metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[hemi{bis­­[4′-(3-pyrid­yl)-2,2′:6′,2′′-terpyridine-κ3N1,N1′,N1′′]copper(II)} [cuprate(I)-di-μ2-thio­cyanato-κ2N:S;κ2S:N]]

aJiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Jiangxi 330013, People's Republic of China
*Correspondence e-mail: swjuan2000@126.com

(Received 15 June 2009; accepted 17 June 2009; online 24 June 2009)

The title compound, {[Cu(C20H14N4)2][Cu2(NCS)4]}n, was obtained by reacting copper acetate hydrate, ammonium thio­cyanate and 4′-(3-pyrid­yl)-2,2′:6′,2′′-terpyridine (3-pytpy) under solvothermal conditions. The polymeric complex is isostructural with the 4′-phenyl-2,2′:6′,2′′-terpyridine (phtpy) analogue. All intramolecular distances and angles are very similar for the two structures. Substitution of a phenyl group with a pyridyl group has no significant effect on the crystal packing which is accomplished by C—H⋯N and C—H⋯S hydrogen-bonding interactions.

Related literature

For background to 2,2′:6′,2′′-terpyridine derivatives and their complexes, see: Andres & Schubert (2004[Andres, P. R. & Schubert, U. S. (2004). Adv. Mater. 16, 1043-1068.]); Constable (1986[Constable, E. C. (1986). Adv. Inorg. Chem. Radiochem. 30, 69-121.]); Hofmeier & Schubert (2004[Hofmeier, H. & Schubert, U. S. (2004). Chem. Soc. Rev. 33, 373-399.]). For the isostructural 4′-phenyl-2,2′:6′,2′′-terpyridine (phtpy) analogue, see: Shi (2009[Shi, W.-J. (2009). Acta Cryst. E65, m801.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C20H14N4)2][Cu2(NCS)4]

  • Mr = 1043.64

  • Triclinic, [P \overline 1]

  • a = 10.0031 (6) Å

  • b = 10.2202 (6) Å

  • c = 21.2612 (12) Å

  • α = 82.607 (1)°

  • β = 87.732 (1)°

  • γ = 80.132 (1)°

  • V = 2123.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.74 mm−1

  • T = 295 K

  • 0.16 × 0.13 × 0.11 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.769, Tmax = 0.832

  • 16747 measured reflections

  • 8252 independent reflections

  • 6751 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.103

  • S = 1.03

  • 8252 reflections

  • 568 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯S4i 0.93 2.87 3.756 (3) 160
C15—H15⋯S2ii 0.93 2.83 3.676 (4) 151
C17—H17⋯S4i 0.93 2.80 3.650 (3) 152
C21—H21⋯S4iii 0.93 2.79 3.627 (3) 150
C29—H29⋯S2iv 0.93 2.78 3.654 (3) 156
C35—H35⋯N4v 0.93 2.47 3.217 (4) 137
Symmetry codes: (i) x+1, y, z; (ii) x-1, y+1, z; (iii) -x, -y+1, -z+1; (iv) -x+2, -y+1, -z; (v) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,2':6',2''-Terpyridine and its derivatives have been intensively explored because of the interesting electronic, photonic, magnetic, reactive and structural properties shown by the transition metal complexes of these ligands (Andres & Schubert, 2004; Constable, 1986; Hofmeier & Schubert, 2004). We report here the synthesis and structure of the CuII complex based on the 4'-(3-pyridyl)-2,2':6',2''-terpyridine (3-pytpy) ligand.

Fig. 1 illustrates the essential structural features of the title complex which consists of a packing of one [Cu(3-pytpy)2]2+ cation with two independent crystallographically centrosymmetric polymeric [Cu(SCN)2]- anions. The central CuII ion in the cation is coordinated by two tridentate chelating units of the two 3-pytpy ligands to form an octahedral coordination geometry. Each CuI ion in the anion exhibits a distorted tetrahedral geometry and is coordinated by two S atoms and two N atoms from four thiocyanate ligands. Each thiocyanate ligand acts as a 1,3-µ2 bridge to link two CuI ions to generate two isostructural [Cu(SCN)2]nn- anionic chains. The terpyridyl units of the 3-pytpy ligands are approximately planar [interannular torsion angles: 3.7 (1) °, 10.3 (2) °; 7.9 (3) °, 8.6 (2) °], the dihedral angles between the pendant and central pyridine ring are 18.4 (1) ° and 38.1 (2) °, respectively.

In the crystal packing, the neighbouring cationic units are packed by intermolecular C–H···N hydrogen bonds, and the [Cu(SCN)2]nn- anionic chains are involved in intermolecular C–H···S hydrogen bonding interactions with the –CH groups of the 3-pytpy ligands, resulting in a three-dimensional supramolecular structure (Fig. 2).

Related literature top

For background to 2,2':6',2''-terpyridine derivatives and their complexes, see: Andres & Schubert (2004); Constable (1986); Hofmeier & Schubert (2004). For the isostructural 4'-phenyl-2,2':6',2''-terpyridine (phtpy) analogue, see: Shi (2009).

Experimental top

A mixture of copper acetate hydrate (40.1 mg, 0.20 mmol), 3-pytpy (31.0 mg, 0.10 mmol) and ammonium thiocyanate (15.3 mg, 0.20 mmol) in ethanol (10 ml) was sealed in a 15 ml Teflon-lined reactor, heated to 418 K for 72 h, and then cooled to room temperature at a rate of 6 K/h to give black crystals of the title compound. Yield: 9 mg (17%).

Refinement top

The carbon-bound H atoms were placed at calculated positions (C—H = 0.93 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound, showing the intermolecular C–H···N and C–H···S hydrogen bonds as dashed lines. The H atoms not involved in hydrogen bonds have been omitted for clarity.
catena-Poly[hemi{bis[4'-(3-pyridyl)-2,2':6',2''-terpyridine- κ3N1,N1',N1'']copper(II)} [cuprate(I)-di-µ2-thiocyanato-κ2N:S;κ2S:N]] top
Crystal data top
[Cu(C20H14N4)2][Cu2(NCS)4]Z = 2
Mr = 1043.64F(000) = 1054
Triclinic, P1Dx = 1.632 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0031 (6) ÅCell parameters from 4926 reflections
b = 10.2202 (6) Åθ = 2.4–25.2°
c = 21.2612 (12) ŵ = 1.74 mm1
α = 82.607 (1)°T = 295 K
β = 87.732 (1)°Block, black
γ = 80.132 (1)°0.16 × 0.13 × 0.11 mm
V = 2123.3 (2) Å3
Data collection top
Bruker SMART APEX area-detector
diffractometer
8252 independent reflections
Radiation source: fine-focus sealed tube6751 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.769, Tmax = 0.832k = 1212
16747 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0476P)2 + 1.2038P]
where P = (Fo2 + 2Fc2)/3
8252 reflections(Δ/σ)max = 0.001
568 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Cu(C20H14N4)2][Cu2(NCS)4]γ = 80.132 (1)°
Mr = 1043.64V = 2123.3 (2) Å3
Triclinic, P1Z = 2
a = 10.0031 (6) ÅMo Kα radiation
b = 10.2202 (6) ŵ = 1.74 mm1
c = 21.2612 (12) ÅT = 295 K
α = 82.607 (1)°0.16 × 0.13 × 0.11 mm
β = 87.732 (1)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
8252 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6751 reflections with I > 2σ(I)
Tmin = 0.769, Tmax = 0.832Rint = 0.022
16747 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.03Δρmax = 0.69 e Å3
8252 reflectionsΔρmin = 0.50 e Å3
568 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.47293 (4)0.80579 (4)0.251577 (17)0.03901 (11)
Cu21.01294 (4)0.24421 (4)0.02065 (2)0.04908 (13)
Cu30.01615 (5)0.25397 (4)0.48921 (2)0.05715 (14)
N10.6206 (3)0.6156 (3)0.28018 (11)0.0387 (6)
N20.4788 (2)0.7971 (2)0.34566 (10)0.0327 (5)
N30.3369 (3)0.9916 (3)0.27154 (12)0.0465 (7)
N40.4223 (3)0.8771 (3)0.64121 (12)0.0518 (7)
N50.2940 (3)0.7189 (3)0.24240 (11)0.0437 (6)
N60.4761 (2)0.7898 (2)0.16064 (10)0.0321 (5)
N70.6464 (3)0.8943 (3)0.21930 (11)0.0381 (6)
N80.6683 (3)0.6192 (3)0.11272 (13)0.0522 (7)
N90.9311 (3)0.6200 (3)0.04686 (12)0.0467 (7)
N101.1099 (3)0.1402 (3)0.01414 (14)0.0470 (7)
N110.0763 (3)0.1208 (3)0.55590 (14)0.0511 (7)
N120.0855 (3)0.6058 (3)0.55087 (16)0.0623 (9)
C10.6908 (4)0.5291 (3)0.24430 (15)0.0472 (8)
H10.67390.54080.20110.057*
C20.7870 (4)0.4236 (4)0.26798 (17)0.0572 (10)
H20.83220.36350.24170.069*
C30.8147 (4)0.4092 (4)0.33145 (18)0.0645 (11)
H30.87930.33880.34890.077*
C40.7461 (3)0.4997 (4)0.36902 (15)0.0548 (10)
H40.76520.49220.41190.066*
C50.6487 (3)0.6016 (3)0.34224 (13)0.0368 (7)
C60.5626 (3)0.6988 (3)0.37951 (13)0.0339 (6)
C70.5660 (3)0.6887 (3)0.44499 (13)0.0354 (7)
H70.62780.62220.46730.042*
C80.4769 (3)0.7781 (3)0.47749 (13)0.0325 (6)
C90.3883 (3)0.8766 (3)0.44160 (13)0.0348 (6)
H90.32490.93600.46160.042*
C100.3944 (3)0.8864 (3)0.37578 (13)0.0338 (6)
C110.3129 (3)0.9965 (3)0.33412 (14)0.0388 (7)
C120.2258 (3)1.1015 (4)0.35601 (17)0.0586 (10)
H120.20971.10300.39930.070*
C130.1628 (4)1.2041 (5)0.3131 (2)0.0748 (13)
H130.10531.27640.32720.090*
C140.1857 (4)1.1985 (5)0.24968 (19)0.0760 (13)
H140.14331.26590.21990.091*
C150.2728 (4)1.0909 (5)0.23085 (17)0.0650 (11)
H150.28781.08700.18760.078*
C160.4781 (3)0.7684 (3)0.54771 (13)0.0333 (6)
C170.5365 (3)0.6531 (3)0.58521 (14)0.0449 (8)
H170.57510.57740.56680.054*
C180.5366 (4)0.6524 (4)0.64972 (16)0.0528 (9)
H180.57580.57610.67550.063*
C190.4787 (4)0.7644 (4)0.67586 (15)0.0521 (9)
H190.47870.76210.71970.063*
C200.4238 (3)0.8768 (3)0.57879 (14)0.0412 (7)
H200.38550.95520.55420.049*
C210.1992 (4)0.6952 (4)0.28617 (16)0.0595 (10)
H210.21330.70780.32780.071*
C220.0817 (4)0.6531 (5)0.27245 (18)0.0662 (11)
H220.01800.63680.30430.079*
C230.0595 (4)0.6354 (5)0.21107 (19)0.0643 (11)
H230.01910.60640.20070.077*
C240.1557 (3)0.6613 (4)0.16508 (16)0.0478 (8)
H240.14210.65150.12300.057*
C250.2718 (3)0.7017 (3)0.18210 (13)0.0344 (6)
C260.3818 (3)0.7318 (3)0.13663 (13)0.0312 (6)
C270.3933 (3)0.7013 (3)0.07485 (13)0.0339 (6)
H270.32750.66130.05870.041*
C280.5031 (3)0.7306 (3)0.03723 (13)0.0353 (7)
C290.5989 (3)0.7911 (3)0.06305 (13)0.0386 (7)
H290.67350.81200.03870.046*
C300.5832 (3)0.8204 (3)0.12494 (13)0.0336 (6)
C310.6784 (3)0.8833 (3)0.15784 (13)0.0352 (7)
C320.7917 (3)0.9271 (4)0.12923 (15)0.0494 (8)
H320.81250.91820.08680.059*
C330.8734 (4)0.9842 (4)0.16454 (18)0.0600 (10)
H330.94931.01590.14600.072*
C340.8420 (4)0.9938 (4)0.22712 (18)0.0588 (10)
H340.89691.03080.25180.071*
C350.7277 (4)0.9480 (4)0.25305 (16)0.0506 (9)
H350.70650.95470.29560.061*
C360.5201 (3)0.6971 (3)0.02901 (13)0.0369 (7)
C370.4111 (4)0.7106 (4)0.06815 (16)0.0576 (10)
H370.32390.74060.05340.069*
C380.4316 (4)0.6796 (4)0.12910 (16)0.0629 (11)
H380.35890.68940.15630.075*
C390.5585 (4)0.6349 (4)0.14877 (15)0.0538 (9)
H390.57090.61350.19000.065*
C400.6475 (3)0.6510 (3)0.05347 (14)0.0416 (7)
H400.72210.64160.02750.050*
C410.9319 (3)0.5134 (3)0.07233 (14)0.0372 (7)
C421.1444 (3)0.0539 (3)0.03533 (14)0.0360 (7)
C430.0940 (3)0.0174 (4)0.56498 (16)0.0481 (8)
C440.1332 (3)0.5119 (3)0.54818 (15)0.0424 (7)
S10.93354 (10)0.35967 (9)0.10770 (4)0.0526 (2)
S21.19304 (8)0.07079 (8)0.06543 (4)0.04238 (19)
S30.12114 (14)0.13226 (10)0.57617 (7)0.0930 (5)
S40.20423 (8)0.38015 (8)0.54243 (4)0.0432 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0398 (2)0.0517 (2)0.0291 (2)0.01341 (18)0.00678 (15)0.01289 (16)
Cu20.0598 (3)0.0413 (2)0.0492 (3)0.0138 (2)0.0012 (2)0.01005 (19)
Cu30.0643 (3)0.0389 (2)0.0721 (3)0.0152 (2)0.0013 (2)0.0129 (2)
N10.0449 (15)0.0456 (15)0.0255 (12)0.0068 (12)0.0033 (11)0.0066 (11)
N20.0296 (12)0.0454 (15)0.0251 (12)0.0077 (11)0.0023 (10)0.0105 (10)
N30.0477 (16)0.0646 (19)0.0276 (13)0.0092 (14)0.0033 (12)0.0070 (13)
N40.0620 (19)0.0620 (19)0.0304 (14)0.0020 (15)0.0043 (13)0.0172 (13)
N50.0398 (15)0.0644 (18)0.0284 (13)0.0121 (13)0.0027 (11)0.0082 (12)
N60.0341 (13)0.0393 (14)0.0231 (12)0.0071 (11)0.0005 (10)0.0036 (10)
N70.0422 (14)0.0476 (15)0.0273 (12)0.0108 (12)0.0052 (11)0.0128 (11)
N80.0590 (18)0.0608 (19)0.0391 (16)0.0101 (15)0.0085 (14)0.0171 (14)
N90.0602 (18)0.0456 (17)0.0354 (15)0.0108 (14)0.0009 (13)0.0079 (13)
N100.0471 (16)0.0381 (15)0.0561 (18)0.0028 (13)0.0121 (13)0.0085 (13)
N110.0586 (18)0.0425 (17)0.0542 (18)0.0103 (14)0.0072 (14)0.0089 (14)
N120.061 (2)0.0516 (19)0.081 (2)0.0240 (16)0.0248 (17)0.0224 (17)
C10.060 (2)0.054 (2)0.0272 (16)0.0068 (17)0.0052 (15)0.0116 (15)
C20.063 (2)0.061 (2)0.042 (2)0.0087 (19)0.0159 (17)0.0168 (17)
C30.054 (2)0.078 (3)0.048 (2)0.023 (2)0.0072 (17)0.0057 (19)
C40.047 (2)0.082 (3)0.0281 (16)0.0123 (19)0.0019 (14)0.0086 (17)
C50.0351 (16)0.0483 (18)0.0268 (15)0.0039 (14)0.0038 (12)0.0087 (13)
C60.0292 (15)0.0465 (18)0.0283 (15)0.0093 (13)0.0024 (12)0.0105 (13)
C70.0356 (16)0.0430 (17)0.0268 (14)0.0033 (13)0.0009 (12)0.0064 (13)
C80.0345 (15)0.0404 (16)0.0255 (14)0.0135 (13)0.0044 (12)0.0072 (12)
C90.0363 (16)0.0402 (16)0.0290 (15)0.0070 (13)0.0064 (12)0.0092 (13)
C100.0301 (15)0.0438 (17)0.0292 (15)0.0087 (13)0.0000 (12)0.0071 (13)
C110.0330 (16)0.055 (2)0.0283 (15)0.0072 (14)0.0004 (12)0.0051 (14)
C120.044 (2)0.080 (3)0.0402 (19)0.0129 (19)0.0069 (15)0.0007 (18)
C130.055 (2)0.092 (3)0.061 (3)0.024 (2)0.001 (2)0.008 (2)
C140.059 (2)0.103 (4)0.050 (2)0.015 (2)0.0102 (19)0.016 (2)
C150.064 (3)0.096 (3)0.0342 (19)0.014 (2)0.0097 (17)0.000 (2)
C160.0346 (16)0.0427 (17)0.0242 (14)0.0102 (13)0.0035 (12)0.0061 (12)
C170.053 (2)0.0462 (19)0.0344 (17)0.0043 (16)0.0068 (14)0.0074 (14)
C180.061 (2)0.058 (2)0.0348 (18)0.0044 (18)0.0021 (16)0.0047 (16)
C190.057 (2)0.075 (3)0.0257 (16)0.0123 (19)0.0019 (15)0.0062 (17)
C200.0469 (18)0.0463 (18)0.0289 (15)0.0011 (15)0.0035 (13)0.0070 (13)
C210.055 (2)0.098 (3)0.0286 (17)0.022 (2)0.0074 (15)0.0111 (18)
C220.059 (2)0.099 (3)0.045 (2)0.029 (2)0.0206 (18)0.009 (2)
C230.045 (2)0.097 (3)0.060 (2)0.032 (2)0.0101 (18)0.020 (2)
C240.0423 (18)0.068 (2)0.0371 (17)0.0172 (17)0.0024 (14)0.0133 (16)
C250.0338 (15)0.0404 (17)0.0282 (15)0.0036 (13)0.0000 (12)0.0053 (12)
C260.0297 (14)0.0363 (16)0.0261 (14)0.0032 (12)0.0029 (11)0.0015 (12)
C270.0355 (16)0.0396 (16)0.0273 (14)0.0066 (13)0.0033 (12)0.0055 (12)
C280.0386 (16)0.0414 (17)0.0254 (14)0.0047 (13)0.0023 (12)0.0046 (12)
C290.0408 (17)0.0500 (19)0.0274 (15)0.0151 (15)0.0058 (13)0.0057 (13)
C300.0377 (16)0.0385 (16)0.0247 (14)0.0092 (13)0.0016 (12)0.0010 (12)
C310.0395 (16)0.0406 (17)0.0270 (14)0.0097 (13)0.0029 (12)0.0069 (12)
C320.053 (2)0.068 (2)0.0335 (17)0.0271 (18)0.0107 (15)0.0125 (16)
C330.056 (2)0.080 (3)0.056 (2)0.037 (2)0.0086 (18)0.019 (2)
C340.061 (2)0.073 (3)0.054 (2)0.027 (2)0.0038 (18)0.0269 (19)
C350.057 (2)0.064 (2)0.0358 (18)0.0140 (18)0.0024 (15)0.0226 (16)
C360.0420 (17)0.0445 (18)0.0249 (14)0.0087 (14)0.0001 (12)0.0056 (13)
C370.045 (2)0.088 (3)0.0385 (19)0.0023 (19)0.0017 (15)0.0151 (18)
C380.055 (2)0.104 (3)0.0302 (18)0.007 (2)0.0104 (16)0.0191 (19)
C390.069 (3)0.066 (2)0.0287 (17)0.012 (2)0.0001 (16)0.0155 (16)
C400.0486 (19)0.0453 (18)0.0334 (16)0.0105 (15)0.0000 (14)0.0104 (14)
C410.0356 (16)0.050 (2)0.0283 (15)0.0066 (14)0.0003 (12)0.0138 (14)
C420.0324 (16)0.0390 (17)0.0332 (16)0.0005 (13)0.0025 (12)0.0003 (13)
C430.0436 (19)0.047 (2)0.053 (2)0.0014 (16)0.0157 (16)0.0117 (16)
C440.0419 (18)0.0455 (19)0.0380 (17)0.0054 (15)0.0085 (14)0.0040 (14)
S10.0757 (6)0.0453 (5)0.0377 (5)0.0136 (4)0.0099 (4)0.0066 (4)
S20.0480 (5)0.0433 (4)0.0378 (4)0.0120 (4)0.0076 (3)0.0045 (3)
S30.1096 (10)0.0421 (6)0.1313 (11)0.0040 (6)0.0765 (9)0.0253 (6)
S40.0447 (5)0.0419 (4)0.0439 (5)0.0118 (4)0.0051 (4)0.0041 (4)
Geometric parameters (Å, º) top
Cu1—N61.960 (2)C10—C111.484 (4)
Cu1—N21.994 (2)C11—C121.380 (5)
Cu1—N72.141 (3)C12—C131.379 (5)
Cu1—N52.156 (3)C12—H120.9300
Cu1—N32.217 (3)C13—C141.366 (6)
Cu1—N12.261 (3)C13—H130.9300
Cu2—N10i1.977 (3)C14—C151.373 (6)
Cu2—N9ii1.997 (3)C14—H140.9300
Cu2—S12.3607 (10)C15—H150.9300
Cu2—S22.4291 (9)C16—C201.383 (4)
Cu3—N11iii1.948 (3)C16—C171.387 (4)
Cu3—N12iv1.983 (3)C17—C181.371 (4)
Cu3—S42.4204 (10)C17—H170.9300
Cu3—S32.4239 (12)C18—C191.366 (5)
N1—C11.333 (4)C18—H180.9300
N1—C51.345 (4)C19—H190.9300
N2—C101.341 (4)C20—H200.9300
N2—C61.343 (4)C21—C221.373 (5)
N3—C151.336 (5)C21—H210.9300
N3—C111.348 (4)C22—C231.372 (5)
N4—C201.327 (4)C22—H220.9300
N4—C191.334 (5)C23—C241.378 (5)
N5—C211.332 (4)C23—H230.9300
N5—C251.348 (4)C24—C251.374 (4)
N6—C261.345 (3)C24—H240.9300
N6—C301.345 (4)C25—C261.482 (4)
N7—C351.334 (4)C26—C271.385 (4)
N7—C311.347 (3)C27—C281.385 (4)
N8—C391.340 (4)C27—H270.9300
N8—C401.341 (4)C28—C291.391 (4)
N9—C411.152 (4)C28—C361.488 (4)
N9—Cu2ii1.997 (3)C29—C301.383 (4)
N10—C421.149 (4)C29—H290.9300
N10—Cu2i1.977 (3)C30—C311.480 (4)
N11—C431.142 (4)C31—C321.379 (4)
N11—Cu3iii1.948 (3)C32—C331.378 (5)
N12—C441.151 (4)C32—H320.9300
N12—Cu3iv1.983 (3)C33—C341.367 (5)
C1—C21.373 (5)C33—H330.9300
C1—H10.9300C34—C351.377 (5)
C2—C31.373 (5)C34—H340.9300
C2—H20.9300C35—H350.9300
C3—C41.376 (5)C36—C371.375 (4)
C3—H30.9300C36—C401.386 (4)
C4—C51.379 (4)C37—C381.372 (5)
C4—H40.9300C37—H370.9300
C5—C61.487 (4)C38—C391.343 (5)
C6—C71.384 (4)C38—H380.9300
C7—C81.393 (4)C39—H390.9300
C7—H70.9300C40—H400.9300
C8—C91.389 (4)C41—S11.650 (4)
C8—C161.484 (4)C42—S21.648 (3)
C9—C101.390 (4)C43—S31.647 (4)
C9—H90.9300C44—S41.647 (4)
N6—Cu1—N2172.70 (10)C13—C14—C15118.5 (4)
N6—Cu1—N778.36 (9)C13—C14—H14120.7
N2—Cu1—N7103.42 (9)C15—C14—H14120.7
N6—Cu1—N578.09 (9)N3—C15—C14123.2 (4)
N2—Cu1—N5100.30 (9)N3—C15—H15118.4
N7—Cu1—N5156.29 (9)C14—C15—H15118.4
N6—Cu1—N3110.24 (10)C20—C16—C17116.8 (3)
N2—Cu1—N376.69 (10)C20—C16—C8120.9 (3)
N7—Cu1—N397.67 (10)C17—C16—C8122.3 (3)
N5—Cu1—N387.92 (10)C18—C17—C16119.1 (3)
N6—Cu1—N196.53 (9)C18—C17—H17120.4
N2—Cu1—N176.60 (9)C16—C17—H17120.4
N7—Cu1—N186.65 (10)C19—C18—C17119.6 (3)
N5—Cu1—N198.71 (10)C19—C18—H18120.2
N3—Cu1—N1153.21 (9)C17—C18—H18120.2
N10i—Cu2—N9ii110.41 (11)N4—C19—C18122.9 (3)
N10i—Cu2—S1117.89 (9)N4—C19—H19118.6
N9ii—Cu2—S1106.52 (8)C18—C19—H19118.6
N10i—Cu2—S2102.63 (8)N4—C20—C16124.7 (3)
N9ii—Cu2—S2116.21 (9)N4—C20—H20117.6
S1—Cu2—S2103.41 (3)C16—C20—H20117.6
N11iii—Cu3—N12iv124.29 (13)N5—C21—C22122.8 (3)
N11iii—Cu3—S4111.33 (9)N5—C21—H21118.6
N12iv—Cu3—S4103.13 (9)C22—C21—H21118.6
N11iii—Cu3—S3106.80 (9)C23—C22—C21119.0 (3)
N12iv—Cu3—S3106.13 (11)C23—C22—H22120.5
S4—Cu3—S3103.22 (5)C21—C22—H22120.5
C1—N1—C5118.3 (3)C22—C23—C24118.9 (3)
C1—N1—Cu1129.8 (2)C22—C23—H23120.6
C5—N1—Cu1111.40 (19)C24—C23—H23120.6
C10—N2—C6119.6 (2)C25—C24—C23119.2 (3)
C10—N2—Cu1119.94 (19)C25—C24—H24120.4
C6—N2—Cu1120.44 (19)C23—C24—H24120.4
C15—N3—C11118.2 (3)N5—C25—C24122.1 (3)
C15—N3—Cu1129.1 (2)N5—C25—C26114.2 (3)
C11—N3—Cu1112.6 (2)C24—C25—C26123.7 (3)
C20—N4—C19116.9 (3)N6—C26—C27120.8 (3)
C21—N5—C25118.0 (3)N6—C26—C25114.3 (2)
C21—N5—Cu1128.6 (2)C27—C26—C25124.9 (3)
C25—N5—Cu1112.98 (19)C26—C27—C28119.8 (3)
C26—N6—C30120.7 (2)C26—C27—H27120.1
C26—N6—Cu1119.71 (18)C28—C27—H27120.1
C30—N6—Cu1119.00 (19)C27—C28—C29118.4 (3)
C35—N7—C31118.6 (3)C27—C28—C36121.3 (3)
C35—N7—Cu1128.2 (2)C29—C28—C36120.4 (3)
C31—N7—Cu1112.99 (19)C30—C29—C28120.0 (3)
C39—N8—C40116.7 (3)C30—C29—H29120.0
C41—N9—Cu2ii154.6 (3)C28—C29—H29120.0
C42—N10—Cu2i159.1 (3)N6—C30—C29120.5 (3)
C43—N11—Cu3iii157.5 (3)N6—C30—C31114.5 (2)
C44—N12—Cu3iv150.6 (3)C29—C30—C31125.0 (3)
N1—C1—C2123.3 (3)N7—C31—C32121.7 (3)
N1—C1—H1118.4N7—C31—C30114.4 (2)
C2—C1—H1118.4C32—C31—C30123.9 (3)
C3—C2—C1118.1 (3)C33—C32—C31118.9 (3)
C3—C2—H2120.9C33—C32—H32120.5
C1—C2—H2120.9C31—C32—H32120.5
C2—C3—C4119.5 (3)C34—C33—C32119.4 (3)
C2—C3—H3120.2C34—C33—H33120.3
C4—C3—H3120.2C32—C33—H33120.3
C3—C4—C5119.1 (3)C33—C34—C35119.0 (3)
C3—C4—H4120.4C33—C34—H34120.5
C5—C4—H4120.4C35—C34—H34120.5
N1—C5—C4121.6 (3)N7—C35—C34122.4 (3)
N1—C5—C6115.1 (3)N7—C35—H35118.8
C4—C5—C6123.3 (3)C34—C35—H35118.8
N2—C6—C7121.5 (3)C37—C36—C40117.6 (3)
N2—C6—C5115.8 (2)C37—C36—C28121.7 (3)
C7—C6—C5122.7 (3)C40—C36—C28120.8 (3)
C6—C7—C8120.0 (3)C38—C37—C36119.7 (3)
C6—C7—H7120.0C38—C37—H37120.1
C8—C7—H7120.0C36—C37—H37120.1
C9—C8—C7117.4 (3)C39—C38—C37118.7 (3)
C9—C8—C16121.6 (3)C39—C38—H38120.6
C7—C8—C16120.9 (3)C37—C38—H38120.6
C8—C9—C10120.0 (3)N8—C39—C38124.2 (3)
C8—C9—H9120.0N8—C39—H39117.9
C10—C9—H9120.0C38—C39—H39117.9
N2—C10—C9121.3 (3)N8—C40—C36123.1 (3)
N2—C10—C11115.5 (2)N8—C40—H40118.4
C9—C10—C11123.2 (3)C36—C40—H40118.4
N3—C11—C12121.3 (3)N9—C41—S1179.0 (3)
N3—C11—C10114.4 (3)N10—C42—S2179.6 (3)
C12—C11—C10124.1 (3)N11—C43—S3178.5 (4)
C13—C12—C11119.4 (3)N12—C44—S4178.2 (3)
C13—C12—H12120.3C41—S1—Cu297.99 (10)
C11—C12—H12120.3C42—S2—Cu296.50 (10)
C14—C13—C12119.3 (4)C43—S3—Cu396.18 (12)
C14—C13—H13120.3C44—S4—Cu397.22 (11)
C12—C13—H13120.3
N6—Cu1—N1—C13.8 (3)C9—C10—C11—N3177.4 (3)
N2—Cu1—N1—C1178.7 (3)N2—C10—C11—C12176.5 (3)
N7—Cu1—N1—C174.1 (3)C9—C10—C11—C121.7 (5)
N5—Cu1—N1—C182.7 (3)N3—C11—C12—C130.5 (6)
N3—Cu1—N1—C1174.5 (3)C10—C11—C12—C13175.0 (4)
N6—Cu1—N1—C5175.5 (2)C11—C12—C13—C141.3 (7)
N2—Cu1—N1—C57.0 (2)C12—C13—C14—C150.9 (7)
N7—Cu1—N1—C597.7 (2)C11—N3—C15—C141.2 (6)
N5—Cu1—N1—C5105.6 (2)Cu1—N3—C15—C14176.9 (3)
N3—Cu1—N1—C52.7 (3)C13—C14—C15—N30.4 (7)
N7—Cu1—N2—C10103.0 (2)C9—C8—C16—C2020.1 (4)
N5—Cu1—N2—C1077.2 (2)C7—C8—C16—C20159.5 (3)
N3—Cu1—N2—C108.2 (2)C9—C8—C16—C17161.9 (3)
N1—Cu1—N2—C10173.8 (2)C7—C8—C16—C1718.5 (4)
N7—Cu1—N2—C680.0 (2)C20—C16—C17—C180.4 (5)
N5—Cu1—N2—C699.8 (2)C8—C16—C17—C18178.5 (3)
N3—Cu1—N2—C6174.8 (2)C16—C17—C18—C190.4 (5)
N1—Cu1—N2—C63.2 (2)C20—N4—C19—C180.2 (5)
N6—Cu1—N3—C156.4 (3)C17—C18—C19—N40.7 (6)
N2—Cu1—N3—C15176.0 (3)C19—N4—C20—C160.7 (5)
N7—Cu1—N3—C1573.9 (3)C17—C16—C20—N41.0 (5)
N5—Cu1—N3—C1582.9 (3)C8—C16—C20—N4179.1 (3)
N1—Cu1—N3—C15171.8 (3)C25—N5—C21—C220.7 (6)
N6—Cu1—N3—C11169.5 (2)Cu1—N5—C21—C22172.4 (3)
N2—Cu1—N3—C118.1 (2)N5—C21—C22—C230.6 (7)
N7—Cu1—N3—C11110.2 (2)C21—C22—C23—C240.4 (7)
N5—Cu1—N3—C1193.0 (2)C22—C23—C24—C251.1 (6)
N1—Cu1—N3—C1112.3 (4)C21—N5—C25—C240.1 (5)
N6—Cu1—N5—C21174.0 (3)Cu1—N5—C25—C24172.9 (3)
N2—Cu1—N5—C2113.3 (3)C21—N5—C25—C26179.3 (3)
N7—Cu1—N5—C21167.2 (3)Cu1—N5—C25—C266.3 (3)
N3—Cu1—N5—C2162.8 (3)C23—C24—C25—N51.0 (5)
N1—Cu1—N5—C2191.1 (3)C23—C24—C25—C26179.9 (3)
N6—Cu1—N5—C251.9 (2)C30—N6—C26—C270.6 (4)
N2—Cu1—N5—C25174.7 (2)Cu1—N6—C26—C27170.3 (2)
N7—Cu1—N5—C254.8 (4)C30—N6—C26—C25178.7 (3)
N3—Cu1—N5—C25109.3 (2)Cu1—N6—C26—C257.9 (3)
N1—Cu1—N5—C2596.8 (2)N5—C25—C26—N69.2 (4)
N7—Cu1—N6—C26179.3 (2)C24—C25—C26—N6170.0 (3)
N5—Cu1—N6—C263.5 (2)N5—C25—C26—C27168.9 (3)
N3—Cu1—N6—C2686.7 (2)C24—C25—C26—C2711.9 (5)
N1—Cu1—N6—C2694.1 (2)N6—C26—C27—C280.0 (4)
N7—Cu1—N6—C308.3 (2)C25—C26—C27—C28178.0 (3)
N5—Cu1—N6—C30174.5 (2)C26—C27—C28—C290.3 (4)
N3—Cu1—N6—C30102.3 (2)C26—C27—C28—C36178.9 (3)
N1—Cu1—N6—C3076.9 (2)C27—C28—C29—C300.1 (5)
N6—Cu1—N7—C35178.8 (3)C36—C28—C29—C30179.2 (3)
N2—Cu1—N7—C358.4 (3)C26—N6—C30—C290.8 (4)
N5—Cu1—N7—C35172.0 (3)Cu1—N6—C30—C29170.1 (2)
N3—Cu1—N7—C3569.6 (3)C26—N6—C30—C31179.8 (2)
N1—Cu1—N7—C3583.8 (3)Cu1—N6—C30—C318.9 (3)
N6—Cu1—N7—C316.2 (2)C28—C29—C30—N60.5 (5)
N2—Cu1—N7—C31166.6 (2)C28—C29—C30—C31179.4 (3)
N5—Cu1—N7—C3112.9 (4)C35—N7—C31—C320.6 (5)
N3—Cu1—N7—C31115.4 (2)Cu1—N7—C31—C32176.1 (3)
N1—Cu1—N7—C3191.2 (2)C35—N7—C31—C30179.0 (3)
C5—N1—C1—C22.4 (5)Cu1—N7—C31—C303.5 (3)
Cu1—N1—C1—C2173.7 (3)N6—C30—C31—N73.0 (4)
N1—C1—C2—C32.0 (6)C29—C30—C31—N7176.0 (3)
C1—C2—C3—C40.0 (6)N6—C30—C31—C32177.4 (3)
C2—C3—C4—C51.3 (6)C29—C30—C31—C323.6 (5)
C1—N1—C5—C40.9 (5)N7—C31—C32—C330.4 (5)
Cu1—N1—C5—C4173.7 (3)C30—C31—C32—C33180.0 (3)
C1—N1—C5—C6177.9 (3)C31—C32—C33—C341.2 (6)
Cu1—N1—C5—C69.3 (3)C32—C33—C34—C351.1 (6)
C3—C4—C5—N10.9 (6)C31—N7—C35—C340.8 (5)
C3—C4—C5—C6175.7 (3)Cu1—N7—C35—C34175.5 (3)
C10—N2—C6—C71.3 (4)C33—C34—C35—N70.1 (6)
Cu1—N2—C6—C7178.3 (2)C27—C28—C36—C3738.3 (5)
C10—N2—C6—C5177.8 (3)C29—C28—C36—C37142.4 (3)
Cu1—N2—C6—C50.8 (3)C27—C28—C36—C40141.7 (3)
N1—C5—C6—N27.3 (4)C29—C28—C36—C4037.5 (4)
C4—C5—C6—N2175.8 (3)C40—C36—C37—C380.5 (6)
N1—C5—C6—C7171.8 (3)C28—C36—C37—C38179.4 (3)
C4—C5—C6—C75.1 (5)C36—C37—C38—C390.9 (6)
N2—C6—C7—C82.9 (4)C40—N8—C39—C380.1 (6)
C5—C6—C7—C8176.1 (3)C37—C38—C39—N80.6 (7)
C6—C7—C8—C90.9 (4)C39—N8—C40—C360.5 (5)
C6—C7—C8—C16179.5 (3)C37—C36—C40—N80.2 (5)
C7—C8—C9—C102.5 (4)C28—C36—C40—N8179.9 (3)
C16—C8—C9—C10177.0 (3)N10i—Cu2—S1—C41115.26 (14)
C6—N2—C10—C92.3 (4)N9ii—Cu2—S1—C419.39 (14)
Cu1—N2—C10—C9174.7 (2)S2—Cu2—S1—C41132.37 (11)
C6—N2—C10—C11175.9 (3)N10i—Cu2—S2—C429.39 (14)
Cu1—N2—C10—C117.0 (3)N9ii—Cu2—S2—C42111.19 (14)
C8—C9—C10—N24.3 (4)S1—Cu2—S2—C42132.50 (11)
C8—C9—C10—C11173.8 (3)N11iii—Cu3—S3—C435.28 (17)
C15—N3—C11—C120.7 (5)N12iv—Cu3—S3—C43139.71 (17)
Cu1—N3—C11—C12177.1 (3)S4—Cu3—S3—C43112.18 (14)
C15—N3—C11—C10176.6 (3)N11iii—Cu3—S4—C44158.24 (15)
Cu1—N3—C11—C107.0 (3)N12iv—Cu3—S4—C4422.83 (16)
N2—C10—C11—N30.8 (4)S3—Cu3—S4—C4487.53 (12)
Symmetry codes: (i) x+2, y, z; (ii) x+2, y+1, z; (iii) x, y, z+1; (iv) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···S4v0.932.873.756 (3)160
C15—H15···S2vi0.932.833.676 (4)151
C17—H17···S4v0.932.803.650 (3)152
C21—H21···S4iv0.932.793.627 (3)150
C29—H29···S2ii0.932.783.654 (3)156
C35—H35···N4vii0.932.473.217 (4)137
Symmetry codes: (ii) x+2, y+1, z; (iv) x, y+1, z+1; (v) x+1, y, z; (vi) x1, y+1, z; (vii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C20H14N4)2][Cu2(NCS)4]
Mr1043.64
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)10.0031 (6), 10.2202 (6), 21.2612 (12)
α, β, γ (°)82.607 (1), 87.732 (1), 80.132 (1)
V3)2123.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.74
Crystal size (mm)0.16 × 0.13 × 0.11
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.769, 0.832
No. of measured, independent and
observed [I > 2σ(I)] reflections
16747, 8252, 6751
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.103, 1.03
No. of reflections8252
No. of parameters568
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.50

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···S4i0.932.873.756 (3)159.8
C15—H15···S2ii0.932.833.676 (4)151.0
C17—H17···S4i0.932.803.650 (3)151.9
C21—H21···S4iii0.932.793.627 (3)149.8
C29—H29···S2iv0.932.783.654 (3)156.0
C35—H35···N4v0.932.473.217 (4)137.1
Symmetry codes: (i) x+1, y, z; (ii) x1, y+1, z; (iii) x, y+1, z+1; (iv) x+2, y+1, z; (v) x+1, y+2, z+1.
 

Acknowledgements

The author thanks Jiangxi Science and Technology Normal University for supporting this study.

References

First citationAndres, P. R. & Schubert, U. S. (2004). Adv. Mater. 16, 1043–1068.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConstable, E. C. (1986). Adv. Inorg. Chem. Radiochem. 30, 69–121.  CrossRef CAS Web of Science Google Scholar
First citationHofmeier, H. & Schubert, U. S. (2004). Chem. Soc. Rev. 33, 373–399.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, W.-J. (2009). Acta Cryst. E65, m801.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds