organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1923-o1924

Methyl 5-phenyl-1,2,3,4,4a,5,5a,13c-octa­hydro-6H-benzo[f]chromeno[3,4-b]indolizine-5a-carboxyl­ate

aDepartment of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, India, bDepartment of Physics, SRM University, Ramapuram Campus, Chennai 600 089, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600025, India
*Correspondence e-mail: sudharose18@gmail.com

(Received 29 June 2009; accepted 8 July 2009; online 18 July 2009)

In the title compound, C27H27NO3, the pyrrolidine ring exhibits a twist conformation and the piperidine ring exhibits a chair conformation. The pyrrolidine ring makes dihedral angles of 54.47 (5), 51.50 (5) and 73.37 (6)° with the napthalene ring system and the tetra­hydro­pyran and phenyl rings, respectively. The structure is stabilized by intra­molecular C—H⋯O and C—H⋯N inter­actions.

Related literature

For general background to the applications and biological activity of indolizine derivatives, see: Gubin et al. (1992[Gubin, J., Lucchetti, J., Mahaux, J., Nisato, D., Rosseels, G., Clinet, M., Polster, P. & Chatelain, P. (1992). J. Med. Chem. 35, 981-988.]); Gupta et al. (2003[Gupta, S. P., Mathur, A. N., Nagappa, A. N., Kumar, D. & Kumaran, S. (2003). Eur. J. Med. Chem. 38, 867-873.]); Poty et al. (1994[Poty, C., Gibon, V., Evrard, G., Norberg, B., Vercauteren, D. P., Gubin, J., Chatelain, P. & Durant, F. (1994). Eur. J. Med. Chem. 29, 911-923.]); Hema et al. (2003[Hema, R., Parthasarathi, V., Sarkunam, K., Nallu, M. & Linden, A. (2003). Acta Cryst. C59, o703-o705.]); Malonne et al. (1998[Malonne, H., Hanuise, J. & Fontaine, J. (1998). Pharm. Pharmacol. Commun. 4, 241-242.]); Medda et al. (2003[Medda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123-128.]). For puckering parameters, see: Cremer and Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C27H27NO3

  • Mr = 413.50

  • Triclinic, [P \overline 1]

  • a = 9.4201 (3) Å

  • b = 10.6752 (3) Å

  • c = 11.0761 (3) Å

  • α = 78.262 (2)°

  • β = 77.911 (2)°

  • γ = 87.346 (2)°

  • V = 1066.34 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.988

  • 22685 measured reflections

  • 4641 independent reflections

  • 3461 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.122

  • S = 1.00

  • 4641 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O3 0.98 2.47 2.8240 (19) 101
C19—H19B⋯N1 0.97 2.55 2.885 (2) 100

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: APEX2 and SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Indolizines, the nitrogen containing heterocyclic systems, are widely distributed in nature; in particular, indolizine derivatives are an important class of heterocyclic bioactive compounds with a wide range of applications, such as pharmaceutical drugs, potential central nervous system depressants, calcium entry blockers, cardiovascular agents, spectral sensitizers and novel dyes(Gubin et al., 1992; Gupta et al., 2003; Poty et al., 1994; Hema et al., 2003).Moreover indolizine derivatives have been found to possess a variety of biological activities such as antiinflammatory (Malonne et al., 1998), antiviral (Medda et al., 2003).

Fig 1 shows the ORTEP plot of compound (I). Bond lengths and angles are comparable with other reported values.

In the molecule the pyrrolidine ring N1/C5/C6/C7/C8 exhibits twist conformation with assymetry parameters (Nardelli, 1983) ΔCs(N1) =23.66 (1)/ (C8) = 14.95 (1) and with the puckering parameters (Cremer and Pople, 1975) q2 = 0.4749 (1)Å and ϕ2 = 155.74 (2)°. The six membered ring N1/C1—C5 exhibits chair conformation with assymetry parameters ΔCs(N1) = 2.78 (1)/(C3) = 2.78 (1) and with the puckering parameters Q = 0.5788 (2) Å, Θ = 175.62 (2)° and ϕ = 145 (2)°. The sum of bond angles around N1 [331.99 (3)°] indicates sp3 hybridization. The pyrrolidine ring makes dihedral angles of 54.47 (5)°, 51.50 (5)° and 73.37 (6)° with the napthalene,tetrahydro pyran and phenyl rings respectively. The napthalene and tetrahydro pyran rings are almost planar with each other with a dihedral angle of 8.88 (4)°,

In the crystal packing, atom O3 is involved in intramolecular C - H···O interactions and atom N1 contributes to C - H···N intramolecular interactions.

Related literature top

For general background to the applications and biological activity of indolizine derivatives, see: Gubin et al. (1992); Gupta et al. (2003); Poty et al. (1994); Hema et al. (2003); Malonne et al. (1998); Medda et al. (2003). For puckering parameters, see: Cremer and Pople (1975). For asymmetry parameters, see: Nardelli (1983).

Experimental top

A mixture of (Z)-methyl 2-(1-formylnaphthalen-2-yloxy)-3-p-tolylacrylate and pipecolinic acid were refluxed in benzene for 20 h and the solvent was removed under reduced pressure. The crude product was subjected to column chromatography to get the pure product. The product was recrystallized from dry benzene by slow evaporation.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C–H = 0.93 or 0.96 Å and Uĩso~(H)= 1.2–1.5U~eq~(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: APEX2 and SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of the molecules viewed along b axis.
Methyl 5-phenyl-1,2,3,4,4a,5,5a,13c-octahydro-6H- benzo[f]chromeno[3,4-b]indolizine-5a-carboxylate top
Crystal data top
C27H27NO3Z = 2
Mr = 413.50F(000) = 440
Triclinic, P1Dx = 1.288 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4201 (3) ÅCell parameters from 22685 reflections
b = 10.6752 (3) Åθ = 2.0–27.0°
c = 11.0761 (3) ŵ = 0.08 mm1
α = 78.262 (2)°T = 293 K
β = 77.911 (2)°Needle, colourless
γ = 87.346 (2)°0.30 × 0.20 × 0.15 mm
V = 1066.34 (5) Å3
Data collection top
Bruker Kappa APEXII
diffractometer
4641 independent reflections
Radiation source: fine-focus sealed tube3461 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and ϕ scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1112
Tmin = 0.975, Tmax = 0.988k = 1313
22685 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0534P)2 + 0.3168P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4641 reflectionsΔρmax = 0.34 e Å3
281 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (2)
Crystal data top
C27H27NO3γ = 87.346 (2)°
Mr = 413.50V = 1066.34 (5) Å3
Triclinic, P1Z = 2
a = 9.4201 (3) ÅMo Kα radiation
b = 10.6752 (3) ŵ = 0.08 mm1
c = 11.0761 (3) ÅT = 293 K
α = 78.262 (2)°0.30 × 0.20 × 0.15 mm
β = 77.911 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
4641 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3461 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.988Rint = 0.026
22685 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.00Δρmax = 0.34 e Å3
4641 reflectionsΔρmin = 0.23 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.54853 (15)0.76212 (14)0.13837 (13)0.0396 (3)
H1A0.48980.71710.21650.047*
H1B0.54540.85270.14030.047*
C20.70388 (16)0.71426 (15)0.12642 (15)0.0453 (4)
H2A0.70520.62210.13430.054*
H2B0.74390.73390.19430.054*
C30.79742 (17)0.77508 (18)0.00095 (16)0.0540 (4)
H3A0.89300.73570.00770.065*
H3B0.80890.86550.00160.065*
C40.72958 (17)0.75893 (18)0.10770 (16)0.0504 (4)
H4A0.78540.80560.18640.060*
H4B0.72950.66920.11250.060*
C50.57534 (15)0.80960 (13)0.08654 (13)0.0366 (3)
H50.58120.89870.07800.044*
C60.47933 (16)0.80945 (13)0.18463 (13)0.0378 (3)
H60.46430.89960.22060.045*
C70.32917 (15)0.76056 (13)0.10062 (13)0.0365 (3)
C80.33931 (14)0.78431 (12)0.02922 (13)0.0340 (3)
H80.33130.87620.02880.041*
C90.22386 (15)0.71384 (13)0.13304 (13)0.0376 (3)
C100.17673 (15)0.75355 (14)0.25133 (14)0.0412 (3)
C110.23444 (18)0.86035 (16)0.28129 (15)0.0476 (4)
H110.30680.90820.22200.057*
C120.1870 (2)0.8954 (2)0.39497 (17)0.0612 (5)
H120.22750.96610.41180.073*
C130.0784 (2)0.8262 (2)0.48593 (17)0.0714 (6)
H130.04780.84950.56380.086*
C140.0178 (2)0.7247 (2)0.46007 (17)0.0658 (5)
H140.05580.67970.52050.079*
C150.06357 (17)0.68546 (16)0.34362 (15)0.0501 (4)
C160.00152 (18)0.58123 (17)0.31539 (17)0.0572 (5)
H160.07480.53570.37580.069*
C170.04018 (17)0.54627 (16)0.20290 (18)0.0540 (4)
H170.00500.47820.18570.065*
C180.15284 (16)0.61359 (14)0.11133 (15)0.0431 (4)
C190.30894 (17)0.61779 (14)0.08800 (15)0.0441 (4)
H19A0.30440.60000.16960.053*
H19B0.39210.57240.06120.053*
C200.53277 (16)0.74536 (14)0.29578 (14)0.0413 (3)
C210.59051 (17)0.62247 (15)0.28796 (15)0.0478 (4)
H210.60210.57540.21020.057*
C220.63086 (19)0.56903 (18)0.39354 (18)0.0571 (4)
H220.66910.48660.38630.069*
C230.6149 (2)0.6367 (2)0.50911 (18)0.0688 (5)
H230.64150.60040.58010.083*
C240.5594 (2)0.7582 (2)0.51919 (17)0.0750 (6)
H240.54860.80480.59740.090*
C250.5192 (2)0.81199 (18)0.41372 (15)0.0589 (5)
H250.48230.89490.42220.071*
C260.20768 (16)0.83093 (14)0.15768 (14)0.0420 (4)
C270.0803 (2)1.02515 (18)0.1933 (2)0.0728 (6)
H27A0.07371.10750.17030.109*
H27B0.01260.98390.16560.109*
H27C0.10931.03550.28320.109*
N10.49017 (12)0.74134 (10)0.03267 (10)0.0349 (3)
O10.17989 (12)0.57199 (10)0.00045 (11)0.0524 (3)
O20.13962 (15)0.78741 (13)0.21840 (14)0.0738 (4)
O30.18643 (13)0.94760 (11)0.13447 (13)0.0610 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0406 (8)0.0426 (8)0.0360 (8)0.0003 (6)0.0123 (6)0.0045 (6)
C20.0417 (8)0.0485 (8)0.0495 (9)0.0022 (7)0.0186 (7)0.0092 (7)
C30.0359 (8)0.0718 (11)0.0571 (11)0.0019 (8)0.0116 (7)0.0172 (9)
C40.0384 (8)0.0672 (10)0.0466 (9)0.0003 (7)0.0068 (7)0.0153 (8)
C50.0401 (8)0.0355 (7)0.0331 (7)0.0035 (6)0.0068 (6)0.0042 (6)
C60.0427 (8)0.0346 (7)0.0344 (8)0.0016 (6)0.0092 (6)0.0020 (6)
C70.0380 (7)0.0355 (7)0.0368 (8)0.0032 (6)0.0112 (6)0.0062 (6)
C80.0354 (7)0.0320 (6)0.0348 (7)0.0028 (5)0.0116 (6)0.0035 (5)
C90.0332 (7)0.0377 (7)0.0384 (8)0.0052 (6)0.0093 (6)0.0010 (6)
C100.0353 (7)0.0467 (8)0.0377 (8)0.0105 (6)0.0105 (6)0.0016 (6)
C110.0452 (9)0.0583 (9)0.0393 (8)0.0089 (7)0.0116 (7)0.0083 (7)
C120.0594 (11)0.0808 (13)0.0485 (10)0.0128 (9)0.0170 (9)0.0209 (9)
C130.0698 (13)0.1044 (17)0.0372 (10)0.0179 (12)0.0085 (9)0.0145 (10)
C140.0548 (11)0.0877 (14)0.0406 (10)0.0156 (10)0.0001 (8)0.0062 (9)
C150.0393 (8)0.0583 (10)0.0431 (9)0.0113 (7)0.0065 (7)0.0075 (7)
C160.0392 (9)0.0582 (10)0.0591 (11)0.0025 (8)0.0005 (8)0.0119 (8)
C170.0380 (8)0.0464 (9)0.0707 (12)0.0031 (7)0.0078 (8)0.0018 (8)
C180.0356 (7)0.0408 (8)0.0492 (9)0.0031 (6)0.0088 (7)0.0013 (7)
C190.0437 (8)0.0409 (8)0.0480 (9)0.0014 (6)0.0076 (7)0.0113 (7)
C200.0406 (8)0.0486 (8)0.0342 (8)0.0004 (6)0.0088 (6)0.0058 (6)
C210.0476 (9)0.0520 (9)0.0443 (9)0.0055 (7)0.0102 (7)0.0111 (7)
C220.0482 (9)0.0654 (11)0.0605 (11)0.0050 (8)0.0059 (8)0.0255 (9)
C230.0632 (12)0.0998 (16)0.0486 (11)0.0020 (11)0.0046 (9)0.0338 (11)
C240.0890 (15)0.1004 (16)0.0344 (10)0.0088 (13)0.0153 (10)0.0098 (10)
C250.0689 (12)0.0660 (11)0.0385 (9)0.0091 (9)0.0128 (8)0.0031 (8)
C260.0432 (8)0.0482 (8)0.0380 (8)0.0029 (7)0.0154 (7)0.0098 (6)
C270.0742 (13)0.0566 (11)0.0990 (16)0.0198 (9)0.0548 (12)0.0080 (10)
N10.0328 (6)0.0373 (6)0.0334 (6)0.0007 (5)0.0090 (5)0.0022 (5)
O10.0482 (6)0.0477 (6)0.0609 (7)0.0112 (5)0.0050 (5)0.0140 (5)
O20.0823 (10)0.0762 (9)0.0850 (10)0.0176 (7)0.0542 (8)0.0328 (8)
O30.0680 (8)0.0456 (6)0.0851 (9)0.0183 (5)0.0509 (7)0.0167 (6)
Geometric parameters (Å, º) top
C1—N11.4521 (18)C12—H120.9300
C1—C21.5157 (19)C13—C141.355 (3)
C1—H1A0.9700C13—H130.9300
C1—H1B0.9700C14—C151.412 (3)
C2—C31.517 (2)C14—H140.9300
C2—H2A0.9700C15—C161.413 (3)
C2—H2B0.9700C16—C171.348 (3)
C3—C41.518 (2)C16—H160.9300
C3—H3A0.9700C17—C181.412 (2)
C3—H3B0.9700C17—H170.9300
C4—C51.515 (2)C18—O11.3604 (19)
C4—H4A0.9700C19—O11.4276 (18)
C4—H4B0.9700C19—H19A0.9700
C5—N11.4618 (17)C19—H19B0.9700
C5—C61.553 (2)C20—C251.383 (2)
C5—H50.9800C20—C211.390 (2)
C6—C201.5128 (19)C21—C221.379 (2)
C6—C71.568 (2)C21—H210.9300
C6—H60.9800C22—C231.370 (3)
C7—C261.5178 (19)C22—H220.9300
C7—C191.5191 (19)C23—C241.368 (3)
C7—C81.5328 (19)C23—H230.9300
C8—N11.4788 (16)C24—C251.380 (3)
C8—C91.5070 (19)C24—H240.9300
C8—H80.9800C25—H250.9300
C9—C181.375 (2)C26—O21.1892 (18)
C9—C101.435 (2)C26—O31.3203 (18)
C10—C111.412 (2)C27—O31.4445 (18)
C10—C151.422 (2)C27—H27A0.9600
C11—C121.366 (2)C27—H27B0.9600
C11—H110.9300C27—H27C0.9600
C12—C131.393 (3)
N1—C1—C2110.04 (12)C11—C12—H12119.7
N1—C1—H1A109.7C13—C12—H12119.7
C2—C1—H1A109.7C14—C13—C12119.46 (18)
N1—C1—H1B109.7C14—C13—H13120.3
C2—C1—H1B109.7C12—C13—H13120.3
H1A—C1—H1B108.2C13—C14—C15121.63 (18)
C1—C2—C3111.46 (13)C13—C14—H14119.2
C1—C2—H2A109.3C15—C14—H14119.2
C3—C2—H2A109.3C14—C15—C16121.75 (17)
C1—C2—H2B109.3C14—C15—C10119.33 (18)
C3—C2—H2B109.3C16—C15—C10118.91 (15)
H2A—C2—H2B108.0C17—C16—C15121.48 (16)
C2—C3—C4110.99 (14)C17—C16—H16119.3
C2—C3—H3A109.4C15—C16—H16119.3
C4—C3—H3A109.4C16—C17—C18119.65 (17)
C2—C3—H3B109.4C16—C17—H17120.2
C4—C3—H3B109.4C18—C17—H17120.2
H3A—C3—H3B108.0O1—C18—C9124.15 (14)
C5—C4—C3108.85 (13)O1—C18—C17113.58 (14)
C5—C4—H4A109.9C9—C18—C17122.24 (15)
C3—C4—H4A109.9O1—C19—C7111.98 (12)
C5—C4—H4B109.9O1—C19—H19A109.2
C3—C4—H4B109.9C7—C19—H19A109.2
H4A—C4—H4B108.3O1—C19—H19B109.2
N1—C5—C4110.61 (12)C7—C19—H19B109.2
N1—C5—C6104.91 (11)H19A—C19—H19B107.9
C4—C5—C6120.75 (12)C25—C20—C21117.25 (15)
N1—C5—H5106.6C25—C20—C6117.84 (14)
C4—C5—H5106.6C21—C20—C6124.88 (13)
C6—C5—H5106.6C22—C21—C20121.16 (16)
C20—C6—C5120.22 (12)C22—C21—H21119.4
C20—C6—C7115.04 (12)C20—C21—H21119.4
C5—C6—C7103.10 (11)C23—C22—C21120.37 (17)
C20—C6—H6105.8C23—C22—H22119.8
C5—C6—H6105.8C21—C22—H22119.8
C7—C6—H6105.8C24—C23—C22119.46 (17)
C26—C7—C19108.51 (12)C24—C23—H23120.3
C26—C7—C8115.68 (11)C22—C23—H23120.3
C19—C7—C8107.65 (11)C23—C24—C25120.25 (18)
C26—C7—C6109.40 (11)C23—C24—H24119.9
C19—C7—C6112.66 (11)C25—C24—H24119.9
C8—C7—C6102.97 (11)C24—C25—C20121.49 (18)
N1—C8—C9115.59 (10)C24—C25—H25119.3
N1—C8—C799.80 (10)C20—C25—H25119.3
C9—C8—C7112.33 (12)O2—C26—O3123.07 (14)
N1—C8—H8109.6O2—C26—C7124.22 (14)
C9—C8—H8109.6O3—C26—C7112.70 (12)
C7—C8—H8109.6O3—C27—H27A109.5
C18—C9—C10118.14 (13)O3—C27—H27B109.5
C18—C9—C8119.29 (13)H27A—C27—H27B109.5
C10—C9—C8122.39 (13)O3—C27—H27C109.5
C11—C10—C15117.06 (15)H27A—C27—H27C109.5
C11—C10—C9123.40 (14)H27B—C27—H27C109.5
C15—C10—C9119.52 (15)C1—N1—C5110.91 (11)
C12—C11—C10121.81 (17)C1—N1—C8116.93 (11)
C12—C11—H11119.1C5—N1—C8104.15 (10)
C10—C11—H11119.1C18—O1—C19116.88 (12)
C11—C12—C13120.7 (2)C26—O3—C27116.46 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O30.982.472.8240 (19)101
C19—H19B···N10.972.552.885 (2)100

Experimental details

Crystal data
Chemical formulaC27H27NO3
Mr413.50
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.4201 (3), 10.6752 (3), 11.0761 (3)
α, β, γ (°)78.262 (2), 77.911 (2), 87.346 (2)
V3)1066.34 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.975, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
22685, 4641, 3461
Rint0.026
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.122, 1.00
No. of reflections4641
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.23

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O30.982.472.8240 (19)101
C19—H19B···N10.972.552.885 (2)100
 

Acknowledgements

ETSK thanks Professors M. N. Ponnusamy and D. Velmurugan, Department of Crystallography and Biophysics, University of Madras, India, for their guidance and valuable suggestions. ETSK also thanks Dr Babu Varghese, SAIF, IIT-Madras and SRM Management, for their support.

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGubin, J., Lucchetti, J., Mahaux, J., Nisato, D., Rosseels, G., Clinet, M., Polster, P. & Chatelain, P. (1992). J. Med. Chem. 35, 981–988.  CrossRef PubMed CAS Web of Science Google Scholar
First citationGupta, S. P., Mathur, A. N., Nagappa, A. N., Kumar, D. & Kumaran, S. (2003). Eur. J. Med. Chem. 38, 867–873.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHema, R., Parthasarathi, V., Sarkunam, K., Nallu, M. & Linden, A. (2003). Acta Cryst. C59, o703–o705.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMalonne, H., Hanuise, J. & Fontaine, J. (1998). Pharm. Pharmacol. Commun. 4, 241–242.  CAS Google Scholar
First citationMedda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123–128.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPoty, C., Gibon, V., Evrard, G., Norberg, B., Vercauteren, D. P., Gubin, J., Chatelain, P. & Durant, F. (1994). Eur. J. Med. Chem. 29, 911–923.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1923-o1924
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds