metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­(1,10-phenanthrolin-2-ol)nickel(II) dinitrate

aSchool of Chemical & Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, People's Republic of China, and bDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: qinyunliu1972@163.com

(Received 22 June 2009; accepted 1 July 2009; online 8 July 2009)

In the mononuclear title complex, [Ni(C12H8N2O)2(H2O)2](NO3)2, the NiII ion is coordinated in a distorted octa­hedral geometry. The dihedral angle between the two mean planes defined by the phenanthroline ligands is 88.26 (6)°. Intra- and intermolecular O—H⋯O hydrogen bonds between the cation and the anions lead to the formation of a layered arrangement parallel to (010).

Related literature

For a related crystal structure, see: Shi et al. (2009[Shi, J. M., Liu, Q. S. & Shi, W. (2009). J. Coord. Chem. 62, 1121-1126.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C12H8N2O)2(H2O)2](NO3)2

  • Mr = 611.17

  • Monoclinic, P 21 /n

  • a = 9.6939 (16) Å

  • b = 16.386 (3) Å

  • c = 16.101 (3) Å

  • β = 96.126 (3)°

  • V = 2543.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 298 K

  • 0.22 × 0.14 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.838, Tmax = 0.907

  • 14665 measured reflections

  • 5498 independent reflections

  • 3422 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.212

  • S = 1.02

  • 5498 reflections

  • 373 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 1.65 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H16⋯O4 0.82 1.88 2.683 (5) 166
O10—H17⋯O5 0.82 1.84 2.651 (6) 169
O5—H9⋯O8i 0.88 1.80 2.596 (5) 148
O5—H8⋯O1 0.89 1.88 2.757 (5) 167
O4—H5⋯O7ii 0.89 2.02 2.623 (5) 124
O4—H4⋯O3 0.89 1.84 2.712 (5) 165
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Metal complexes containing the derivatives of 1,10-phenanthroline as ligands play a pivotal role in the area of modern coordination chemistry. A few complexes dealing with 2-hydroxyl-1,10-phenanthroline have been published (Shi et al., 2009) and the interest in this area resulted in us to synthesize the title complex, and here we report its crystal structure, (I), Fig. 1.

The data of coordination bond lengths and associated angles indicate that the NiII ion assumes a distorted octahedral geometry. All non-hydrogen atoms of the each ligand 2-hydroxyl-1,10-phenanthroline define a plane within 0.0300 Å (dealing with atom N1 plane) and 0.0200 Å (dealing with atom N3 plane) with the maximum deviation of 0.0506 (34)Å for atom N1 and of -0.0443 (33)Å for atom N4, respectively. The dihedral angle between the two planes is 88.26 (6)°, which means that two planes are almost vertical each other. In the crystal structure, there are the intramolecular O—H···O hydrogen bonds and the intermolecular O—H···O hydrogen bonds (Table 2), and the intermolecular O—H···O hydrogen bonds that are from nitrate anion and the coordinated H2O lead to the formation of a one-dimensional chain as shown in Fig. 2.

Related literature top

For a related crystal structure, see: Shi et al. (2009).

Experimental top

5 ml of an aqueous solution of hydrated nickel nitrate (0.1745 g, 0.60 mmol) was added to 10 ml of a methanolic solution containing 2-hydroxyl-1,10-phenanthroline (0.1176 g, 0.60 mmol). Then NaOH (0.024 g, 0.60 mmol) was added into the mixed solution meanwhile it was stirred, and the mixture was further stirred for a few minutes. The green single crystals were obtained after the filtrate had been allowed to stand at room temperature for two weeks.

Refinement top

H atoms of water molecules were located in a difference Fourier map and refined as riding, with O—H = 0.82–0.89 Å, Uiso(H) = 1.5 Ueq(O). Other H atoms were placed in calculated positions, and refined as riding with C—H = 0.93 /%A and Uiso(H) = 1.2eq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom numbering scheme with thermal ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Hydrogen bonds (dashed line).
Diaqua(1,10-phenanthrolin-2-ol)nickel(II) dinitrate top
Crystal data top
[Ni(C12H8N2O)2(H2O)2](NO3)2F(000) = 1256
Mr = 611.17Dx = 1.596 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1943 reflections
a = 9.6939 (16) Åθ = 2.5–21.3°
b = 16.386 (3) ŵ = 0.83 mm1
c = 16.101 (3) ÅT = 298 K
β = 96.126 (3)°Block, green
V = 2543.0 (7) Å30.22 × 0.14 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
5498 independent reflections
Radiation source: fine-focus sealed tube3422 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1211
Tmin = 0.838, Tmax = 0.907k = 2020
14665 measured reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.212H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1199P)2]
where P = (Fo2 + 2Fc2)/3
5498 reflections(Δ/σ)max = 0.008
373 parametersΔρmax = 1.65 e Å3
7 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Ni(C12H8N2O)2(H2O)2](NO3)2V = 2543.0 (7) Å3
Mr = 611.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.6939 (16) ŵ = 0.83 mm1
b = 16.386 (3) ÅT = 298 K
c = 16.101 (3) Å0.22 × 0.14 × 0.12 mm
β = 96.126 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5498 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
3422 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 0.907Rint = 0.051
14665 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0717 restraints
wR(F2) = 0.212H-atom parameters constrained
S = 1.02Δρmax = 1.65 e Å3
5498 reflectionsΔρmin = 0.52 e Å3
373 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.2334 (6)0.2630 (3)0.6271 (4)0.0598 (13)
C21.3351 (6)0.2507 (4)0.5719 (4)0.0751 (17)
H21.42020.27710.58150.090*
C31.3101 (6)0.2018 (4)0.5063 (4)0.0740 (16)
H31.37870.19290.47110.089*
C41.1785 (6)0.1627 (3)0.4896 (3)0.0611 (13)
C51.0844 (5)0.1778 (3)0.5467 (3)0.0487 (11)
C61.1434 (8)0.1113 (4)0.4208 (4)0.0782 (18)
H61.20910.09990.38440.094*
C71.0151 (7)0.0783 (3)0.4067 (3)0.0738 (16)
H70.99380.04500.36030.089*
C80.9476 (5)0.1425 (3)0.5322 (3)0.0504 (11)
C90.9129 (6)0.0932 (3)0.4610 (3)0.0578 (13)
C100.7784 (7)0.0616 (3)0.4515 (3)0.0719 (16)
H100.75100.02820.40600.086*
C110.6874 (6)0.0786 (3)0.5068 (4)0.0684 (15)
H110.59730.05840.49890.082*
C120.7310 (5)0.1275 (3)0.5769 (3)0.0579 (12)
H120.66820.13820.61540.069*
C131.1424 (6)0.0825 (3)0.7581 (3)0.0669 (15)
H131.20770.10120.72420.080*
C141.1690 (6)0.0154 (3)0.8096 (4)0.0741 (16)
H141.25410.01090.81010.089*
C151.0762 (7)0.0133 (3)0.8591 (4)0.0750 (17)
H151.09680.05960.89150.090*
C160.9495 (6)0.0264 (3)0.8617 (3)0.0570 (13)
C170.9239 (5)0.0947 (2)0.8102 (3)0.0451 (10)
C180.8487 (7)0.0017 (4)0.9138 (3)0.0728 (16)
H180.86570.04360.94820.087*
C190.7298 (7)0.0422 (4)0.9143 (3)0.0735 (16)
H190.66510.02430.94900.088*
C200.6984 (6)0.1129 (3)0.8628 (3)0.0606 (13)
C210.7968 (5)0.1396 (3)0.8111 (3)0.0476 (11)
C220.5746 (6)0.1572 (4)0.8576 (3)0.0706 (15)
H220.50480.14070.88930.085*
C230.5542 (5)0.2221 (3)0.8087 (4)0.0673 (16)
H230.47170.25150.80620.081*
C240.6594 (6)0.2451 (3)0.7613 (3)0.0567 (12)
N10.8571 (4)0.1586 (2)0.5903 (2)0.0466 (9)
N21.1087 (4)0.2266 (2)0.6141 (2)0.0483 (9)
N30.7805 (4)0.2060 (2)0.7610 (2)0.0483 (9)
N41.0152 (4)0.1209 (2)0.7587 (2)0.0434 (8)
N50.2324 (5)0.1885 (3)0.9531 (3)0.0571 (10)
N60.9923 (5)0.4864 (3)0.7949 (3)0.0597 (11)
Ni10.94695 (6)0.22382 (3)0.69161 (3)0.0420 (2)
O11.0110 (5)0.4692 (2)0.7221 (3)0.0839 (12)
O21.0314 (5)0.5502 (3)0.8263 (3)0.0953 (14)
O30.9375 (5)0.4333 (3)0.8351 (3)0.0940 (14)
O41.0564 (3)0.29373 (18)0.7868 (2)0.0564 (9)
H41.01000.34000.79380.085*
H51.07040.27360.83870.085*
O50.8685 (3)0.33744 (18)0.64926 (18)0.0566 (8)
H80.92530.37490.67420.085*
H90.88830.33660.59700.085*
O70.2489 (4)0.2210 (3)0.8873 (3)0.0836 (13)
O80.3314 (5)0.1466 (3)0.9880 (2)0.0839 (12)
O90.1269 (5)0.1966 (3)0.9843 (3)0.1059 (16)
O100.6339 (5)0.3093 (3)0.7152 (3)0.1008 (14)
H170.70030.31860.68910.151*
O111.2628 (4)0.3110 (3)0.6896 (3)0.0820 (11)
H161.19640.31370.71710.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.049 (3)0.055 (3)0.076 (4)0.007 (2)0.007 (3)0.009 (3)
C20.048 (3)0.078 (4)0.102 (5)0.004 (3)0.019 (3)0.023 (4)
C30.058 (4)0.089 (4)0.080 (4)0.014 (3)0.032 (3)0.023 (3)
C40.066 (3)0.061 (3)0.057 (3)0.011 (3)0.012 (3)0.016 (2)
C50.049 (3)0.050 (3)0.048 (3)0.005 (2)0.007 (2)0.012 (2)
C60.106 (5)0.071 (4)0.061 (3)0.029 (4)0.028 (4)0.007 (3)
C70.106 (5)0.066 (3)0.050 (3)0.013 (3)0.010 (3)0.010 (3)
C80.063 (3)0.039 (2)0.048 (2)0.008 (2)0.004 (2)0.0052 (19)
C90.076 (4)0.047 (3)0.048 (3)0.006 (2)0.001 (3)0.001 (2)
C100.093 (5)0.056 (3)0.062 (3)0.003 (3)0.019 (3)0.009 (3)
C110.059 (3)0.062 (3)0.080 (4)0.012 (3)0.013 (3)0.004 (3)
C120.048 (3)0.054 (3)0.069 (3)0.009 (2)0.005 (2)0.007 (2)
C130.070 (4)0.046 (3)0.079 (3)0.015 (2)0.020 (3)0.015 (2)
C140.070 (4)0.060 (3)0.088 (4)0.020 (3)0.013 (3)0.010 (3)
C150.097 (5)0.047 (3)0.075 (4)0.014 (3)0.019 (3)0.010 (3)
C160.074 (4)0.043 (3)0.050 (3)0.011 (2)0.008 (2)0.001 (2)
C170.048 (3)0.039 (2)0.046 (2)0.0045 (19)0.000 (2)0.0028 (19)
C180.080 (4)0.067 (3)0.068 (4)0.020 (3)0.004 (3)0.016 (3)
C190.088 (5)0.074 (4)0.059 (3)0.030 (3)0.012 (3)0.007 (3)
C200.058 (3)0.068 (3)0.057 (3)0.017 (3)0.010 (2)0.008 (3)
C210.048 (3)0.048 (3)0.046 (2)0.006 (2)0.002 (2)0.006 (2)
C220.059 (3)0.088 (4)0.068 (4)0.014 (3)0.024 (3)0.015 (3)
C230.048 (3)0.078 (4)0.077 (4)0.009 (3)0.009 (3)0.022 (3)
C240.052 (3)0.059 (3)0.059 (3)0.002 (2)0.009 (2)0.008 (2)
N10.042 (2)0.045 (2)0.052 (2)0.0019 (16)0.0018 (17)0.0005 (17)
N20.040 (2)0.053 (2)0.053 (2)0.0052 (16)0.0054 (18)0.0069 (17)
N30.041 (2)0.051 (2)0.053 (2)0.0049 (16)0.0020 (18)0.0036 (17)
N40.042 (2)0.0396 (19)0.048 (2)0.0030 (16)0.0024 (17)0.0040 (16)
N50.066 (3)0.057 (2)0.045 (2)0.004 (2)0.008 (2)0.0014 (19)
N60.054 (3)0.055 (3)0.069 (3)0.006 (2)0.002 (2)0.001 (2)
Ni10.0387 (4)0.0426 (3)0.0436 (3)0.0013 (2)0.0010 (2)0.0009 (2)
O10.100 (3)0.071 (3)0.083 (3)0.011 (2)0.019 (2)0.004 (2)
O20.103 (3)0.061 (3)0.117 (3)0.008 (2)0.010 (3)0.026 (2)
O30.101 (3)0.082 (3)0.108 (3)0.007 (3)0.054 (3)0.004 (3)
O40.066 (2)0.0468 (18)0.0517 (18)0.0024 (15)0.0163 (16)0.0007 (14)
O50.064 (2)0.0502 (18)0.0517 (18)0.0021 (15)0.0100 (16)0.0037 (14)
O70.067 (3)0.110 (3)0.072 (3)0.006 (2)0.001 (2)0.024 (2)
O80.089 (3)0.106 (3)0.057 (2)0.031 (3)0.008 (2)0.012 (2)
O90.072 (3)0.113 (4)0.141 (4)0.009 (3)0.050 (3)0.019 (3)
O100.084 (3)0.101 (3)0.120 (4)0.012 (3)0.022 (3)0.022 (3)
O110.065 (3)0.082 (3)0.099 (3)0.024 (2)0.007 (2)0.015 (2)
Geometric parameters (Å, º) top
C1—O111.286 (7)C17—N41.347 (5)
C1—N21.344 (6)C17—C211.437 (6)
C1—C21.410 (8)C18—C191.332 (8)
C2—C31.327 (9)C18—H180.9300
C2—H20.9300C19—C201.437 (8)
C3—C41.427 (8)C19—H190.9300
C3—H30.9300C20—C221.397 (8)
C4—C51.385 (6)C20—C211.402 (6)
C4—C61.404 (8)C21—N31.354 (6)
C5—N21.347 (6)C22—C231.327 (8)
C5—C81.443 (7)C22—H220.9300
C6—C71.353 (9)C23—C241.389 (7)
C6—H60.9300C23—H230.9300
C7—C91.410 (7)C24—O101.296 (6)
C7—H70.9300C24—N31.338 (6)
C8—N11.374 (6)N1—Ni12.065 (4)
C8—C91.413 (6)N2—Ni12.106 (4)
C9—C101.396 (8)N3—Ni12.079 (4)
C10—C111.348 (8)N4—Ni12.072 (3)
C10—H100.9300N5—O91.193 (6)
C11—C121.412 (7)N5—O71.212 (5)
C11—H110.9300N5—O81.262 (5)
C12—N11.320 (6)N6—O21.206 (5)
C12—H120.9300N6—O11.237 (5)
C13—N41.385 (6)N6—O31.238 (5)
C13—C141.386 (7)Ni1—O52.097 (3)
C13—H130.9300Ni1—O42.107 (3)
C14—C151.348 (8)O4—H40.8949
C14—H140.9300O4—H50.8947
C15—C161.395 (8)O5—H80.8914
C15—H150.9300O5—H90.8838
C16—C171.399 (6)O10—H170.8200
C16—C181.413 (7)O11—H160.8200
O11—C1—N2120.9 (5)C22—C20—C21115.9 (5)
O11—C1—C2118.0 (5)C22—C20—C19125.5 (5)
N2—C1—C2121.1 (5)C21—C20—C19118.6 (5)
C3—C2—C1120.5 (6)N3—C21—C20124.2 (4)
C3—C2—H2119.8N3—C21—C17116.8 (4)
C1—C2—H2119.8C20—C21—C17119.0 (4)
C2—C3—C4120.3 (5)C23—C22—C20121.7 (5)
C2—C3—H3119.9C23—C22—H22119.1
C4—C3—H3119.9C20—C22—H22119.1
C5—C4—C6120.6 (5)C22—C23—C24118.1 (5)
C5—C4—C3115.7 (5)C22—C23—H23120.9
C6—C4—C3123.7 (6)C24—C23—H23120.9
N2—C5—C4124.8 (4)O10—C24—N3120.0 (5)
N2—C5—C8116.5 (4)O10—C24—C23115.4 (5)
C4—C5—C8118.7 (4)N3—C24—C23124.6 (5)
C7—C6—C4120.9 (6)C12—N1—C8117.6 (4)
C7—C6—H6119.6C12—N1—Ni1129.3 (3)
C4—C6—H6119.6C8—N1—Ni1113.0 (3)
C6—C7—C9121.4 (5)C1—N2—C5117.7 (4)
C6—C7—H7119.3C1—N2—Ni1129.1 (4)
C9—C7—H7119.3C5—N2—Ni1112.8 (3)
N1—C8—C9123.2 (5)C24—N3—C21115.4 (4)
N1—C8—C5117.1 (4)C24—N3—Ni1131.8 (3)
C9—C8—C5119.7 (5)C21—N3—Ni1112.6 (3)
C10—C9—C7125.3 (5)C17—N4—C13120.2 (4)
C10—C9—C8116.1 (5)C17—N4—Ni1112.7 (3)
C7—C9—C8118.7 (5)C13—N4—Ni1127.0 (3)
C11—C10—C9121.4 (5)O9—N5—O7121.1 (5)
C11—C10—H10119.3O9—N5—O8121.3 (5)
C9—C10—H10119.3O7—N5—O8117.6 (5)
C10—C11—C12119.0 (5)O2—N6—O1121.5 (5)
C10—C11—H11120.5O2—N6—O3121.6 (5)
C12—C11—H11120.5O1—N6—O3116.8 (5)
N1—C12—C11122.8 (5)N1—Ni1—N494.29 (13)
N1—C12—H12118.6N1—Ni1—N393.77 (14)
C11—C12—H12118.6N4—Ni1—N380.16 (14)
N4—C13—C14117.8 (6)N1—Ni1—O595.45 (12)
N4—C13—H13121.1N4—Ni1—O5167.48 (13)
C14—C13—H13121.1N3—Ni1—O591.36 (14)
C15—C14—C13122.6 (5)N1—Ni1—N279.68 (15)
C15—C14—H14118.7N4—Ni1—N296.29 (14)
C13—C14—H14118.7N3—Ni1—N2172.35 (14)
C14—C15—C16120.0 (5)O5—Ni1—N293.17 (13)
C14—C15—H15120.0N1—Ni1—O4173.62 (14)
C16—C15—H15120.0N4—Ni1—O487.43 (13)
C15—C16—C17117.2 (5)N3—Ni1—O492.58 (14)
C15—C16—C18123.4 (5)O5—Ni1—O483.74 (11)
C17—C16—C18119.4 (5)N2—Ni1—O494.04 (15)
N4—C17—C16122.3 (4)Ni1—O4—H4109.3
N4—C17—C21117.6 (4)Ni1—O4—H5119.5
C16—C17—C21120.1 (4)H4—O4—H5103.0
C19—C18—C16121.0 (5)Ni1—O5—H8106.2
C19—C18—H18119.5Ni1—O5—H9100.8
C16—C18—H18119.5H8—O5—H9104.7
C18—C19—C20121.9 (5)C24—O10—H17109.5
C18—C19—H19119.1C1—O11—H16109.5
C20—C19—H19119.1
O11—C1—C2—C3180.0 (6)O11—C1—N2—Ni18.2 (7)
N2—C1—C2—C31.0 (8)C2—C1—N2—Ni1172.9 (4)
C1—C2—C3—C41.7 (9)C4—C5—N2—C10.3 (7)
C2—C3—C4—C51.6 (8)C8—C5—N2—C1177.3 (4)
C2—C3—C4—C6178.8 (5)C4—C5—N2—Ni1174.1 (3)
C6—C4—C5—N2179.5 (4)C8—C5—N2—Ni18.9 (5)
C3—C4—C5—N20.9 (7)O10—C24—N3—C21179.8 (5)
C6—C4—C5—C82.5 (7)C23—C24—N3—C210.2 (7)
C3—C4—C5—C8177.9 (4)O10—C24—N3—Ni14.2 (7)
C5—C4—C6—C72.8 (8)C23—C24—N3—Ni1175.9 (4)
C3—C4—C6—C7177.7 (5)C20—C21—N3—C241.9 (6)
C4—C6—C7—C90.8 (8)C17—C21—N3—C24178.0 (4)
N2—C5—C8—N13.0 (6)C20—C21—N3—Ni1178.4 (4)
C4—C5—C8—N1179.8 (4)C17—C21—N3—Ni11.5 (5)
N2—C5—C8—C9177.6 (4)C16—C17—N4—C133.0 (6)
C4—C5—C8—C90.4 (6)C21—C17—N4—C13176.8 (4)
C6—C7—C9—C10179.8 (5)C16—C17—N4—Ni1179.6 (3)
C6—C7—C9—C81.3 (8)C21—C17—N4—Ni10.2 (5)
N1—C8—C9—C100.8 (7)C14—C13—N4—C172.2 (6)
C5—C8—C9—C10179.8 (4)C14—C13—N4—Ni1178.2 (3)
N1—C8—C9—C7177.8 (4)C12—N1—Ni1—N487.2 (4)
C5—C8—C9—C71.5 (6)C8—N1—Ni1—N488.6 (3)
C7—C9—C10—C11179.5 (5)C12—N1—Ni1—N36.8 (4)
C8—C9—C10—C110.9 (7)C8—N1—Ni1—N3169.0 (3)
C9—C10—C11—C121.8 (8)C12—N1—Ni1—O585.0 (4)
C10—C11—C12—N11.0 (8)C8—N1—Ni1—O599.3 (3)
N4—C13—C14—C150.3 (8)C12—N1—Ni1—N2177.2 (4)
C13—C14—C15—C162.1 (9)C8—N1—Ni1—N27.0 (3)
C14—C15—C16—C171.3 (8)C12—N1—Ni1—O4167.3 (10)
C14—C15—C16—C18177.9 (5)C8—N1—Ni1—O416.9 (13)
C15—C16—C17—N41.3 (7)C17—N4—Ni1—N192.6 (3)
C18—C16—C17—N4179.5 (4)C13—N4—Ni1—N191.1 (4)
C15—C16—C17—C21178.5 (4)C17—N4—Ni1—N30.4 (3)
C18—C16—C17—C210.7 (6)C13—N4—Ni1—N3175.8 (4)
C15—C16—C18—C19179.4 (5)C17—N4—Ni1—O548.4 (7)
C17—C16—C18—C190.2 (8)C13—N4—Ni1—O5127.9 (6)
C16—C18—C19—C200.4 (8)C17—N4—Ni1—N2172.7 (3)
C18—C19—C20—C22177.8 (5)C13—N4—Ni1—N211.0 (4)
C18—C19—C20—C210.3 (8)C17—N4—Ni1—O493.5 (3)
C22—C20—C21—N32.9 (7)C13—N4—Ni1—O482.8 (4)
C19—C20—C21—N3178.8 (4)C24—N3—Ni1—N183.1 (4)
C22—C20—C21—C17177.0 (4)C21—N3—Ni1—N192.7 (3)
C19—C20—C21—C171.2 (7)C24—N3—Ni1—N4176.8 (4)
N4—C17—C21—N31.2 (6)C21—N3—Ni1—N41.1 (3)
C16—C17—C21—N3178.6 (4)C24—N3—Ni1—O512.4 (4)
N4—C17—C21—C20178.7 (4)C21—N3—Ni1—O5171.8 (3)
C16—C17—C21—C201.5 (6)C24—N3—Ni1—N2113.9 (10)
C21—C20—C22—C232.2 (8)C21—N3—Ni1—N261.9 (11)
C19—C20—C22—C23179.7 (5)C24—N3—Ni1—O496.2 (4)
C20—C22—C23—C240.7 (8)C21—N3—Ni1—O488.0 (3)
C22—C23—C24—O10179.6 (5)C1—N2—Ni1—N1178.4 (4)
C22—C23—C24—N30.4 (8)C5—N2—Ni1—N18.7 (3)
C11—C12—N1—C80.6 (7)C1—N2—Ni1—N488.4 (4)
C11—C12—N1—Ni1175.0 (4)C5—N2—Ni1—N484.6 (3)
C9—C8—N1—C121.6 (6)C1—N2—Ni1—N3150.3 (9)
C5—C8—N1—C12179.1 (4)C5—N2—Ni1—N322.6 (12)
C9—C8—N1—Ni1174.8 (3)C1—N2—Ni1—O583.4 (4)
C5—C8—N1—Ni14.6 (5)C5—N2—Ni1—O5103.6 (3)
O11—C1—N2—C5179.2 (5)C1—N2—Ni1—O40.5 (4)
C2—C1—N2—C50.2 (7)C5—N2—Ni1—O4172.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H16···O40.821.882.683 (5)166
O10—H17···O50.821.842.651 (6)169
O5—H9···O8i0.881.802.596 (5)148
O5—H8···O10.891.882.757 (5)167
O4—H5···O7ii0.892.022.623 (5)124
O4—H4···O30.891.842.712 (5)165
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C12H8N2O)2(H2O)2](NO3)2
Mr611.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.6939 (16), 16.386 (3), 16.101 (3)
β (°) 96.126 (3)
V3)2543.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.22 × 0.14 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.838, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
14665, 5498, 3422
Rint0.051
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.212, 1.02
No. of reflections5498
No. of parameters373
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.65, 0.52

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H16···O40.821.882.683 (5)166.1
O10—H17···O50.821.842.651 (6)169.4
O5—H9···O8i0.881.802.596 (5)148.1
O5—H8···O10.891.882.757 (5)167.3
O4—H5···O7ii0.892.022.623 (5)124.0
O4—H4···O30.891.842.712 (5)165.4
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1, y, z.
 

Acknowledgements

The authors thank the Research Project of `SUST Spring Bud' for support (No. 2008BWZ056).

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J. M., Liu, Q. S. & Shi, W. (2009). J. Coord. Chem. 62, 1121–1126.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds