organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis(carb­oxy­meth­yl)imidazolium triiodide 1-carboxyl­ato­methyl-3-carb­oxy­methyl­imidazolium

aSchool of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China, and bDepartment of Chemistry, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
*Correspondence e-mail: chm_miaojl@ujn.edu.cn

(Received 24 June 2009; accepted 30 June 2009; online 4 July 2009)

In the title compound, C7H9N2O4+·I3·C7H8N2O4, the two imidazolium units are hydrogen bonded through the carboxyl groups. The units are further linked via inter­molecular O—H⋯O hydrogen bonding, resulting in a one-dimensional ladder-type structure. As a result, the two carb­oxy groups of each imidazolium unit adopt a cis configuration with respect to the imidazolium ring.

Related literature

For the preparation of 1,3-bis­(carboxy­meth­yl)imidazole, see: Kratochvíl et al. (1988[Kratochvíl, B., Ondráček, J., Velíšek, J. & Hašek, J. (1988). Acta Cryst. C44, 1579-1582.]); Fei et al. (2004[Fei, Z. F., Zhao, D. B., Geldbach, T. J., Scopelliti, R. & Dyson, P. J. (2004). Chem. Eur. J. 10, 4886-4893.]); Barczynski et al. (2008[Barczynski, P., Komasa, A., Ratajczak-Sitarz, M., Katrusiak, A., Huczynski, A. & Brzezinski, B. (2008). J. Mol. Struct., 876, 170-176.]). For its structure, see: Kratochvíl et al. (1988[Kratochvíl, B., Ondráček, J., Velíšek, J. & Hašek, J. (1988). Acta Cryst. C44, 1579-1582.]).

[Scheme 1]

Experimental

Crystal data
  • C7H9N2O4+·I3·C7H8N2O4

  • Mr = 750.02

  • Monoclinic, C 2/c

  • a = 22.260 (3) Å

  • b = 10.1973 (17) Å

  • c = 10.1077 (17) Å

  • β = 92.209 (2)°

  • V = 2292.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.14 mm−1

  • T = 298 K

  • 0.49 × 0.44 × 0.40 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.237, Tmax = 0.289 (expected range = 0.157–0.191)

  • 6257 measured reflections

  • 2248 independent reflections

  • 1702 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.112

  • S = 1.03

  • 2248 reflections

  • 140 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.99 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O1i 0.81 (8) 1.80 (8) 2.591 (6) 166 (9)
O2—H2O⋯O2ii 1.224 (4) 1.224 (4) 2.449 (6) 179 (9)
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,3-bis(carboxymethyl)imidazole was first prepared by the condensation reaction of formaldehyde, glyoxal and glycine (Kratochvĺ et al., 1988). Recently its synthesis by the reaction of alkyl haloacetate with imidazole has been reported (Fei et al., 2004; Barczynski et al., 2008). We have found that the reaction of imidazole with chloroacetic acid in the presence of NaOH as a base produces colorless 1,3-bis(carboxymethyl)imidazole, while the same reaction with iodoacetic acid affords the red title compound.

As shown in Fig. 1, two imidazolium units are hydrogen bonded through the carboxy groups. The presence of an I3- anion accounts for the neutral nature of the whole structure. The bond lengths of C4—O1 and C4—O2 are 1.231 (6), 1.259 (6) Å (table 1), respectively, which are between those for a C—O single bond and a CO double bond. The C—N bond lengths on the rings are found to be within 1.316 (6)–1.384 (6) Å (Table 1), which are between those for a C—N single bond and a CN double bond, suggesting charge delocalization on the planar imidazolium rings. The two imidazolium units are extended by intermolecular hydrogen bonding (O3-H3O—O1i, [i = x, y+1, z], 2.591 (6) Å) to generate a one-dimensional ladder-type structure along the c axis (Fig. 2). As a result of the hydrogen bonding, the two carboxy groups of each imidazolium unit adopt a cis configuration, while in the structure of 1,3-bis(carboxymethyl)imidazole (Kratochvĺ et al., 1988) a trans configuration has been found.

Related literature top

For the preparation of 1,3-bis(carboxymethyl)imidazole, see: Kratochvíl et al. (1988); Fei et al. (2004); Barczynski et al. (2008). For its structure, see: Kratochvíl et al. (1988).

Experimental top

To a solution of iodoacetic acid (9.314 g, 0.05 mol) in distilled water (25 ml), an aqueous solution (25 ml) of NaOH (2.020 g, 0.05 mol) was added, and followed by the addition of imidazole (2.020 g, 0.03 mol). The resulting colorless solution was heated to reflux during which the color gradually changed to yellow. The pH was adjusted using saturated NaOH solution once per 20 min., keeping in the range of 8–9, till no obvious change observed. The mixture was further refluxed for 30 min. and cooled, acidified with hydrochloric acid till pH 2–3, to give an orange-red solution. After 5 days, deep red crystals (yield 11.5% based on iodoacetic acid) were formed over evaporation. IR (KBr): v = 3437, 3117, 1720, 1665, 1350, 1239, 890 cm -1.

Refinement top

H2O and H3O were located on the difference Fourier map. All other H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic, 0.97 Å, Uiso = 1.2Ueq (C) for CH2 atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure, with atom labels and 25% probability thermal ellipsoids.
[Figure 2] Fig. 2. The crystal packing diagram viewed along the c axis (only one layer shown), showing the hydrogen bonds as dotted lines; iodine atoms have been omitted for clarity
1,3-Bis(carboxymethyl)imidazolium triiodide 1-carboxylatomethyl-3-carboxymethylimidazolium top
Crystal data top
C7H9N2O4+·I3·C7H8N2O4F(000) = 1408
Mr = 750.02Dx = 2.173 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.260 (3) ÅCell parameters from 2974 reflections
b = 10.1973 (17) Åθ = 3.0–27.2°
c = 10.1077 (17) ŵ = 4.14 mm1
β = 92.209 (2)°T = 298 K
V = 2292.7 (6) Å3Plate, red
Z = 40.49 × 0.44 × 0.40 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2248 independent reflections
Radiation source: fine-focus sealed tube1702 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1827
Tmin = 0.237, Tmax = 0.289k = 1112
6257 measured reflectionsl = 912
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0655P)2 + 3.4411P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2248 reflectionsΔρmax = 0.84 e Å3
140 parametersΔρmin = 0.99 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0032 (2)
Crystal data top
C7H9N2O4+·I3·C7H8N2O4V = 2292.7 (6) Å3
Mr = 750.02Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.260 (3) ŵ = 4.14 mm1
b = 10.1973 (17) ÅT = 298 K
c = 10.1077 (17) Å0.49 × 0.44 × 0.40 mm
β = 92.209 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2248 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1702 reflections with I > 2σ(I)
Tmin = 0.237, Tmax = 0.289Rint = 0.031
6257 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.84 e Å3
2248 reflectionsΔρmin = 0.99 e Å3
140 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.46232 (19)0.1010 (4)0.1047 (4)0.0471 (10)
O20.45813 (18)0.1069 (4)0.1678 (4)0.0467 (10)
O30.4311 (2)0.7258 (4)0.0724 (5)0.0608 (13)
O40.4461 (2)0.5756 (4)0.0836 (4)0.0533 (11)
N10.38543 (17)0.1836 (4)0.0301 (4)0.0331 (9)
N20.38902 (19)0.3887 (4)0.0756 (4)0.0337 (9)
C10.4130 (2)0.2736 (5)0.0999 (5)0.0349 (11)
H10.44410.25810.15660.042*
C20.3446 (2)0.3728 (5)0.0145 (6)0.0415 (12)
H20.32070.43850.04870.050*
C30.3423 (3)0.2448 (5)0.0434 (6)0.0431 (13)
H30.31670.20470.10160.052*
C40.4439 (2)0.0124 (5)0.0929 (5)0.0357 (11)
C50.4008 (2)0.0437 (5)0.0226 (5)0.0362 (11)
H5A0.41890.01750.10430.043*
H5B0.36430.00690.01400.043*
C60.4295 (2)0.6072 (5)0.0261 (5)0.0365 (11)
C70.4056 (3)0.5151 (5)0.1311 (5)0.0381 (12)
H7A0.37060.55410.17570.046*
H7B0.43590.50190.19620.046*
I10.228024 (19)0.42974 (5)0.27861 (4)0.0609 (2)
I20.25000.25000.50000.0519 (2)
H2O0.50000.106 (9)0.25000.08 (3)*
H3O0.435 (4)0.780 (7)0.014 (9)0.07 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.054 (2)0.037 (2)0.049 (2)0.0015 (17)0.0163 (19)0.0009 (17)
O20.052 (2)0.044 (2)0.042 (2)0.0067 (17)0.0205 (18)0.0129 (17)
O30.094 (4)0.038 (2)0.048 (3)0.016 (2)0.026 (2)0.009 (2)
O40.078 (3)0.051 (2)0.030 (2)0.0123 (19)0.014 (2)0.0074 (17)
N10.030 (2)0.035 (2)0.034 (2)0.0008 (17)0.0065 (17)0.0041 (18)
N20.038 (2)0.040 (2)0.023 (2)0.0028 (18)0.0028 (17)0.0004 (17)
C10.034 (3)0.040 (3)0.031 (3)0.002 (2)0.001 (2)0.005 (2)
C20.036 (3)0.046 (3)0.043 (3)0.003 (2)0.010 (2)0.000 (2)
C30.038 (3)0.049 (3)0.044 (3)0.002 (2)0.012 (2)0.000 (2)
C40.032 (3)0.042 (3)0.033 (3)0.005 (2)0.004 (2)0.001 (2)
C50.035 (3)0.035 (3)0.038 (3)0.000 (2)0.010 (2)0.005 (2)
C60.036 (3)0.044 (3)0.030 (3)0.001 (2)0.001 (2)0.006 (2)
C70.050 (3)0.038 (3)0.025 (2)0.003 (2)0.004 (2)0.002 (2)
I10.0478 (3)0.0875 (4)0.0468 (3)0.0116 (2)0.00472 (19)0.0100 (2)
I20.0379 (3)0.0668 (4)0.0508 (4)0.0012 (2)0.0021 (2)0.0218 (3)
Geometric parameters (Å, º) top
O1—C41.231 (6)C1—H10.9300
O2—C41.259 (6)C2—C31.339 (7)
O2—H2O1.224 (4)C2—H20.9300
O3—C61.297 (6)C3—H30.9300
O3—H3O0.81 (8)C4—C51.516 (7)
O4—C61.199 (7)C5—H5A0.9700
N1—C11.323 (6)C5—H5B0.9700
N1—C31.384 (6)C6—C71.500 (7)
N1—C51.467 (6)C7—H7A0.9700
N2—C11.316 (6)C7—H7B0.9700
N2—C21.380 (6)I1—I22.9192 (6)
N2—C71.459 (6)I2—I1i2.9192 (6)
C4—O2—H2O125 (4)O1—C4—C5118.1 (5)
C6—O3—H3O112 (6)O2—C4—C5116.0 (5)
C1—N1—C3108.5 (4)N1—C5—C4112.6 (4)
C1—N1—C5126.2 (4)N1—C5—H5A109.1
C3—N1—C5125.1 (4)C4—C5—H5A109.1
C1—N2—C2108.9 (4)N1—C5—H5B109.1
C1—N2—C7127.3 (4)C4—C5—H5B109.1
C2—N2—C7123.7 (4)H5A—C5—H5B107.8
N2—C1—N1108.7 (4)O4—C6—O3124.9 (5)
N2—C1—H1125.7O4—C6—C7125.0 (5)
N1—C1—H1125.7O3—C6—C7110.0 (5)
C3—C2—N2107.0 (4)N2—C7—C6111.7 (4)
C3—C2—H2126.5N2—C7—H7A109.3
N2—C2—H2126.5C6—C7—H7A109.3
C2—C3—N1106.9 (5)N2—C7—H7B109.3
C2—C3—H3126.6C6—C7—H7B109.3
N1—C3—H3126.6H7A—C7—H7B107.9
O1—C4—O2125.8 (5)I1i—I2—I1180.0
Symmetry code: (i) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O1ii0.81 (8)1.80 (8)2.591 (6)166 (9)
O2—H2O···O2iii1.22 (1)1.22 (1)2.449 (6)179 (9)
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H9N2O4+·I3·C7H8N2O4
Mr750.02
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)22.260 (3), 10.1973 (17), 10.1077 (17)
β (°) 92.209 (2)
V3)2292.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)4.14
Crystal size (mm)0.49 × 0.44 × 0.40
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.237, 0.289
No. of measured, independent and
observed [I > 2σ(I)] reflections
6257, 2248, 1702
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.112, 1.03
No. of reflections2248
No. of parameters140
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.84, 0.99

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O1i0.81 (8)1.80 (8)2.591 (6)166 (9)
O2—H2O···O2ii1.224 (4)1.224 (4)2.449 (6)179 (9)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1/2.
 

Acknowledgements

The authors thank the University of Jinan (B0604) for support of this work.

References

First citationBarczynski, P., Komasa, A., Ratajczak-Sitarz, M., Katrusiak, A., Huczynski, A. & Brzezinski, B. (2008). J. Mol. Struct., 876, 170–176.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFei, Z. F., Zhao, D. B., Geldbach, T. J., Scopelliti, R. & Dyson, P. J. (2004). Chem. Eur. J. 10, 4886–4893.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKratochvíl, B., Ondráček, J., Velíšek, J. & Hašek, J. (1988). Acta Cryst. C44, 1579–1582.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds