organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-3-(2-phen­oxy­acet­yl)-5-phenyl-1,3,4-oxadiazinan-2-one

aUniversidade Federal de São Carlos, Laboratório de Cristalografia, Estereodinâmica e, Modelagem Molecular, Departamento de Química, 13565-905 São Carlos, SP, Brazil, and bUniversidade de São Paulo, Conformational Analysis and Electronic Interactions, Laboratory, Instituto de Química, São Paulo, SP, Brazil
*Correspondence e-mail: julio@power.ufscar.br

(Received 26 May 2009; accepted 27 May 2009; online 6 June 2009)

The 1,3,4-oxadiazinane ring in the title compound, C18H18N2O4, is in a twisted boat conformation. The two carbonyl groups are orientated towards the same side of the mol­ecule. The dihedral angle between the planes of the benzene rings is 76.6 (3)°. Mol­ecules are sustained in the three-dimensional structure by a combination of C—H⋯O, C—H⋯π and ππ [shortest centroid–centroid distance = 3.672 (6) Å] inter­actions.

Related literature

For synthetic and structural studies of substituted heterocyclic rings, see: Rodrigues et al. (2006[Rodrigues, A., Olivato, P. R., Zukerman-Schpector, J. & Rittner, R. (2006). Z. Kristallogr. 221, 226-230.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Iulek & Zukerman-Schpector (1997[Iulek, J. & Zukerman-Schpector, J. (1997). Quim. Nova, 20, 433-434.]). For the synthesis, see: Rodrigues et al. (2005[Rodrigues, A., Olivato, P. R. & Rittner, R. (2005). Synthesis, pp. 2578-2582.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18N2O4

  • Mr = 326.34

  • Monoclinic, P 21 /c

  • a = 9.6024 (9) Å

  • b = 9.4203 (10) Å

  • c = 19.275 (3) Å

  • β = 114.206 (9)°

  • V = 1590.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 290 K

  • 0.15 × 0.10 × 0.08 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2971 measured reflections

  • 2793 independent reflections

  • 1355 reflections with I > 2σ(I)

  • Rint = 0.030

  • 3 standard reflections frequency: 60 min intensity decay: <1%

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.246

  • S = 1.12

  • 2793 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O4i 0.93 2.53 3.394 (7) 154
C9—H9⋯O3ii 0.93 2.61 3.383 (8) 141
C13—H13⋯Cg2iii 0.93 2.86 3.715 (6) 153
C18—H18BCg3i 0.96 2.74 3.672 (6) 165
Symmetry codes: (i) -x+2, -y+1, -z; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z. Cg2 is the centroid of the C6–C11 ring and Cg3 is the centroid of the C12–C17 ring.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and MarvinSketch (ChemAxon, 2008[ChemAxon (2008). MarvinSketch. ChemAxon Kft, Budapest, Hungary. URL: http://www.chemaxon.com.]).

Supporting information


Comment top

In continuation of synthetic and structural studies of substituted heterocyclic rings (Rodrigues et al., 2006), the title compound (I) was prepared. The 1,3,4-oxadiazinane ring in (I), Fig. 1, is in a distorted twist boat conformation with the distortion being towards a boat conformation. The ring-puckering parameters (Cremer & Pople, 1975; Iulek & Zukerman-Schpector, 1997) were calculated as q2 = 0.119 (6) Å, q3 = -0.496 (6) Å, Q = 0.510 (6) Å, and ϕ2 = -108 (3)°. The ring- and side-chain-bound carbonyl groups lie to the same side of the molecule. The dihedral angle between the phenyl rings is of 76.6 (3)°. Molecules are sustained in the 3-D structure by a combination of C-H···O and ππ interactions, Table 1.

Related literature top

For synthetic and structural studies of substituted heterocyclic

rings, see: Rodrigues et al. (2006). For puckering parameters, see: Cremer & Pople (1975); Iulek & Zukerman-Schpector (1997). For the synthesis, see: Rodrigues et al. (2005). Cg2 is the centroid of the C6–C11 ring and Cg3 is the centroid of the C12–C17 ring.

Experimental top

The starting (R)-4-methyl-5-phenyl-1,3,4-oxadiazinan-2-one was synthesized by using a previously reported procedure (Rodrigues et al. 2005). The phenoxyacetyl-1,3,4-oxadiazinan-2-one derivative was prepared by an acylation reaction of 1,3,4-oxadiazinan-2-one (Rodrigues et al. 2005). To a mixture of 1,3,4-oxadiazinan-2-one (500 mg, 2.60 mmol), 4-dimethylaminopyridine (16 mg, 0.13 mmol) and 2-phenoxyacetic acid (435 mg, 2.86 mmol) in CH2Cl2 (4 ml) at 273 K, under a nitrogen atmosphere, N,N-Dicyclohexylcarbodiimide was added in one portion (590 mg, 2.86 mmol). The temperature of the resulting suspension was allowed to reach room temperature. Stirring was continued until no starting material was left, as confirmed by TLC (20 h). The dicyclohexylurea formed was filtered and the precipitate washed with CH2Cl2 (20 ml). The filtrate was washed with a saturated aqueous solution of NaHCO3 (15 ml) and dried over Na2SO4. Filtration and evaporation yielded the crude solid, which was purified by flash chromatography on silica gel (hexane-EtOAc, 6:4). Colourless crystals of (I) were obtained by vapour diffusion from hexane/chloroform at 298 K.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.98 Å, and with Uiso set to 1.2 times (1.5 for methyl) Ueq(parent atom).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST (Nardelli, 1995) and MarvinSketch (ChemAxon, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).
(5R)-4-Methyl-3-(2-phenoxyacetyl)-5-phenyl-1,3,4-oxadiazinan-2-one top
Crystal data top
C18H18N2O4F(000) = 688
Mr = 326.34Dx = 1.363 Mg m3
Monoclinic, P21/cMelting point = 385–387 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.6024 (9) ÅCell parameters from 24 reflections
b = 9.4203 (10) Åθ = 10.5–15.1°
c = 19.275 (3) ŵ = 0.10 mm1
β = 114.206 (9)°T = 290 K
V = 1590.3 (4) Å3Irregular, colourless
Z = 40.15 × 0.10 × 0.08 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.030
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.3°
Graphite monochromatorh = 110
ω–2θ scansk = 011
2971 measured reflectionsl = 2020
2793 independent reflections3 standard reflections every 60 min
1355 reflections with I > 2σ(I) intensity decay: <1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.246H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0852P)2 + 2.8996P]
where P = (Fo2 + 2Fc2)/3
2793 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C18H18N2O4V = 1590.3 (4) Å3
Mr = 326.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6024 (9) ŵ = 0.10 mm1
b = 9.4203 (10) ÅT = 290 K
c = 19.275 (3) Å0.15 × 0.10 × 0.08 mm
β = 114.206 (9)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.030
2971 measured reflections3 standard reflections every 60 min
2793 independent reflections intensity decay: <1%
1355 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.246H-atom parameters constrained
S = 1.12Δρmax = 0.19 e Å3
2793 reflectionsΔρmin = 0.23 e Å3
218 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6770 (6)0.3140 (6)0.0050 (3)0.0504 (14)
H10.61770.38400.04330.060*
C20.5715 (6)0.1861 (6)0.0126 (4)0.0676 (18)
H2A0.51230.20400.01690.081*
H2B0.50080.17580.06550.081*
C30.8059 (6)0.0406 (6)0.0376 (3)0.0530 (14)
C41.0422 (5)0.1778 (6)0.0667 (3)0.0411 (12)
C51.0994 (5)0.3123 (6)0.0478 (3)0.0492 (13)
H5A1.07560.31450.00620.059*
H5B1.04870.39210.05930.059*
C60.7359 (5)0.3870 (6)0.0714 (3)0.0419 (12)
C70.7468 (6)0.5357 (6)0.0737 (3)0.0550 (14)
H70.71550.58620.02840.066*
C80.8025 (8)0.6080 (7)0.1415 (4)0.0690 (18)
H80.80550.70670.14160.083*
C90.8541 (7)0.5350 (9)0.2091 (4)0.0735 (19)
H90.89560.58370.25510.088*
C100.8439 (7)0.3903 (8)0.2083 (3)0.0643 (17)
H100.87690.34070.25390.077*
C110.7850 (6)0.3167 (7)0.1400 (3)0.0596 (16)
H110.77840.21820.14050.071*
C121.3081 (6)0.3918 (6)0.1593 (3)0.0452 (12)
C131.4569 (5)0.4434 (6)0.1878 (3)0.0498 (14)
H131.51740.42930.16120.060*
C180.7580 (7)0.2267 (6)0.1031 (3)0.0593 (16)
H18A0.84700.20220.11140.089*
H18B0.70580.30410.13580.089*
H18C0.69120.14610.11410.089*
C141.5132 (6)0.5148 (6)0.2553 (3)0.0573 (15)
H141.61200.55080.27390.069*
C151.4279 (7)0.5343 (7)0.2958 (3)0.0640 (17)
H151.46680.58490.34120.077*
C161.2833 (7)0.4782 (7)0.2689 (3)0.0650 (16)
H161.22560.48780.29730.078*
C171.2231 (6)0.4082 (6)0.2007 (3)0.0544 (14)
H171.12440.37190.18260.065*
N10.8837 (4)0.1580 (4)0.0262 (2)0.0420 (10)
N20.8042 (4)0.2689 (4)0.0233 (2)0.0383 (10)
O10.6553 (4)0.0565 (4)0.0129 (3)0.0744 (13)
O20.8648 (5)0.0680 (4)0.0671 (3)0.0712 (12)
O31.1208 (4)0.0946 (4)0.1131 (2)0.0611 (11)
O41.2593 (4)0.3245 (4)0.0898 (2)0.0569 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.041 (3)0.043 (3)0.057 (3)0.004 (2)0.010 (2)0.003 (3)
C20.041 (3)0.054 (4)0.098 (5)0.001 (3)0.019 (3)0.001 (3)
C30.046 (3)0.046 (3)0.066 (4)0.001 (3)0.022 (3)0.003 (3)
C40.041 (3)0.044 (3)0.035 (3)0.009 (2)0.012 (2)0.000 (2)
C50.036 (3)0.063 (4)0.044 (3)0.001 (3)0.012 (2)0.000 (3)
C60.037 (3)0.044 (3)0.049 (3)0.005 (2)0.022 (2)0.004 (3)
C70.062 (4)0.051 (3)0.057 (3)0.001 (3)0.029 (3)0.003 (3)
C80.089 (5)0.056 (4)0.073 (4)0.013 (4)0.045 (4)0.018 (4)
C90.066 (4)0.100 (6)0.063 (4)0.003 (4)0.035 (3)0.020 (4)
C100.067 (4)0.082 (5)0.053 (4)0.019 (4)0.034 (3)0.014 (4)
C110.058 (4)0.058 (4)0.070 (4)0.005 (3)0.034 (3)0.011 (3)
C120.040 (3)0.046 (3)0.047 (3)0.005 (2)0.016 (2)0.001 (3)
C130.034 (3)0.057 (3)0.054 (3)0.003 (3)0.014 (2)0.004 (3)
C180.059 (3)0.057 (4)0.046 (3)0.007 (3)0.005 (3)0.004 (3)
C140.039 (3)0.062 (4)0.058 (3)0.003 (3)0.007 (3)0.005 (3)
C150.063 (4)0.066 (4)0.053 (3)0.002 (3)0.014 (3)0.016 (3)
C160.068 (4)0.066 (4)0.068 (4)0.001 (3)0.035 (3)0.015 (3)
C170.046 (3)0.053 (3)0.065 (4)0.013 (3)0.024 (3)0.016 (3)
N10.038 (2)0.038 (2)0.048 (2)0.0001 (19)0.0159 (19)0.006 (2)
N20.036 (2)0.041 (2)0.035 (2)0.0063 (18)0.0121 (17)0.0054 (18)
O10.047 (2)0.046 (2)0.125 (4)0.0046 (19)0.030 (2)0.012 (2)
O20.078 (3)0.040 (2)0.099 (3)0.008 (2)0.040 (2)0.024 (2)
O30.054 (2)0.056 (2)0.058 (2)0.009 (2)0.0075 (18)0.009 (2)
O40.0379 (19)0.080 (3)0.050 (2)0.0048 (19)0.0159 (16)0.015 (2)
Geometric parameters (Å, º) top
C1—N21.466 (6)C9—C101.366 (9)
C1—C61.511 (7)C9—H90.9300
C1—C21.542 (8)C10—C111.386 (8)
C1—H10.9800C10—H100.9300
C2—O11.433 (7)C11—H110.9300
C2—H2A0.9700C12—C171.365 (7)
C2—H2B0.9700C12—O41.378 (6)
C3—O21.194 (6)C12—C131.391 (7)
C3—O11.332 (6)C13—C141.364 (8)
C3—N11.402 (7)C13—H130.9300
C4—O31.195 (6)C18—N21.469 (6)
C4—N11.410 (6)C18—H18A0.9600
C4—C51.484 (7)C18—H18B0.9600
C5—O41.417 (6)C18—H18C0.9600
C5—H5A0.9700C14—C151.355 (9)
C5—H5B0.9700C14—H140.9300
C6—C111.378 (7)C15—C161.373 (8)
C6—C71.404 (8)C15—H150.9300
C7—C81.372 (8)C16—C171.369 (7)
C7—H70.9300C16—H160.9300
C8—C91.374 (9)C17—H170.9300
C8—H80.9300N1—N21.410 (5)
N2—C1—C6110.6 (4)C9—C10—H10119.7
N2—C1—C2109.3 (4)C11—C10—H10119.7
C6—C1—C2114.7 (5)C6—C11—C10121.1 (6)
N2—C1—H1107.3C6—C11—H11119.5
C6—C1—H1107.3C10—C11—H11119.5
C2—C1—H1107.3C17—C12—O4125.0 (5)
O1—C2—C1112.2 (4)C17—C12—C13119.5 (5)
O1—C2—H2A109.2O4—C12—C13115.5 (5)
C1—C2—H2A109.2C14—C13—C12119.4 (5)
O1—C2—H2B109.2C14—C13—H13120.3
C1—C2—H2B109.2C12—C13—H13120.3
H2A—C2—H2B107.9N2—C18—H18A109.5
O2—C3—O1119.9 (5)N2—C18—H18B109.5
O2—C3—N1124.9 (5)H18A—C18—H18B109.5
O1—C3—N1115.2 (5)N2—C18—H18C109.5
O3—C4—N1122.3 (5)H18A—C18—H18C109.5
O3—C4—C5124.0 (5)H18B—C18—H18C109.5
N1—C4—C5113.6 (4)C15—C14—C13121.3 (5)
O4—C5—C4110.6 (4)C15—C14—H14119.4
O4—C5—H5A109.5C13—C14—H14119.4
C4—C5—H5A109.5C14—C15—C16119.1 (5)
O4—C5—H5B109.5C14—C15—H15120.5
C4—C5—H5B109.5C16—C15—H15120.5
H5A—C5—H5B108.1C17—C16—C15120.8 (6)
C11—C6—C7117.3 (5)C17—C16—H16119.6
C11—C6—C1124.1 (5)C15—C16—H16119.6
C7—C6—C1118.6 (5)C12—C17—C16119.8 (5)
C8—C7—C6121.4 (6)C12—C17—H17120.1
C8—C7—H7119.3C16—C17—H17120.1
C6—C7—H7119.3C3—N1—N2121.0 (4)
C7—C8—C9120.2 (6)C3—N1—C4122.8 (4)
C7—C8—H8119.9N2—N1—C4116.0 (4)
C9—C8—H8119.9N1—N2—C1109.0 (4)
C10—C9—C8119.5 (6)N1—N2—C18110.8 (4)
C10—C9—H9120.3C1—N2—C18114.0 (4)
C8—C9—H9120.3C3—O1—C2126.3 (4)
C9—C10—C11120.6 (6)C12—O4—C5116.7 (4)
N2—C1—C2—O137.4 (7)C15—C16—C17—C121.0 (10)
C6—C1—C2—O187.4 (6)O2—C3—N1—N2165.9 (5)
O3—C4—C5—O42.4 (7)O1—C3—N1—N214.2 (7)
N1—C4—C5—O4179.3 (4)O2—C3—N1—C418.8 (9)
N2—C1—C6—C1182.9 (6)O1—C3—N1—C4161.1 (5)
C2—C1—C6—C1141.2 (7)O3—C4—N1—C30.8 (8)
N2—C1—C6—C794.9 (6)C5—C4—N1—C3177.6 (5)
C2—C1—C6—C7141.0 (5)O3—C4—N1—N2176.3 (4)
C11—C6—C7—C80.6 (8)C5—C4—N1—N22.0 (6)
C1—C6—C7—C8178.5 (5)C3—N1—N2—C149.4 (6)
C6—C7—C8—C92.2 (9)C4—N1—N2—C1126.2 (4)
C7—C8—C9—C102.5 (10)C3—N1—N2—C1876.8 (6)
C8—C9—C10—C111.2 (10)C4—N1—N2—C18107.6 (5)
C7—C6—C11—C100.6 (8)C6—C1—N2—N168.9 (5)
C1—C6—C11—C10177.1 (5)C2—C1—N2—N158.2 (5)
C9—C10—C11—C60.3 (9)C6—C1—N2—C18166.8 (4)
C17—C12—C13—C142.7 (8)C2—C1—N2—C1866.1 (6)
O4—C12—C13—C14178.3 (5)O2—C3—O1—C2169.7 (6)
C12—C13—C14—C151.2 (9)N1—C3—O1—C210.2 (9)
C13—C14—C15—C161.4 (9)C1—C2—O1—C33.0 (9)
C14—C15—C16—C172.5 (10)C17—C12—O4—C521.0 (8)
O4—C12—C17—C16179.5 (5)C13—C12—O4—C5160.0 (5)
C13—C12—C17—C161.6 (9)C4—C5—O4—C1290.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O4i0.932.533.394 (7)154
C9—H9···O3ii0.932.613.383 (8)141
C13—H13···Cg2iii0.932.863.715 (6)153
C18—H18B···Cg3i0.962.743.672 (6)165
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+1/2, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H18N2O4
Mr326.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)9.6024 (9), 9.4203 (10), 19.275 (3)
β (°) 114.206 (9)
V3)1590.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.15 × 0.10 × 0.08
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2971, 2793, 1355
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.246, 1.12
No. of reflections2793
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.23

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999), PARST (Nardelli, 1995) and MarvinSketch (ChemAxon, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O4i0.932.533.394 (7)154
C9—H9···O3ii0.932.613.383 (8)141
C13—H13···Cg2iii0.932.863.715 (6)153
C18—H18B···Cg3i0.962.743.672 (6)165
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+1/2, z+1/2; (iii) x+1, y, z.
 

Acknowledgements

We thank FAPESP (2008/02531–5 to JZ—S; 2003/05520–0 to AR), CNPq and CAPES for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChemAxon (2008). MarvinSketch. ChemAxon Kft, Budapest, Hungary. URL: http://www.chemaxon.com.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationIulek, J. & Zukerman-Schpector, J. (1997). Quim. Nova, 20, 433–434.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationRodrigues, A., Olivato, P. R. & Rittner, R. (2005). Synthesis, pp. 2578–2582.  Web of Science CrossRef Google Scholar
First citationRodrigues, A., Olivato, P. R., Zukerman-Schpector, J. & Rittner, R. (2006). Z. Kristallogr. 221, 226–230.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds