organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2,4-Di­chloro­phen­yl)-9-phenyl-2,3-di­hydro­thieno[3,2-b]quinoline

aSchool of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, bDepartment of Physics, The Madura College, Madurai 625 011, India, and cDepartment of Food Science and Technology, Faculty of Agriculture, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: nilanthalakshman@yahoo.co.uk

(Received 7 May 2009; accepted 1 July 2009; online 4 July 2009)

In the title compound, C23H15Cl2NS, the quinoline system is almost planar [r.m.s. deviation = 0.013 (2) Å]. The phenyl group is disordered over two positions with site occupancies of 0.55 and 0.45, and is oriented in a nearly perpendicular configuration to the quinoline ring [the dihedral angles between the quinoline ring and the major and minor disordered components of the phenyl ring are 81.8 (2) and 71.6 (2)°, respectively]. The dihydro­thiene ring adopts an envelope conformation. The dihedral angle between the chloro­phenyl ring and the quinoline system is 79.32 (1)°. In the crystal weak C—H⋯π inter­actions occur.

Related literature

For the biological activity of quinoline derivatives, see: Kalluraya & Sreenivasa (1998[Kalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399-404.]); Maguire et al. (1994[Maguire, M. P., Sheets, K. R., Mevety, K., Spada, A. P. & Ziberstein, A. (1994). J. Med. Chem. 37, 2129-2137.]); Doube et al. (1998[Doube, D., Blouin, M., Brideau, C., Chan, C., Desmarais, S., Eithier, D., Falgueyert, J. P., Friesen, R. W., Girrard, M., Girrard, J., Tagari, P. & Yang, R. N. (1998). Bioorg. Med. Chem. Lett. 8, 1255-1260.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C23H15Cl2NS

  • Mr = 408.32

  • Monoclinic, P 21 /c

  • a = 11.8860 (5) Å

  • b = 11.5040 (5) Å

  • c = 14.0270 (6) Å

  • β = 94.297 (9)°

  • V = 1912.61 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 293 K

  • 0.19 × 0.16 × 0.11 mm

Data collection
  • Nonius MACH-3 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.917, Tmax = 0.951

  • 3917 measured reflections

  • 3363 independent reflections

  • 2577 reflections with I > 2σ(I)

  • Rint = 0.014

  • 2 standard reflections frequency: 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.091

  • S = 1.02

  • 3363 reflections

  • 284 parameters

  • 18 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯Cg2i 0.93 2.92 3.818 (2) 162
C21—H21⋯Cg3ii 0.93 2.71 3.636 (2) 172
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg2 and Cg3 are the centroids of the N1/C2–C6 and C2/C3/C7–C10 rings, respectively.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Quinoline exists as backbone in many natural products and pharmacologically important compounds. Their widerange of biological activities include antimalarial, antiasthmatic, antiinflamatory, antibacterial, antihypertensive and tyrosine kinase PDGF-RTK inhibiting agents (Kalluraya & Sreenivasa, 1998; Doube et al., 1998; Maguire et al., 1994). We report herein the synthesis and crystal structure of the title compound (I).

In the molecule of (I), (Fig. 1), the quinoline ring is planar and is oriented to the disordered phenyl ring in nearly perpendicular configuration. The dihendral angle between the major and minor components of the disordered phenyl rings is 26.6 (4)°. The dihydrothieno ring adopts envelope conformation with C18 being the flap atom. The puckering parameters are q2 = 0.333 (2) Å and ϕ2 = 319.7 (3)° (Cremer & Pople, 1975). The dihedral angle between the chlorophenyl ring and the quinoline ring is 79.32 (1)°.

In the crystal structure, there is no classical hydrogen bonds. The crystal packing is stabilized by two weak C—H···π interactions (Table 1; Cg2 and Cg3 refer to ring centroids of N1/C2–C6 and C2/C3/C7–C10, respectively).

Related literature top

For the biological activity of quinoline derivatives, see: Kalluraya & Sreenivasa (1998); Maguire et al. (1994); Doube et al. (1998). For ring puckering analysis, see: Cremer & Pople (1975). Cg2 and Cg3 are the centroids of the N1/C2–C6 and C2/C3/C7–C10 rings, respectively.

Experimental top

A mixture of 5-(2,4-dichlorophenyl)dihydrothiophen-3(2H)-one, (1 mmol), 2-aminobenzophenone (1 mmol) and trifluroaceticacid (1.5 mmol) was taken in a 10 ml quartz vial and placed in the Biotage microwave oven. The vial was sealed and subjected to microwave irradiation. The irradiation was programmed at (273 K, 25 W, 0 bar, Absorption level: very high) for 30 min. (After a period of 1–2 min, the temperature reached a plateau, 273 K, and remained constant). After N2 gas jet cooling to room temperature (3 min), the reaction mixture was neutralized with NaHCO3 and extracted in CH2Cl2 (2 X 5 ml), dried over MgSO4 and concentrated in vacuo to give the crude product which was further purified either by a short column chromatography (silica gel, EtOAc-petroleumether, 2:8) to afford the corresponding pure quinoline derivative [melting point: 437–438 K, yield: 75%].

Refinement top

The disorder in the phenyl ring is identified as 'rotation disorder'. The phenyl ring is disordered over two orientations and it was resolved completely and their major and minor componenets have the site occupancies of 0.55 and 0.45.The bond distances in the ring is constrained using DFIX command. The bond distances and angles of the disordered ring are in agreement with normal phenyl rings. All H atoms of the disordered phenyl group were located in a difference Fourier map. The remaining H atoms were placed in calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98Å and Uiso = 1.2Ueq(C) for CH,CH2 groups.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The two disorder components of the phenyl ring of the molecule are shown, the minor component is labeled with the suffix '. the disorder parts
2-(2,4-Dichlorophenyl)-9-phenyl-2,3-dihydrothieno[3,2-b]quinoline top
Crystal data top
C23H15Cl2NSF(000) = 840
Mr = 408.32Dx = 1.418 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.8860 (5) Åθ = 2–25°
b = 11.5040 (5) ŵ = 0.46 mm1
c = 14.0270 (6) ÅT = 293 K
β = 94.297 (9)°Block, colourless
V = 1912.61 (14) Å30.19 × 0.16 × 0.11 mm
Z = 4
Data collection top
Nonius MACH-3
diffractometer
2577 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 25.0°, θmin = 2.3°
ω–2θ scansh = 014
Absorption correction: ψ scan
(North et al., 1968)
k = 113
Tmin = 0.917, Tmax = 0.951l = 1616
3917 measured reflections2 standard reflections every 60 min
3363 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.5943P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3363 reflectionsΔρmax = 0.20 e Å3
284 parametersΔρmin = 0.22 e Å3
18 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0047 (10)
Crystal data top
C23H15Cl2NSV = 1912.61 (14) Å3
Mr = 408.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.8860 (5) ŵ = 0.46 mm1
b = 11.5040 (5) ÅT = 293 K
c = 14.0270 (6) Å0.19 × 0.16 × 0.11 mm
β = 94.297 (9)°
Data collection top
Nonius MACH-3
diffractometer
2577 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.014
Tmin = 0.917, Tmax = 0.9512 standard reflections every 60 min
3917 measured reflections intensity decay: none
3363 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03218 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.20 e Å3
3363 reflectionsΔρmin = 0.22 e Å3
284 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C20.11979 (16)0.26004 (19)0.25210 (14)0.0464 (5)
C30.14508 (15)0.30797 (18)0.34454 (13)0.0428 (4)
C40.21084 (15)0.41146 (17)0.35382 (12)0.0405 (4)
C50.24702 (14)0.45739 (17)0.27087 (12)0.0395 (4)
C60.21560 (15)0.40461 (18)0.18138 (12)0.0428 (4)
C70.05703 (19)0.1566 (2)0.24282 (17)0.0629 (6)
H70.04070.12470.18250.075*
C80.01978 (19)0.1025 (2)0.3209 (2)0.0701 (7)
H80.02190.03430.31340.084*
C90.04406 (18)0.1493 (2)0.41213 (18)0.0632 (6)
H90.01850.11170.46510.076*
C100.10473 (17)0.2492 (2)0.42434 (15)0.0521 (5)
H100.11990.27930.48550.063*
C170.25242 (17)0.4742 (2)0.09826 (14)0.0523 (5)
H17A0.19120.52350.07270.063*
H17B0.27350.42250.04790.063*
C180.35345 (17)0.54856 (19)0.13425 (13)0.0478 (5)
H180.35120.62130.09770.057*
C190.46829 (16)0.49449 (17)0.12880 (12)0.0446 (5)
C200.56613 (17)0.55995 (18)0.14608 (14)0.0472 (5)
C210.67332 (18)0.5143 (2)0.14224 (14)0.0528 (5)
H210.73690.56050.15490.063*
C220.68341 (19)0.3986 (2)0.11907 (14)0.0553 (5)
C230.5893 (2)0.3301 (2)0.10080 (15)0.0588 (6)
H230.59710.25230.08470.071*
C240.48327 (19)0.37731 (19)0.10646 (14)0.0524 (5)
H240.42020.33000.09510.063*
N10.15524 (13)0.31025 (16)0.17022 (11)0.0487 (4)
Cl10.55600 (5)0.70657 (5)0.17491 (5)0.0697 (2)
Cl20.81734 (6)0.33969 (7)0.11513 (6)0.0859 (3)
S10.32820 (5)0.58301 (5)0.26012 (4)0.05025 (17)
C110.23924 (16)0.46862 (18)0.44796 (13)0.0453 (5)
C140.2954 (3)0.5830 (3)0.61987 (18)0.0854 (9)
H140.312 (2)0.624 (3)0.678 (2)0.102*
C120.1794 (7)0.5609 (6)0.4804 (6)0.067 (2)0.55
H120.11760.58660.44150.080*0.55
C130.2032 (7)0.6189 (8)0.5661 (6)0.085 (3)0.55
H130.15810.67920.58540.102*0.55
C150.3566 (7)0.4863 (7)0.5933 (7)0.094 (3)0.55
H150.41630.45940.63400.112*0.55
C160.3298 (6)0.4293 (8)0.5068 (6)0.076 (3)0.55
H160.37220.36600.48900.091*0.55
C12'0.1533 (9)0.5268 (6)0.4904 (7)0.055 (2)0.45
H12'0.07940.52820.46370.066*0.45
C13'0.1868 (8)0.5831 (8)0.5765 (7)0.075 (3)0.45
H13'0.13190.62360.60680.090*0.45
C15'0.3783 (9)0.5283 (9)0.5745 (8)0.083 (3)0.45
H15'0.45270.52890.60040.099*0.45
C16'0.3486 (7)0.4717 (9)0.4887 (7)0.064 (3)0.45
H16'0.40480.43440.45740.077*0.45
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0389 (10)0.0567 (12)0.0433 (10)0.0048 (9)0.0001 (8)0.0028 (9)
C30.0359 (9)0.0532 (12)0.0393 (10)0.0020 (9)0.0028 (7)0.0059 (9)
C40.0377 (9)0.0506 (11)0.0334 (9)0.0059 (9)0.0035 (7)0.0029 (8)
C50.0373 (9)0.0471 (10)0.0340 (9)0.0011 (8)0.0030 (7)0.0011 (8)
C60.0387 (9)0.0563 (12)0.0332 (9)0.0003 (9)0.0017 (7)0.0014 (9)
C70.0544 (13)0.0730 (16)0.0599 (13)0.0185 (12)0.0042 (10)0.0018 (12)
C80.0527 (13)0.0715 (16)0.0858 (18)0.0230 (12)0.0033 (12)0.0093 (14)
C90.0502 (12)0.0736 (16)0.0670 (15)0.0064 (12)0.0114 (11)0.0221 (12)
C100.0467 (11)0.0646 (13)0.0459 (11)0.0017 (10)0.0092 (9)0.0101 (10)
C170.0532 (11)0.0699 (14)0.0339 (9)0.0036 (11)0.0038 (8)0.0064 (10)
C180.0537 (11)0.0552 (12)0.0353 (9)0.0033 (10)0.0087 (8)0.0079 (9)
C190.0540 (11)0.0492 (11)0.0314 (9)0.0030 (9)0.0089 (8)0.0074 (8)
C200.0554 (12)0.0465 (11)0.0410 (10)0.0023 (9)0.0124 (9)0.0054 (8)
C210.0524 (12)0.0611 (14)0.0461 (11)0.0019 (10)0.0118 (9)0.0094 (10)
C220.0631 (13)0.0604 (14)0.0443 (11)0.0125 (11)0.0168 (10)0.0137 (10)
C230.0842 (17)0.0479 (12)0.0456 (11)0.0063 (12)0.0138 (11)0.0070 (10)
C240.0649 (13)0.0514 (12)0.0416 (10)0.0075 (10)0.0077 (9)0.0049 (9)
N10.0466 (9)0.0625 (11)0.0364 (8)0.0067 (8)0.0004 (7)0.0022 (8)
Cl10.0660 (4)0.0495 (3)0.0953 (5)0.0083 (3)0.0177 (3)0.0065 (3)
Cl20.0773 (4)0.0853 (5)0.0990 (5)0.0299 (4)0.0315 (4)0.0238 (4)
S10.0578 (3)0.0512 (3)0.0430 (3)0.0080 (2)0.0117 (2)0.0035 (2)
C110.0528 (11)0.0530 (12)0.0303 (9)0.0003 (10)0.0046 (8)0.0038 (9)
C140.132 (3)0.085 (2)0.0384 (13)0.019 (2)0.0008 (16)0.0091 (14)
C120.086 (5)0.047 (4)0.064 (4)0.013 (3)0.018 (3)0.007 (3)
C130.148 (7)0.041 (5)0.062 (5)0.015 (4)0.022 (4)0.009 (3)
C150.076 (5)0.158 (9)0.043 (4)0.005 (5)0.016 (3)0.007 (5)
C160.070 (4)0.112 (7)0.044 (3)0.031 (4)0.003 (3)0.009 (4)
C12'0.077 (5)0.048 (5)0.042 (3)0.002 (4)0.012 (3)0.000 (3)
C13'0.144 (8)0.033 (5)0.050 (4)0.024 (4)0.028 (5)0.001 (3)
C15'0.083 (5)0.113 (7)0.051 (6)0.027 (5)0.005 (4)0.012 (5)
C16'0.060 (4)0.088 (7)0.044 (5)0.007 (4)0.001 (3)0.010 (4)
Geometric parameters (Å, º) top
C2—N11.379 (2)C21—C221.378 (3)
C2—C71.405 (3)C21—H210.9300
C2—C31.420 (3)C22—C231.376 (3)
C3—C101.421 (3)C22—Cl21.735 (2)
C3—C41.425 (3)C23—C241.380 (3)
C4—C51.376 (2)C23—H230.9300
C4—C111.491 (3)C24—H240.9300
C5—C61.419 (3)C11—C121.374 (7)
C5—S11.7505 (19)C11—C16'1.381 (8)
C6—N11.304 (2)C11—C161.383 (7)
C6—C171.506 (3)C11—C12'1.391 (8)
C7—C81.362 (3)C14—C131.348 (7)
C7—H70.9300C14—C15'1.366 (8)
C8—C91.399 (4)C14—C13'1.385 (8)
C8—H80.9300C14—C151.395 (7)
C9—C101.361 (3)C14—H140.95 (3)
C9—H90.9300C12—C131.385 (7)
C10—H100.9300C12—H120.9300
C17—C181.529 (3)C13—H130.9300
C17—H17A0.9700C15—C161.395 (7)
C17—H17B0.9700C15—H150.9300
C18—C191.507 (3)C16—H160.9300
C18—S11.8557 (19)C12'—C13'1.401 (8)
C18—H180.9800C12'—H12'0.9300
C19—C201.391 (3)C13'—H13'0.9300
C19—C241.398 (3)C15'—C16'1.391 (8)
C20—C211.383 (3)C15'—H15'0.9300
C20—Cl11.741 (2)C16'—H16'0.9300
N1—C2—C7118.08 (18)C22—C23—H23120.1
N1—C2—C3122.72 (18)C24—C23—H23120.1
C7—C2—C3119.20 (18)C23—C24—C19121.6 (2)
C2—C3—C10118.26 (19)C23—C24—H24119.2
C2—C3—C4119.01 (16)C19—C24—H24119.2
C10—C3—C4122.72 (18)C6—N1—C2116.63 (16)
C5—C4—C3116.60 (16)C5—S1—C1892.02 (9)
C5—C4—C11121.01 (18)C12—C11—C16'109.8 (7)
C3—C4—C11122.39 (16)C12—C11—C16117.0 (6)
C4—C5—C6120.37 (18)C16'—C11—C1625.1 (5)
C4—C5—S1126.81 (15)C12—C11—C12'21.9 (5)
C6—C5—S1112.78 (13)C16'—C11—C12'120.6 (7)
N1—C6—C5124.62 (17)C16—C11—C12'117.7 (6)
N1—C6—C17122.59 (17)C12—C11—C4123.0 (4)
C5—C6—C17112.65 (17)C16'—C11—C4121.4 (5)
C8—C7—C2121.0 (2)C16—C11—C4119.9 (4)
C8—C7—H7119.5C12'—C11—C4117.8 (5)
C2—C7—H7119.5C13—C14—C15'117.7 (7)
C7—C8—C9120.2 (2)C13—C14—C13'20.3 (6)
C7—C8—H8119.9C15'—C14—C13'118.5 (7)
C9—C8—H8119.9C13—C14—C15120.9 (6)
C10—C9—C8120.7 (2)C15'—C14—C1525.8 (6)
C10—C9—H9119.6C13'—C14—C15111.8 (6)
C8—C9—H9119.6C13—C14—H14116.3 (19)
C9—C10—C3120.6 (2)C15'—C14—H14120.9 (19)
C9—C10—H10119.7C13'—C14—H14120.5 (19)
C3—C10—H10119.7C15—C14—H14122.7 (19)
C6—C17—C18107.96 (16)C11—C12—C13125.6 (8)
C6—C17—H17A110.1C11—C12—H12117.2
C18—C17—H17A110.1C13—C12—H12117.2
C6—C17—H17B110.1C14—C13—C12116.3 (8)
C18—C17—H17B110.1C14—C13—H13121.9
H17A—C17—H17B108.4C12—C13—H13121.9
C19—C18—C17116.36 (18)C14—C15—C16121.2 (8)
C19—C18—S1110.37 (13)C14—C15—H15119.4
C17—C18—S1104.75 (12)C16—C15—H15119.4
C19—C18—H18108.4C11—C16—C15118.8 (8)
C17—C18—H18108.4C11—C16—H16120.6
S1—C18—H18108.4C15—C16—H16120.6
C20—C19—C24116.24 (19)C11—C12'—C13'114.9 (9)
C20—C19—C18121.07 (18)C11—C12'—H12'122.5
C24—C19—C18122.69 (18)C13'—C12'—H12'122.5
C21—C20—C19123.2 (2)C14—C13'—C12'124.9 (9)
C21—C20—Cl1117.18 (16)C14—C13'—H13'117.5
C19—C20—Cl1119.57 (16)C12'—C13'—H13'117.5
C22—C21—C20118.2 (2)C14—C15'—C16'118.3 (11)
C22—C21—H21120.9C14—C15'—H15'120.9
C20—C21—H21120.9C16'—C15'—H15'120.9
C23—C22—C21120.9 (2)C11—C16'—C15'122.7 (11)
C23—C22—Cl2120.38 (18)C11—C16'—H16'118.7
C21—C22—Cl2118.75 (19)C15'—C16'—H16'118.7
C22—C23—C24119.8 (2)
N1—C2—C3—C10179.85 (18)C7—C2—N1—C6178.41 (19)
C7—C2—C3—C100.5 (3)C3—C2—N1—C61.0 (3)
N1—C2—C3—C40.7 (3)C4—C5—S1—C18168.69 (17)
C7—C2—C3—C4178.65 (19)C6—C5—S1—C1813.48 (15)
C2—C3—C4—C50.9 (3)C19—C18—S1—C599.75 (15)
C10—C3—C4—C5178.20 (17)C17—C18—S1—C526.24 (15)
C2—C3—C4—C11178.78 (17)C5—C4—C11—C1282.4 (4)
C10—C3—C4—C112.1 (3)C3—C4—C11—C1297.3 (4)
C3—C4—C5—C62.2 (3)C5—C4—C11—C16'68.1 (5)
C11—C4—C5—C6177.50 (17)C3—C4—C11—C16'112.3 (5)
C3—C4—C5—S1179.84 (14)C5—C4—C11—C1697.3 (5)
C11—C4—C5—S10.2 (3)C3—C4—C11—C1683.0 (5)
C4—C5—C6—N12.1 (3)C5—C4—C11—C12'107.1 (4)
S1—C5—C6—N1179.96 (16)C3—C4—C11—C12'72.5 (4)
C4—C5—C6—C17173.78 (17)C16'—C11—C12—C1325.1 (9)
S1—C5—C6—C174.2 (2)C16—C11—C12—C131.1 (9)
N1—C2—C7—C8179.8 (2)C12'—C11—C12—C1399 (2)
C3—C2—C7—C80.4 (3)C4—C11—C12—C13178.6 (6)
C2—C7—C8—C90.2 (4)C15'—C14—C13—C1224.1 (10)
C7—C8—C9—C100.1 (4)C13'—C14—C13—C1274 (2)
C8—C9—C10—C30.2 (3)C15—C14—C13—C125.3 (10)
C2—C3—C10—C90.4 (3)C11—C12—C13—C142.3 (11)
C4—C3—C10—C9178.69 (19)C13—C14—C15—C165.1 (12)
N1—C6—C17—C18159.49 (18)C15'—C14—C15—C1685 (2)
C5—C6—C17—C1824.6 (2)C13'—C14—C15—C1625.4 (11)
C6—C17—C18—C1990.0 (2)C12—C11—C16—C151.5 (10)
C6—C17—C18—S132.2 (2)C16'—C11—C16—C1577 (2)
C17—C18—C19—C20170.37 (17)C12'—C11—C16—C1526.2 (10)
S1—C18—C19—C2070.5 (2)C4—C11—C16—C15178.2 (6)
C17—C18—C19—C249.6 (3)C14—C15—C16—C111.4 (12)
S1—C18—C19—C24109.51 (18)C12—C11—C12'—C13'67 (2)
C24—C19—C20—C210.2 (3)C16'—C11—C12'—C13'1.9 (9)
C18—C19—C20—C21179.80 (17)C16—C11—C12'—C13'26.7 (8)
C24—C19—C20—Cl1179.75 (14)C4—C11—C12'—C13'177.2 (5)
C18—C19—C20—Cl10.2 (2)C13—C14—C13'—C12'96 (3)
C19—C20—C21—C220.8 (3)C15'—C14—C13'—C12'2.8 (12)
Cl1—C20—C21—C22179.67 (15)C15—C14—C13'—C12'24.8 (10)
C20—C21—C22—C230.4 (3)C11—C12'—C13'—C140.6 (11)
C20—C21—C22—Cl2179.36 (15)C13—C14—C15'—C16'25.4 (12)
C21—C22—C23—C240.6 (3)C13'—C14—C15'—C16'2.3 (12)
Cl2—C22—C23—C24178.41 (15)C15—C14—C15'—C16'78.8 (19)
C22—C23—C24—C191.2 (3)C12—C11—C16'—C15'23.5 (10)
C20—C19—C24—C230.8 (3)C16—C11—C16'—C15'88 (2)
C18—C19—C24—C23179.23 (18)C12'—C11—C16'—C15'2.3 (11)
C5—C6—N1—C20.4 (3)C4—C11—C16'—C15'177.4 (7)
C17—C6—N1—C2175.03 (18)C14—C15'—C16'—C110.1 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···Cg2i0.932.923.818 (2)162
C21—H21···Cg3ii0.932.713.636 (2)172
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H15Cl2NS
Mr408.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.8860 (5), 11.5040 (5), 14.0270 (6)
β (°) 94.297 (9)
V3)1912.61 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.19 × 0.16 × 0.11
Data collection
DiffractometerNonius MACH-3
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.917, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
3917, 3363, 2577
Rint0.014
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.091, 1.02
No. of reflections3363
No. of parameters284
No. of restraints18
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.22

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···Cg2i0.932.923.818 (2)162
C21—H21···Cg3ii0.932.713.636 (2)172
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

JS and DN thank the Management of The Madura College, Madurai, for their constant support.

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDoube, D., Blouin, M., Brideau, C., Chan, C., Desmarais, S., Eithier, D., Falgueyert, J. P., Friesen, R. W., Girrard, M., Girrard, J., Tagari, P. & Yang, R. N. (1998). Bioorg. Med. Chem. Lett. 8, 1255–1260.  Web of Science PubMed Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399–404.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMaguire, M. P., Sheets, K. R., Mevety, K., Spada, A. P. & Ziberstein, A. (1994). J. Med. Chem. 37, 2129–2137.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds