (5)0.0052 (5)0.0077 (5)0.0008 (4)
Geometric parameters (Å, º) top
Cl1—C31.7410 (12)C2—C31.3842 (18)
O1—C81.2481 (13)C2—H20.977 (18)
N1—C71.2922 (14)C3—C41.3895 (17)
N1—N21.3768 (13)C4—C51.3882 (16)
N2—C81.3737 (14)C4—H41.033 (17)
N2—H1N20.883 (18)C5—C61.4006 (16)
N3—C81.3378 (14)C5—H50.958 (17)
N3—H1N30.835 (18)C6—C71.4863 (15)
N3—H2N30.826 (17)C7—C91.4943 (16)
C1—C21.3935 (16)C9—H9A0.88 (2)
C1—C61.3979 (15)C9—H9B0.91 (2)
C1—H10.963 (16)C9—H9C0.94 (2)
C7—N1—N2119.12 (9)C4—C5—C6120.81 (11)
C8—N2—N1117.86 (9)C4—C5—H5120.0 (10)
C8—N2—H1N2115.9 (12)C6—C5—H5119.1 (10)
N1—N2—H1N2125.4 (12)C1—C6—C5118.92 (10)
C8—N3—H1N3116.1 (12)C1—C6—C7120.97 (10)
C8—N3—H2N3124.2 (11)C5—C6—C7120.08 (10)
H1N3—N3—H2N3118.0 (16)N1—C7—C6114.71 (10)
C2—C1—C6120.63 (11)N1—C7—C9124.82 (10)
C2—C1—H1119.1 (10)C6—C7—C9120.46 (10)
C6—C1—H1120.3 (10)O1—C8—N3122.47 (10)
C3—C2—C1119.16 (11)O1—C8—N2119.73 (10)
C3—C2—H2120.4 (10)N3—C8—N2117.80 (10)
C1—C2—H2120.4 (10)C7—C9—H9A112.1 (14)
C2—C3—C4121.43 (11)C7—C9—H9B109.4 (15)
C2—C3—Cl1119.65 (9)H9A—C9—H9B107 (2)
C4—C3—Cl1118.92 (9)C7—C9—H9C111.6 (11)
C5—C4—C3119.04 (11)H9A—C9—H9C105.6 (19)
C5—C4—H4122.2 (10)H9B—C9—H9C110.9 (19)
C3—C4—H4118.7 (10)
C7—N1—N2—C8175.03 (10)C4—C5—C6—C7177.97 (11)
C6—C1—C2—C30.79 (18)N2—N1—C7—C6179.22 (9)
C1—C2—C3—C40.05 (18)N2—N1—C7—C90.30 (17)
C1—C2—C3—Cl1179.84 (9)C1—C6—C7—N1146.43 (11)
C2—C3—C4—C50.55 (19)C5—C6—C7—N131.82 (15)
Cl1—C3—C4—C5179.24 (9)C1—C6—C7—C932.55 (16)
C3—C4—C5—C60.41 (18)C5—C6—C7—C9149.20 (12)
C2—C1—C6—C50.92 (18)N1—N2—C8—O1179.37 (10)
C2—C1—C6—C7177.35 (11)N1—N2—C8—N30.92 (16)
C4—C5—C6—C10.32 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.884 (19)2.007 (19)2.8866 (12)173.3 (19)
N3—H1N3···N1ii0.835 (18)2.264 (18)3.0904 (14)170.5 (16)
N3—H2N3···O1iii0.826 (17)2.316 (17)3.0499 (13)148.4 (15)
C9—H9C···O1i0.94 (2)2.55 (2)3.2162 (16)128.1 (16)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H10ClN3O
Mr211.65
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)21.8191 (4), 7.0484 (1), 13.7249 (2)
β (°) 109.633 (1)
V3)1988.04 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.41 × 0.20 × 0.03
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.867, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
28636, 3539, 2912
Rint0.052
(sin θ/λ)max1)0.751
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.101, 1.04
No. of reflections3539
No. of parameters167
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.27

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008)L, SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.884 (19)2.007 (19)2.8866 (12)173.3 (19)
N3—H1N3···N1ii0.835 (18)2.264 (18)3.0904 (14)170.5 (16)
N3—H2N3···O1iii0.826 (17)2.316 (17)3.0499 (13)148.4 (15)
C9—H9C···O1i0.94 (2)2.55 (2)3.2162 (16)128.1 (16)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). CKQ thanks USM for a Research Fellowship. AMI is grateful to the Head of the Department of Chemistry and the Director, NITK, Surathkal, India, for providing research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandra, S. & Gupta, L. K. (2005). Spectrochim Acta Part A, 62, 1089–94.  CrossRef Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Yeap, C. S., Padaki, M., Malladi, S. & Isloor, A. M. (2009). Acta Cryst. E65, o1619–o1620.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFurniss, B. S., Hannaford, A. J., Rogers, V., Smith, P. W. G. & Tatchell, A. R. (1978). Vogel's Textbook of Practical Organic Chemistry, 4th ed., p. 1112. London:ELBS.  Google Scholar
First citationJain, V. K., Handa, A., Pandya, R., Shrivastav, P. & Agrawal, Y. K. (2002). ReacT. Funct. Polym. 51, 101–110.  Web of Science CrossRef CAS Google Scholar
First citationPilgram, K. H. G. (1978). US Patent No. 4 108 399.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWarren, J. D., Woodward, D. L. & Hargreaves, R. T. (1977). J. Med. Chem. 20, 1520–1521.  CrossRef CAS PubMed Web of Science Google Scholar
First citationYogeeswari, P., Sriram, D., Pandeya, S. N. & Stables, J. P. (2004). Farmaco, 59, 609–613.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1634-o1635
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds