organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Acetyl-c-3,t-3-di­methyl-r-2,c-6-di­phenyl­piperidin-4-one

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 30 June 2009; accepted 16 July 2009; online 25 July 2009)

In the title compound, C21H23NO2, the piperidine ring adopts a distorted boat conformation. The two phenyl rings form dihedral angles of 64.6 (1) and 87.8 (1)° with the best plane through the piperidine ring. The crystal packing is governed by inter­molecular C—H⋯O inter­actions.

Related literature

For the biological activity of piperidine derivatives, see: Ponnuswamy et al. (2002[Ponnuswamy, S., Venkatraj, M., Jeyaraman, R., Suresh Kumar, M., Kumaran, D. & Ponnuswamy, M. N. (2002). Indian J. Chem. Sect. B, 41, 614-627.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C21H23NO2

  • Mr = 321.40

  • Monoclinic, P 21

  • a = 7.5622 (4) Å

  • b = 10.6369 (5) Å

  • c = 11.1497 (7) Å

  • β = 100.373 (3)°

  • V = 882.21 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.985

  • 12819 measured reflections

  • 3457 independent reflections

  • 2400 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.145

  • S = 1.02

  • 3457 reflections

  • 220 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O2i 0.96 2.53 3.442 (3) 159
C14—H14⋯O1ii 0.93 2.39 3.124 (3) 135
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z]; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The design and synthesis of conformationally anchored molecules are important due its potency and selectivity for designing drugs. The piperidin-4-ones are one such class of compounds to be investigated to understand the stereodynamics and other structural features (Ponnuswamy et al., 2002). In view of these importance and to ascertain the molecular conformation, crystallographic study of the title compound has been carried out.

The ORTEP diagram of the title compound is shown in Fig.1. The piperidine ring adopts a distorted boat conformation. The puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) for this ring are q2 = 0.592 (2) Å, q3 = 0.116 (2) Å, π = 284.8 (2)° and Δs(C3) =Δs(C6)= 15.2 (2)°. The sum of the angles at N1 (359.03°) is in accrdance with sp2 hybridization. The two phenyl rings are twisted away from the best plane of the pyridine ring by 64.6 (1)° and 87.8 (1)°, respectively.

The crystal packing is controlled by C—H···O types of intra and intermolecular interactions in addition to van der Waals forces. Atom C8 at (x, y, z) donates a proton to O2 (1 - x,1/2 + y,-z), which forms a C(8) (Bernstein, et al., 1995) zigzag chain running along b axis shown in Fig. 2.

Related literature top

For the biological activity of piperidine derivatives, see: Ponnuswamy et al. (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

A mixture of c-3,t-3-dimethyl-r-2,c-6-diphenylpiperidin-4-one (1.4 g, 5 mmol), acetyl chloride (0.7 ml, 10 mmol) and triethylamine (2 ml, 14.4 mmol) in anhydrous benzene (50 ml) was stirred at room temparature for 7 h. The precipitated ammonium salt was filtered off and the filtrate was washed with water (4x10ml). The resulting pasty mass was purified and crystallized from benzene and pet-ether (60–80°C) in the ratio of 95: 5.

Refinement top

In the absence of anomalous scatterers Friedel pairs were merged and the absolute configuration was arbitrarily set. All H atoms were positioned geometrically (C—H=0.93–0.98 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2 Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule with displacement ellipsoids at the 50% probability level. The H atoms are omitted for clarity.
[Figure 2] Fig. 2. The crystal packing viewed down a axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
1-Acetyl-c-3,t-3-dimethyl-r-2,c-6- diphenylpiperidin-4-one top
Crystal data top
C21H23NO2F(000) = 344
Mr = 321.40Dx = 1.210 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3546 reflections
a = 7.5622 (4) Åθ = 1.9–34.8°
b = 10.6369 (5) ŵ = 0.08 mm1
c = 11.1497 (7) ÅT = 293 K
β = 100.373 (3)°Block, colorless
V = 882.21 (8) Å30.30 × 0.25 × 0.20 mm
Z = 2
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3457 independent reflections
Radiation source: fine-focus sealed tube2400 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω and ϕ scansθmax = 34.8°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1111
Tmin = 0.977, Tmax = 0.985k = 1711
12819 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0853P)2]
where P = (Fo2 + 2Fc2)/3
3457 reflections(Δ/σ)max = 0.012
220 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C21H23NO2V = 882.21 (8) Å3
Mr = 321.40Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.5622 (4) ŵ = 0.08 mm1
b = 10.6369 (5) ÅT = 293 K
c = 11.1497 (7) Å0.30 × 0.25 × 0.20 mm
β = 100.373 (3)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3457 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2400 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.985Rint = 0.042
12819 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.145H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
3457 reflectionsΔρmin = 0.17 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0626 (2)0.57532 (19)0.23859 (18)0.0680 (5)
O20.4399 (3)0.3113 (2)0.07440 (15)0.0763 (5)
N10.7953 (2)0.47573 (14)0.20329 (14)0.0393 (3)
C20.6053 (2)0.47297 (17)0.21592 (15)0.0392 (3)
H20.55380.55590.19280.047*
C30.4980 (3)0.3754 (2)0.13125 (18)0.0493 (4)
H3A0.50870.29520.17350.059*
H3B0.37220.39930.11870.059*
C40.5484 (3)0.3556 (2)0.00799 (18)0.0507 (5)
C50.7355 (3)0.3903 (2)0.00532 (17)0.0492 (4)
C60.8617 (3)0.38858 (19)0.11952 (16)0.0414 (4)
H60.97590.42400.10550.050*
C70.9060 (3)0.57188 (19)0.25158 (18)0.0464 (4)
C80.8306 (4)0.6735 (2)0.3207 (2)0.0600 (5)
H8A0.73470.71550.26750.090*
H8B0.92340.73300.35090.090*
H8C0.78520.63710.38790.090*
C90.5778 (2)0.44554 (17)0.34515 (16)0.0406 (4)
C100.6819 (3)0.3583 (2)0.41885 (18)0.0508 (4)
H100.77590.31780.39120.061*
C110.6462 (4)0.3315 (2)0.5329 (2)0.0606 (6)
H110.71580.27260.58190.073*
C120.5085 (4)0.3913 (3)0.5744 (2)0.0670 (7)
H120.48510.37320.65170.080*
C130.4058 (4)0.4773 (3)0.5026 (3)0.0726 (7)
H130.31230.51750.53100.087*
C140.4399 (3)0.5051 (2)0.3878 (2)0.0571 (5)
H140.36960.56410.33930.069*
C150.7232 (4)0.5268 (2)0.0542 (2)0.0616 (6)
H15A0.66990.57950.00050.092*
H15B0.65050.52860.13410.092*
H15C0.84160.55710.05810.092*
C160.8096 (4)0.3069 (3)0.0963 (2)0.0699 (7)
H16A0.73730.31680.17580.105*
H16B0.80670.22060.07140.105*
H16C0.93130.33080.09880.105*
C170.9083 (2)0.26144 (18)0.17969 (16)0.0417 (4)
C180.8065 (3)0.1533 (2)0.1580 (2)0.0525 (5)
H180.70360.15380.09810.063*
C190.8543 (4)0.0441 (2)0.2235 (2)0.0634 (6)
H190.78350.02760.20770.076*
C201.0062 (4)0.0418 (2)0.3117 (2)0.0654 (6)
H201.03750.03090.35700.079*
C211.1104 (3)0.1459 (3)0.3327 (2)0.0600 (6)
H211.21490.14340.39120.072*
C221.0634 (3)0.2562 (2)0.26817 (18)0.0500 (4)
H221.13600.32700.28420.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0472 (8)0.0620 (10)0.0923 (12)0.0134 (8)0.0056 (8)0.0097 (9)
O20.0845 (12)0.0894 (13)0.0451 (9)0.0115 (11)0.0149 (8)0.0095 (9)
N10.0402 (7)0.0397 (7)0.0373 (7)0.0037 (6)0.0051 (6)0.0018 (6)
C20.0390 (8)0.0421 (8)0.0349 (8)0.0003 (7)0.0023 (6)0.0005 (6)
C30.0429 (9)0.0589 (12)0.0433 (10)0.0061 (8)0.0001 (7)0.0048 (8)
C40.0613 (12)0.0512 (10)0.0343 (9)0.0020 (9)0.0058 (8)0.0008 (7)
C50.0658 (12)0.0487 (10)0.0327 (8)0.0094 (9)0.0081 (8)0.0039 (7)
C60.0429 (8)0.0453 (9)0.0368 (8)0.0025 (7)0.0093 (7)0.0054 (7)
C70.0499 (10)0.0398 (9)0.0456 (9)0.0071 (8)0.0018 (8)0.0104 (7)
C80.0766 (14)0.0449 (11)0.0548 (12)0.0111 (10)0.0022 (10)0.0039 (9)
C90.0403 (8)0.0428 (9)0.0387 (8)0.0052 (7)0.0069 (7)0.0029 (7)
C100.0585 (11)0.0520 (10)0.0434 (10)0.0020 (9)0.0134 (8)0.0051 (8)
C110.0724 (14)0.0623 (13)0.0475 (11)0.0077 (11)0.0120 (10)0.0099 (10)
C120.0712 (14)0.0869 (17)0.0465 (11)0.0237 (13)0.0207 (11)0.0022 (11)
C130.0619 (13)0.0986 (19)0.0638 (15)0.0010 (15)0.0287 (12)0.0103 (14)
C140.0493 (10)0.0683 (14)0.0547 (12)0.0055 (10)0.0118 (9)0.0031 (10)
C150.0848 (16)0.0563 (12)0.0443 (11)0.0116 (11)0.0129 (11)0.0159 (9)
C160.0966 (19)0.0713 (14)0.0444 (12)0.0180 (14)0.0198 (12)0.0011 (11)
C170.0436 (9)0.0458 (9)0.0364 (8)0.0071 (8)0.0093 (7)0.0044 (7)
C180.0543 (11)0.0496 (10)0.0504 (11)0.0035 (9)0.0011 (9)0.0042 (8)
C190.0725 (14)0.0477 (12)0.0696 (15)0.0031 (11)0.0117 (12)0.0106 (10)
C200.0843 (16)0.0561 (13)0.0573 (13)0.0203 (12)0.0163 (12)0.0162 (10)
C210.0579 (12)0.0752 (15)0.0446 (11)0.0216 (11)0.0027 (9)0.0064 (10)
C220.0463 (10)0.0573 (11)0.0460 (10)0.0080 (9)0.0068 (8)0.0006 (9)
Geometric parameters (Å, º) top
O1—C71.219 (3)C11—C121.370 (4)
O2—C41.211 (3)C11—H110.9300
N1—C71.369 (2)C12—C131.362 (4)
N1—C61.467 (2)C12—H120.9300
N1—C21.469 (2)C13—C141.383 (4)
C2—C91.521 (2)C13—H130.9300
C2—C31.534 (3)C14—H140.9300
C2—H20.9800C15—H15A0.9600
C3—C41.506 (3)C15—H15B0.9600
C3—H3A0.9700C15—H15C0.9600
C3—H3B0.9700C16—H16A0.9600
C4—C51.495 (3)C16—H16B0.9600
C5—C161.528 (3)C16—H16C0.9600
C5—C61.540 (3)C17—C181.381 (3)
C5—C151.548 (3)C17—C221.391 (3)
C6—C171.523 (3)C18—C191.385 (3)
C6—H60.9800C18—H180.9300
C7—C81.499 (3)C19—C201.371 (4)
C8—H8A0.9600C19—H190.9300
C8—H8B0.9600C20—C211.355 (4)
C8—H8C0.9600C20—H200.9300
C9—C141.376 (3)C21—C221.389 (3)
C9—C101.387 (3)C21—H210.9300
C10—C111.376 (3)C22—H220.9300
C10—H100.9300
C7—N1—C6117.82 (15)C9—C10—H10120.0
C7—N1—C2121.12 (15)C12—C11—C10120.3 (2)
C6—N1—C2120.09 (15)C12—C11—H11119.9
N1—C2—C9113.43 (14)C10—C11—H11119.9
N1—C2—C3111.90 (14)C13—C12—C11120.0 (2)
C9—C2—C3107.80 (15)C13—C12—H12120.0
N1—C2—H2107.8C11—C12—H12120.0
C9—C2—H2107.8C12—C13—C14120.4 (2)
C3—C2—H2107.8C12—C13—H13119.8
C4—C3—C2117.60 (17)C14—C13—H13119.8
C4—C3—H3A107.9C9—C14—C13120.0 (2)
C2—C3—H3A107.9C9—C14—H14120.0
C4—C3—H3B107.9C13—C14—H14120.0
C2—C3—H3B107.9C5—C15—H15A109.5
H3A—C3—H3B107.2C5—C15—H15B109.5
O2—C4—C5123.0 (2)H15A—C15—H15B109.5
O2—C4—C3119.9 (2)C5—C15—H15C109.5
C5—C4—C3117.11 (17)H15A—C15—H15C109.5
C4—C5—C16112.9 (2)H15B—C15—H15C109.5
C4—C5—C6110.54 (15)C5—C16—H16A109.5
C16—C5—C6110.58 (18)C5—C16—H16B109.5
C4—C5—C15105.60 (19)H16A—C16—H16B109.5
C16—C5—C15108.50 (18)C5—C16—H16C109.5
C6—C5—C15108.51 (18)H16A—C16—H16C109.5
N1—C6—C17111.05 (14)H16B—C16—H16C109.5
N1—C6—C5109.90 (15)C18—C17—C22117.57 (18)
C17—C6—C5117.75 (17)C18—C17—C6125.84 (17)
N1—C6—H6105.7C22—C17—C6116.52 (18)
C17—C6—H6105.7C17—C18—C19121.5 (2)
C5—C6—H6105.7C17—C18—H18119.3
O1—C7—N1120.9 (2)C19—C18—H18119.3
O1—C7—C8120.5 (2)C20—C19—C18119.9 (2)
N1—C7—C8118.58 (18)C20—C19—H19120.1
C7—C8—H8A109.5C18—C19—H19120.1
C7—C8—H8B109.5C21—C20—C19119.7 (2)
H8A—C8—H8B109.5C21—C20—H20120.1
C7—C8—H8C109.5C19—C20—H20120.1
H8A—C8—H8C109.5C20—C21—C22121.0 (2)
H8B—C8—H8C109.5C20—C21—H21119.5
C14—C9—C10119.22 (17)C22—C21—H21119.5
C14—C9—C2118.71 (18)C21—C22—C17120.4 (2)
C10—C9—C2122.00 (16)C21—C22—H22119.8
C11—C10—C9120.1 (2)C17—C22—H22119.8
C11—C10—H10120.0
C7—N1—C2—C970.9 (2)C6—N1—C7—C8170.20 (17)
C6—N1—C2—C9120.55 (17)C2—N1—C7—C81.4 (3)
C7—N1—C2—C3166.82 (16)N1—C2—C9—C14143.64 (19)
C6—N1—C2—C31.7 (2)C3—C2—C9—C1491.9 (2)
N1—C2—C3—C435.4 (2)N1—C2—C9—C1039.4 (2)
C9—C2—C3—C4160.78 (17)C3—C2—C9—C1085.1 (2)
C2—C3—C4—O2157.6 (2)C14—C9—C10—C110.4 (3)
C2—C3—C4—C523.6 (3)C2—C9—C10—C11176.5 (2)
O2—C4—C5—C1631.1 (3)C9—C10—C11—C120.4 (4)
C3—C4—C5—C16147.7 (2)C10—C11—C12—C130.3 (4)
O2—C4—C5—C6155.5 (2)C11—C12—C13—C140.2 (4)
C3—C4—C5—C623.3 (3)C10—C9—C14—C130.3 (3)
O2—C4—C5—C1587.3 (3)C2—C9—C14—C13176.7 (2)
C3—C4—C5—C1593.9 (2)C12—C13—C14—C90.2 (4)
C7—N1—C6—C17107.34 (18)N1—C6—C17—C18104.0 (2)
C2—N1—C6—C1783.8 (2)C5—C6—C17—C1823.9 (3)
C7—N1—C6—C5120.60 (18)N1—C6—C17—C2273.0 (2)
C2—N1—C6—C548.3 (2)C5—C6—C17—C22159.13 (16)
C4—C5—C6—N158.1 (2)C22—C17—C18—C191.4 (3)
C16—C5—C6—N1176.13 (18)C6—C17—C18—C19175.6 (2)
C15—C5—C6—N157.2 (2)C17—C18—C19—C200.3 (4)
C4—C5—C6—C1770.3 (2)C18—C19—C20—C211.2 (4)
C16—C5—C6—C1755.4 (2)C19—C20—C21—C221.6 (4)
C15—C5—C6—C17174.30 (17)C20—C21—C22—C170.5 (3)
C6—N1—C7—O19.6 (3)C18—C17—C22—C211.0 (3)
C2—N1—C7—O1178.35 (18)C6—C17—C22—C21176.26 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.982.212.700 (3)110
C8—H8A···O2i0.962.533.442 (3)159
C14—H14···O1ii0.932.393.124 (3)135
Symmetry codes: (i) x+1, y+1/2, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC21H23NO2
Mr321.40
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)7.5622 (4), 10.6369 (5), 11.1497 (7)
β (°) 100.373 (3)
V3)882.21 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.977, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
12819, 3457, 2400
Rint0.042
(sin θ/λ)max1)0.803
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.145, 1.02
No. of reflections3457
No. of parameters220
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.17

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.982.212.700 (3)109.7
C8—H8A···O2i0.962.533.442 (3)159.0
C14—H14···O1ii0.932.393.124 (3)135.3
Symmetry codes: (i) x+1, y+1/2, z; (ii) x1, y, z.
 

Acknowledgements

SA thanks Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPonnuswamy, S., Venkatraj, M., Jeyaraman, R., Suresh Kumar, M., Kumaran, D. & Ponnuswamy, M. N. (2002). Indian J. Chem. Sect. B, 41, 614–627.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds