organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4S,5S)-2-(4-Chloro­phen­yl)-1,3-dioxolane-4,5-dicarboxamide

aSchool of Pharmaceutical Sciences, Nanjing University of Technology, Xinmofan Road No.5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: dcwang@njut.edu.cn

(Received 13 June 2009; accepted 13 July 2009; online 22 July 2009)

The title compound, C11H11ClN2O4, is an important inter­mediate for the preparation of platinum anti­cancer drugs. The dioxolane ring adopts a twist conformation with an equatorially attached chloro­phenyl substituent. In the crystal structure, mol­ecules are linked into a two-dimensional network parallel to (001) by N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For general background to platinum anti­cancer drugs, see: Kim et al. (1994[Kim, D. K., Kim, G., Gam, J., Cho, Y. B., Kim, H. T., Tai, J. H., Kim, K. H., Hong, W. S. & Park, J. G. (1994). J. Med. Chem. 37, 1471-1485.]); Pandey et al. (1997[Pandey, G., Hajara, S., Ghorai, M. K. & Kumar, K. R. (1997). J. Org. Chem. 62, 5966-5973.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11ClN2O4

  • Mr = 270.67

  • Monoclinic, P 21

  • a = 9.2780 (19) Å

  • b = 4.7600 (10) Å

  • c = 13.245 (3) Å

  • β = 93.15 (3)°

  • V = 584.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.936, Tmax = 0.967

  • 2248 measured reflections

  • 2113 independent reflections

  • 1694 reflections with I > 2σ(I)

  • Rint = 0.027

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.122

  • S = 1.07

  • 2113 reflections

  • 179 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 916 Friedel pairs

  • Flack parameter: 0.07 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.79 (4) 2.20 (4) 2.979 (5) 166 (4)
N2—H2A⋯O3ii 0.87 (4) 2.42 (3) 3.173 (5) 145 (3)
N2—H2B⋯O4iii 0.81 (6) 2.26 (6) 3.012 (4) 155 (4)
C9—H9⋯O4iii 0.98 2.31 3.075 (4) 135
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) [-x, y+{\script{1\over 2}}, -z+1]; (iii) x, y-1, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Platinum antitumor drug is one kind of the most effective anticancer agents currently available. (2S,3S)-Diethyl 2,3-O-alkyltartrate analogues are starting materials for the syntheses of platinum complexes with antitumor activity (Kim et al.,1994), and are also important intermediates in organic syntheses (Pandey et al., 1997). As part of our studies on the syntheses and characterizations of these compounds, we have synthesized the title compound and reported herein its crystal structure.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The dioxolane ring adopts a twist conformation and the chlorophenyl unit is equatorially attached.

In the crystal structure, N—H···O and C—H···O intermolecular hydrogen bonds (Table 1) link the molecules to form a two-dimensional network (Fig. 2) parallel to the (001).

Related literature top

For bond-length data, see: Allen et al. (1987). For general background to platinum anticancer drugs, see: Kim et al. (1994); Pandey et al. (1997).

Experimental top

4-Chlorobenzaldehyde (278 mg, 1.98 mmol), (2S,3S)-diethyltartrate (378 mg,1.84 mmol) and cyclohexane (10 ml) were placed in a round-bottomed flask, and 4-methylbenzenesulfonic acid (30 mg) was added. The flask was fitted with a water-distributor. The mixture was heated under reflux for 3 h. The reaction mixture was cooled to room temperature, and then transfered into a separatory funnel, washed with water (200 ml) and extracted with acetate (200 ml). The organic phase was distilled under pressure, and the residual was dissolved in anhydrous ethanol (50 ml). Then, a current of dry ammonia was passed through the reaction mixture at room temperature for about 4 h. The reaction mixture was then added dropwise to a vigorously stirred water (600 ml). The resulting colourless precipitate was obtained by filtration and dried in vacuo (Kim et al., 1994). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution after two weeks.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and included in the refinement in riding motion approximation, with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
(4S,5S)-2-(4-Chlorophenyl)-1,3-dioxolane-4,5-dicarboxamide top
Crystal data top
C11H11ClN2O4F(000) = 280
Mr = 270.67Dx = 1.539 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 9.2780 (19) Åθ = 9–13°
b = 4.760 (1) ŵ = 0.34 mm1
c = 13.245 (3) ÅT = 293 K
β = 93.15 (3)°Block, colourless
V = 584.1 (2) Å30.20 × 0.20 × 0.10 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
1694 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 25.3°, θmin = 1.5°
ω/2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 55
Tmin = 0.936, Tmax = 0.967l = 1515
2248 measured reflections3 standard reflections every 200 reflections
2113 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.0558P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2113 reflectionsΔρmax = 0.20 e Å3
179 parametersΔρmin = 0.27 e Å3
1 restraintAbsolute structure: Flack (1983), 916 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (14)
Crystal data top
C11H11ClN2O4V = 584.1 (2) Å3
Mr = 270.67Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.2780 (19) ŵ = 0.34 mm1
b = 4.760 (1) ÅT = 293 K
c = 13.245 (3) Å0.20 × 0.20 × 0.10 mm
β = 93.15 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1694 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.027
Tmin = 0.936, Tmax = 0.9673 standard reflections every 200 reflections
2248 measured reflections intensity decay: 1%
2113 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122Δρmax = 0.20 e Å3
S = 1.07Δρmin = 0.27 e Å3
2113 reflectionsAbsolute structure: Flack (1983), 916 Friedel pairs
179 parametersAbsolute structure parameter: 0.07 (14)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.35368 (14)0.0236 (4)0.21514 (8)0.0925 (5)
O10.2854 (2)0.2859 (5)0.26692 (18)0.0475 (6)
O20.0917 (2)0.0071 (5)0.24181 (16)0.0461 (6)
O30.3515 (3)0.0218 (6)0.51614 (17)0.0568 (7)
O40.0323 (3)0.4727 (5)0.3827 (2)0.0657 (8)
N10.4522 (4)0.0804 (9)0.3700 (3)0.0597 (10)
H1A0.516 (4)0.168 (8)0.397 (3)0.038 (10)*
H1B0.451 (4)0.069 (10)0.305 (3)0.064 (13)*
N20.1472 (4)0.0634 (7)0.3925 (3)0.0458 (7)
H2A0.230 (4)0.139 (7)0.403 (2)0.034 (9)*
H2B0.140 (5)0.105 (12)0.399 (3)0.071 (15)*
C10.2948 (4)0.0470 (10)0.0955 (3)0.0573 (10)
C20.3508 (5)0.1037 (10)0.0134 (3)0.0675 (12)
H20.41790.24550.02240.081*
C30.3072 (4)0.0438 (10)0.0813 (3)0.0618 (10)
H30.34400.14760.13630.074*
C40.2085 (4)0.1701 (7)0.0964 (3)0.0467 (9)
C50.1527 (4)0.3126 (9)0.0133 (3)0.0614 (11)
H50.08520.45410.02160.074*
C60.1949 (5)0.2500 (11)0.0830 (3)0.0701 (12)
H60.15490.34680.13870.084*
C70.1632 (4)0.2384 (7)0.1998 (3)0.0471 (8)
H70.10020.40380.19760.057*
C80.2436 (3)0.2201 (7)0.3666 (2)0.0392 (7)
H80.22640.39350.40390.047*
C90.1005 (3)0.0548 (7)0.3490 (2)0.0378 (7)
H90.10640.12480.38520.045*
C100.0327 (3)0.2166 (7)0.3777 (3)0.0395 (8)
C110.3560 (3)0.0449 (8)0.4236 (2)0.0423 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1056 (9)0.1139 (10)0.0597 (6)0.0231 (10)0.0197 (6)0.0196 (7)
O10.0522 (13)0.0425 (14)0.0473 (13)0.0157 (11)0.0015 (11)0.0055 (11)
O20.0474 (12)0.0375 (13)0.0539 (13)0.0122 (12)0.0066 (10)0.0116 (12)
O30.0565 (14)0.0719 (19)0.0423 (13)0.0098 (15)0.0051 (11)0.0030 (14)
O40.0582 (15)0.0206 (12)0.120 (2)0.0031 (12)0.0207 (14)0.0055 (15)
N10.055 (2)0.074 (3)0.050 (2)0.0199 (19)0.0040 (17)0.0013 (18)
N20.0402 (17)0.0289 (17)0.069 (2)0.0016 (14)0.0126 (14)0.0046 (14)
C10.057 (2)0.064 (3)0.051 (2)0.019 (2)0.0029 (17)0.008 (2)
C20.071 (3)0.065 (3)0.066 (3)0.011 (2)0.003 (2)0.019 (2)
C30.078 (3)0.058 (2)0.048 (2)0.012 (2)0.0093 (18)0.003 (2)
C40.049 (2)0.0377 (19)0.053 (2)0.0036 (16)0.0039 (17)0.0016 (16)
C50.057 (2)0.061 (3)0.066 (3)0.009 (2)0.0015 (19)0.012 (2)
C60.073 (3)0.082 (3)0.055 (2)0.005 (3)0.006 (2)0.016 (2)
C70.049 (2)0.0352 (18)0.057 (2)0.0005 (17)0.0044 (17)0.0031 (16)
C80.0428 (18)0.0303 (17)0.0450 (18)0.0061 (15)0.0073 (15)0.0031 (14)
C90.0388 (16)0.0245 (15)0.0500 (19)0.0048 (14)0.0021 (14)0.0002 (13)
C100.0395 (17)0.0312 (19)0.0479 (19)0.0016 (15)0.0023 (15)0.0005 (15)
C110.0343 (16)0.045 (2)0.0475 (19)0.0100 (16)0.0032 (14)0.0074 (17)
Geometric parameters (Å, º) top
Cl1—C11.738 (4)C2—C31.370 (5)
O1—C71.420 (4)C2—H20.93
O1—C81.431 (4)C3—C41.391 (5)
O2—C71.415 (4)C3—H30.93
O2—C91.436 (4)C4—C51.370 (5)
O3—C111.233 (4)C4—C71.490 (5)
O4—C101.221 (4)C5—C61.387 (6)
N1—C111.313 (5)C5—H50.93
N1—H1A0.79 (4)C6—H60.93
N1—H1B0.86 (4)C7—H70.98
N2—C101.312 (5)C8—C111.506 (5)
N2—H2A0.86 (3)C8—C91.550 (4)
N2—H2B0.81 (6)C8—H80.98
C1—C61.355 (6)C9—C101.522 (4)
C1—C21.379 (6)C9—H90.98
C7—O1—C8107.2 (2)C5—C6—H6120.2
C7—O2—C9105.3 (2)O2—C7—O1104.7 (3)
C11—N1—H1A120 (3)O2—C7—C4110.7 (3)
C11—N1—H1B123 (3)O1—C7—C4110.8 (3)
H1A—N1—H1B117 (4)O2—C7—H7110.2
C10—N2—H2A122 (2)O1—C7—H7110.2
C10—N2—H2B121 (3)C4—C7—H7110.2
H2A—N2—H2B117 (4)O1—C8—C11111.6 (3)
C6—C1—C2120.4 (4)O1—C8—C9104.2 (2)
C6—C1—Cl1120.0 (3)C11—C8—C9111.0 (3)
C2—C1—Cl1119.6 (3)O1—C8—H8109.9
C3—C2—C1119.7 (4)C11—C8—H8109.9
C3—C2—H2120.1C9—C8—H8109.9
C1—C2—H2120.1O2—C9—C10108.9 (2)
C2—C3—C4121.0 (4)O2—C9—C8103.3 (2)
C2—C3—H3119.5C10—C9—C8114.0 (3)
C4—C3—H3119.5O2—C9—H9110.1
C5—C4—C3118.0 (4)C10—C9—H9110.1
C5—C4—C7121.2 (3)C8—C9—H9110.1
C3—C4—C7120.9 (3)O4—C10—N2123.2 (3)
C4—C5—C6121.3 (4)O4—C10—C9121.2 (3)
C4—C5—H5119.4N2—C10—C9115.5 (3)
C6—C5—H5119.4O3—C11—N1123.9 (3)
C1—C6—C5119.7 (4)O3—C11—C8119.2 (3)
C1—C6—H6120.2N1—C11—C8116.9 (3)
C6—C1—C2—C31.3 (6)C3—C4—C7—O152.9 (5)
Cl1—C1—C2—C3178.4 (3)C7—O1—C8—C11134.7 (3)
C1—C2—C3—C40.9 (7)C7—O1—C8—C914.8 (3)
C2—C3—C4—C52.1 (6)C7—O2—C9—C1091.5 (3)
C2—C3—C4—C7178.9 (4)C7—O2—C9—C830.0 (3)
C3—C4—C5—C61.2 (6)O1—C8—C9—O29.3 (3)
C7—C4—C5—C6179.8 (4)C11—C8—C9—O2111.0 (3)
C2—C1—C6—C52.2 (6)O1—C8—C9—C10108.7 (3)
Cl1—C1—C6—C5177.5 (3)C11—C8—C9—C10130.9 (3)
C4—C5—C6—C11.0 (7)O2—C9—C10—O493.1 (4)
C9—O2—C7—O140.4 (3)C8—C9—C10—O421.7 (5)
C9—O2—C7—C4159.7 (3)O2—C9—C10—N284.4 (4)
C8—O1—C7—O234.2 (3)C8—C9—C10—N2160.8 (3)
C8—O1—C7—C4153.5 (3)O1—C8—C11—O3164.5 (3)
C5—C4—C7—O2116.2 (4)C9—C8—C11—O379.7 (4)
C3—C4—C7—O262.8 (4)O1—C8—C11—N117.0 (4)
C5—C4—C7—O1128.1 (4)C9—C8—C11—N198.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.79 (4)2.20 (4)2.979 (5)166 (4)
N2—H2A···O3ii0.87 (4)2.42 (3)3.173 (5)145 (3)
N2—H2B···O4iii0.81 (6)2.26 (6)3.012 (4)155 (4)
C9—H9···O4iii0.982.313.075 (4)135
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y+1/2, z+1; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC11H11ClN2O4
Mr270.67
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)9.2780 (19), 4.760 (1), 13.245 (3)
β (°) 93.15 (3)
V3)584.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.936, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
2248, 2113, 1694
Rint0.027
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.122, 1.07
No. of reflections2113
No. of parameters179
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.27
Absolute structureFlack (1983), 916 Friedel pairs
Absolute structure parameter0.07 (14)

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.79 (4)2.20 (4)2.979 (5)166 (4)
N2—H2A···O3ii0.87 (4)2.42 (3)3.173 (5)145 (3)
N2—H2B···O4iii0.81 (6)2.26 (6)3.012 (4)155 (4)
C9—H9···O4iii0.982.313.075 (4)135
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y+1/2, z+1; (iii) x, y1, z.
 

Acknowledgements

The authors thank the Center for Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKim, D. K., Kim, G., Gam, J., Cho, Y. B., Kim, H. T., Tai, J. H., Kim, K. H., Hong, W. S. & Park, J. G. (1994). J. Med. Chem. 37, 1471–1485.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPandey, G., Hajara, S., Ghorai, M. K. & Kumar, K. R. (1997). J. Org. Chem. 62, 5966–5973.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds