metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-{[1,1′-(Pyridinium-2,6-di­yl)di­ethyl­­idyne]di­imino}diguanidinium penta­chloridocadmate(II) monohydrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: youyoubanzhen@126.com

(Received 15 June 2009; accepted 10 July 2009; online 18 July 2009)

In the title organic–inorganic hybrid salt, (C11H20N9)[CdCl5]·H2O, the crystal structure is stabilized by intermolecular hydrogen bonds between the organic cation, the complex inorganic anion and the uncoordinated water molecule, forming a three-dimensional network.

Related literature

For details of the synthesis, see: Valdes-Martinez et al. (2002[Valdes-Martinez, J., Alstrum-Acevedo, J. H., Toscano, R. A., Hernandez-Ortega, S., Espinosa-Perez, G., West, X. D. & Helfrich, B. (2002). Polyhedron, 21, 409-416.]).

[Scheme 1]

Experimental

Crystal data
  • (C11H20N9)[CdCl5]·H2O

  • Mr = 586.03

  • Monoclinic, P 21 /n

  • a = 10.638 (2) Å

  • b = 13.700 (3) Å

  • c = 14.839 (3) Å

  • β = 90.90 (3)°

  • V = 2162.3 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.65 mm−1

  • T = 298 K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.681, Tmax = 0.745

  • 22228 measured reflections

  • 4947 independent reflections

  • 4155 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.068

  • S = 1.10

  • 4947 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1W 0.86 2.42 3.194 (4) 151
N4—H4A⋯Cl5 0.86 2.31 3.154 (3) 168
N5—H5A⋯Cl1 0.86 2.49 3.256 (2) 149
N8—H8B⋯O1W 0.86 2.03 2.854 (3) 160
O1W—H1WB⋯Cl4 0.84 2.82 3.478 (3) 136
N3—H3⋯Cl2i 0.86 2.56 3.196 (2) 132
N5—H5B⋯Cl2i 0.86 2.75 3.394 (3) 133
N5—H5B⋯Cl4i 0.86 2.60 3.313 (3) 140
N7—H7⋯Cl4ii 0.86 2.56 3.367 (2) 156
N8—H8A⋯Cl1iii 0.86 2.40 3.247 (3) 168
N9—H9A⋯Cl2iii 0.86 2.41 3.227 (3) 160
N9—H9B⋯Cl4ii 0.86 2.67 3.450 (3) 152
O1W—H1WA⋯Cl3iv 0.85 2.67 3.266 (3) 129
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y, -z+1; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

The asymmetric unit of the title compound (Fig 1) consists of pentachlorocadmium, a water molecule and H3L, the latter resulting from protonation of the pyridyl nitrogen and the two guanyl N atoms. There are four intramolecular hydrogen bonds in the compound, i.e., N4—H4···Cl5, N5—H5A···Cl1, N8—H8B···O1W and O1W—H1WB···Cl4 (table 1). The angle between the pyridine ring and the aminoguanidone moieties, N2—N3—C11—N4—N5 and N6—N7—C10—N8—N9, are 26.23 (2)° and 31.13 (1)° respectively. Additionally, there are also numerous hydrogen bonds among the terminal nitrogen atoms of the trication H3L, the oxygen atom of the water molecule and the chloride atoms of pentachlorocadmium anion, leading to a complex three-dimensional network.

Related literature top

For details of the synthesis, see: Valdes-Martinez et al. (2002).

Experimental top

The ligand L was prepared according to reported method (Valdes-Martinez et al. 2002). The title compound was prepared by refluxing an 30 ml EtOH–HCl mixture solution (v:v = 3:1) containing an equimolar amount of L (1.096 g, 4 mmol) and CdCl2 for 1 h. The resulting solution was filtered and stood still until crystals formed.

Refinement top

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(Caromatic or N) and Uiso(H) = 1.5Ueq(Cmethyl). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.85 (1)Å and H···H= 1.39 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last stage of structure refinement, they were treated as riding on their parent O atom.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound,with the atom labeling sche me. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. H bonds are shown as dashed lines.
1,1'-{[1,1'-(Pyridinium-2,6-diyl)diethylidyne]diimino}diguanidinium pentachloridocadmate(II) monohydrate top
Crystal data top
(C11H20N9)[CdCl5]·H2OF(000) = 1168
Mr = 586.03Dx = 1.800 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 19919 reflections
a = 10.638 (2) Åθ = 3.1–27.6°
b = 13.700 (3) ŵ = 1.65 mm1
c = 14.839 (3) ÅT = 298 K
β = 90.90 (3)°Prism, colourless
V = 2162.3 (8) Å30.25 × 0.20 × 0.18 mm
Z = 4
Data collection top
Rigaku Mercury2 (2× 2 bin mode)
diffractometer
4947 independent reflections
Radiation source: fine-focus sealed tube4155 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD_Profile_fitting scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1717
Tmin = 0.681, Tmax = 0.745l = 1919
22228 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0222P)2 + 1.3165P]
where P = (Fo2 + 2Fc2)/3
4947 reflections(Δ/σ)max = 0.032
246 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
(C11H20N9)[CdCl5]·H2OV = 2162.3 (8) Å3
Mr = 586.03Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.638 (2) ŵ = 1.65 mm1
b = 13.700 (3) ÅT = 298 K
c = 14.839 (3) Å0.25 × 0.20 × 0.18 mm
β = 90.90 (3)°
Data collection top
Rigaku Mercury2 (2× 2 bin mode)
diffractometer
4947 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
4155 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.745Rint = 0.043
22228 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.10Δρmax = 0.45 e Å3
4947 reflectionsΔρmin = 0.38 e Å3
246 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.91113 (2)0.240737 (14)0.143910 (13)0.03119 (7)
Cl10.88183 (8)0.41966 (5)0.11166 (5)0.04173 (18)
Cl20.68199 (7)0.21144 (5)0.06726 (5)0.03978 (18)
Cl31.02297 (8)0.14273 (6)0.03080 (5)0.0464 (2)
Cl40.82906 (7)0.15219 (6)0.28367 (5)0.04094 (18)
Cl51.11659 (7)0.27884 (6)0.23687 (5)0.04219 (19)
N10.89827 (19)0.31005 (15)0.68390 (14)0.0238 (5)
H10.89380.28620.63040.029*
N20.8635 (2)0.43124 (15)0.54498 (14)0.0252 (5)
N30.8349 (2)0.48151 (16)0.46731 (14)0.0302 (5)
H30.78420.53040.46720.036*
N40.9582 (3)0.37103 (17)0.39331 (16)0.0428 (6)
H4A0.99390.35080.34520.051*
H4B0.96730.33900.44280.051*
N50.8730 (2)0.50235 (18)0.31717 (15)0.0354 (6)
H5A0.90730.48420.26780.042*
H5B0.82760.55430.31820.042*
N60.9327 (2)0.11265 (15)0.66384 (14)0.0275 (5)
N70.9631 (2)0.01760 (16)0.64548 (15)0.0334 (5)
H71.02300.01130.67450.040*
N80.8182 (2)0.01826 (18)0.52850 (16)0.0396 (6)
H8A0.77550.01190.48750.048*
H8B0.80940.08020.53530.048*
N90.9142 (3)0.12433 (18)0.57366 (18)0.0488 (7)
H9A0.87350.15740.53360.059*
H9B0.96680.15310.60940.059*
C10.9503 (2)0.25487 (18)0.74947 (17)0.0248 (5)
C20.9574 (3)0.2929 (2)0.83576 (18)0.0325 (6)
H20.99430.25680.88220.039*
C30.9094 (3)0.3846 (2)0.85289 (18)0.0356 (7)
H3A0.91250.40960.91120.043*
C40.8568 (3)0.4394 (2)0.78360 (17)0.0306 (6)
H40.82460.50130.79490.037*
C50.8526 (2)0.40094 (18)0.69727 (17)0.0234 (5)
C60.8104 (2)0.45750 (18)0.61734 (17)0.0252 (6)
C70.7170 (3)0.5381 (2)0.62813 (19)0.0353 (7)
H7A0.76000.59680.64600.053*
H7B0.65770.52040.67340.053*
H7C0.67330.54880.57190.053*
C80.9938 (2)0.15541 (18)0.72746 (17)0.0243 (5)
C91.1001 (3)0.1131 (2)0.7819 (2)0.0387 (7)
H9C1.06740.07010.82690.058*
H9D1.14640.16490.81070.058*
H9E1.15470.07730.74300.058*
C100.8962 (3)0.0298 (2)0.58035 (18)0.0315 (6)
C110.8901 (3)0.4506 (2)0.39114 (18)0.0296 (6)
O1W0.7726 (3)0.22202 (18)0.5047 (2)0.0695 (8)
H1WA0.71560.23290.54270.104*
H1WB0.74480.22120.45110.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03641 (12)0.02847 (12)0.02866 (11)0.00307 (9)0.00053 (8)0.00175 (8)
Cl10.0584 (5)0.0293 (4)0.0371 (4)0.0015 (3)0.0135 (3)0.0001 (3)
Cl20.0407 (4)0.0323 (4)0.0460 (4)0.0014 (3)0.0088 (3)0.0055 (3)
Cl30.0526 (5)0.0486 (5)0.0379 (4)0.0167 (4)0.0043 (4)0.0125 (3)
Cl40.0444 (4)0.0433 (4)0.0351 (4)0.0054 (3)0.0023 (3)0.0066 (3)
Cl50.0293 (4)0.0566 (5)0.0405 (4)0.0036 (3)0.0015 (3)0.0156 (3)
N10.0263 (12)0.0259 (11)0.0192 (10)0.0011 (9)0.0021 (9)0.0031 (8)
N20.0288 (12)0.0231 (11)0.0236 (11)0.0011 (9)0.0001 (9)0.0007 (9)
N30.0350 (13)0.0292 (12)0.0264 (12)0.0093 (10)0.0007 (10)0.0007 (9)
N40.0649 (18)0.0338 (14)0.0300 (13)0.0124 (13)0.0137 (12)0.0029 (10)
N50.0345 (14)0.0473 (15)0.0243 (12)0.0015 (11)0.0008 (10)0.0007 (10)
N60.0329 (13)0.0228 (11)0.0269 (12)0.0018 (9)0.0009 (10)0.0020 (9)
N70.0373 (14)0.0295 (12)0.0332 (13)0.0073 (10)0.0095 (11)0.0055 (10)
N80.0488 (16)0.0329 (13)0.0366 (14)0.0056 (12)0.0141 (12)0.0023 (11)
N90.0656 (19)0.0311 (14)0.0492 (16)0.0037 (13)0.0145 (14)0.0112 (12)
C10.0216 (13)0.0262 (13)0.0265 (13)0.0032 (10)0.0022 (10)0.0007 (10)
C20.0357 (16)0.0355 (15)0.0263 (14)0.0001 (13)0.0041 (12)0.0013 (12)
C30.0441 (18)0.0384 (17)0.0244 (14)0.0012 (13)0.0018 (13)0.0063 (12)
C40.0327 (15)0.0305 (15)0.0288 (14)0.0007 (12)0.0063 (12)0.0044 (11)
C50.0201 (13)0.0252 (13)0.0250 (13)0.0026 (10)0.0057 (10)0.0025 (10)
C60.0221 (13)0.0263 (14)0.0272 (14)0.0003 (10)0.0028 (11)0.0020 (10)
C70.0339 (16)0.0368 (16)0.0350 (16)0.0122 (13)0.0005 (13)0.0068 (12)
C80.0237 (13)0.0265 (14)0.0228 (13)0.0003 (10)0.0021 (11)0.0014 (10)
C90.0335 (17)0.0387 (17)0.0436 (17)0.0074 (13)0.0108 (14)0.0069 (13)
C100.0363 (16)0.0318 (15)0.0265 (14)0.0038 (12)0.0028 (12)0.0032 (11)
C110.0303 (15)0.0324 (15)0.0260 (14)0.0064 (12)0.0016 (11)0.0056 (11)
O1W0.0682 (18)0.0488 (15)0.091 (2)0.0023 (13)0.0178 (16)0.0015 (14)
Geometric parameters (Å, º) top
Cd1—Cl32.4695 (9)N8—H8B0.8600
Cd1—Cl12.5160 (9)N9—C101.313 (4)
Cd1—Cl42.5675 (9)N9—H9A0.8600
Cd1—Cl52.6188 (10)N9—H9B0.8600
Cd1—Cl22.7036 (10)C1—C21.383 (4)
N1—C11.344 (3)C1—C81.477 (3)
N1—C51.352 (3)C2—C31.381 (4)
N1—H10.8600C2—H20.9300
N2—C61.273 (3)C3—C41.385 (4)
N2—N31.373 (3)C3—H3A0.9300
N3—C111.350 (3)C4—C51.385 (3)
N3—H30.8600C4—H40.9300
N4—C111.309 (4)C5—C61.481 (3)
N4—H4A0.8600C6—C71.496 (4)
N4—H4B0.8600C7—H7A0.9600
N5—C111.317 (3)C7—H7B0.9600
N5—H5A0.8600C7—H7C0.9600
N5—H5B0.8600C8—C91.496 (4)
N6—C81.280 (3)C9—H9C0.9600
N6—N71.370 (3)C9—H9D0.9600
N7—C101.356 (3)C9—H9E0.9600
N7—H70.8600O1W—H1WA0.8473
N8—C101.301 (4)O1W—H1WB0.8446
N8—H8A0.8600
Cl3—Cd1—Cl1117.39 (3)C3—C2—H2120.1
Cl3—Cd1—Cl4117.76 (3)C1—C2—H2120.1
Cl1—Cd1—Cl4124.84 (3)C2—C3—C4120.2 (3)
Cl3—Cd1—Cl593.40 (3)C2—C3—H3A119.9
Cl1—Cd1—Cl590.34 (3)C4—C3—H3A119.9
Cl4—Cd1—Cl587.73 (3)C3—C4—C5119.1 (3)
Cl3—Cd1—Cl294.25 (3)C3—C4—H4120.4
Cl1—Cd1—Cl287.50 (3)C5—C4—H4120.4
Cl4—Cd1—Cl287.36 (3)N1—C5—C4118.7 (2)
Cl5—Cd1—Cl2172.19 (2)N1—C5—C6118.0 (2)
C1—N1—C5123.8 (2)C4—C5—C6123.1 (2)
C1—N1—H1118.1N2—C6—C5113.2 (2)
C5—N1—H1118.1N2—C6—C7127.1 (2)
C6—N2—N3118.1 (2)C5—C6—C7119.6 (2)
C11—N3—N2116.9 (2)C6—C7—H7A109.5
C11—N3—H3121.6C6—C7—H7B109.5
N2—N3—H3121.6H7A—C7—H7B109.5
C11—N4—H4A120.0C6—C7—H7C109.5
C11—N4—H4B120.0H7A—C7—H7C109.5
H4A—N4—H4B120.0H7B—C7—H7C109.5
C11—N5—H5A120.0N6—C8—C1115.3 (2)
C11—N5—H5B120.0N6—C8—C9126.3 (2)
H5A—N5—H5B120.0C1—C8—C9118.3 (2)
C8—N6—N7117.6 (2)C8—C9—H9C109.5
C10—N7—N6118.3 (2)C8—C9—H9D109.5
C10—N7—H7120.9H9C—C9—H9D109.5
N6—N7—H7120.9C8—C9—H9E109.5
C10—N8—H8A120.0H9C—C9—H9E109.5
C10—N8—H8B120.0H9D—C9—H9E109.5
H8A—N8—H8B120.0N8—C10—N9123.1 (3)
C10—N9—H9A120.0N8—C10—N7120.1 (3)
C10—N9—H9B120.0N9—C10—N7116.8 (3)
H9A—N9—H9B120.0N4—C11—N5122.5 (3)
N1—C1—C2118.3 (2)N4—C11—N3119.3 (2)
N1—C1—C8119.0 (2)N5—C11—N3118.2 (3)
C2—C1—C8122.6 (2)H1WA—O1W—H1WB112.7
C3—C2—C1119.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.862.423.194 (4)151
N4—H4A···Cl50.862.313.154 (3)168
N5—H5A···Cl10.862.493.256 (2)149
N8—H8B···O1W0.862.032.854 (3)160
O1W—H1WB···Cl40.842.823.478 (3)136
N3—H3···Cl2i0.862.563.196 (2)132
N5—H5B···Cl2i0.862.753.394 (3)133
N5—H5B···Cl4i0.862.603.313 (3)140
N7—H7···Cl4ii0.862.563.367 (2)156
N8—H8A···Cl1iii0.862.403.247 (3)168
N9—H9A···Cl2iii0.862.413.227 (3)160
N9—H9B···Cl4ii0.862.673.450 (3)152
O1W—H1WA···Cl3iv0.852.673.266 (3)129
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+2, y, z+1; (iii) x+3/2, y1/2, z+1/2; (iv) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C11H20N9)[CdCl5]·H2O
Mr586.03
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.638 (2), 13.700 (3), 14.839 (3)
β (°) 90.90 (3)
V3)2162.3 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.65
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerRigaku Mercury2 (2× 2 bin mode)
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.681, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
22228, 4947, 4155
Rint0.043
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.068, 1.10
No. of reflections4947
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.38

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.862.423.194 (4)150.8
N4—H4A···Cl50.862.313.154 (3)168.0
N5—H5A···Cl10.862.493.256 (2)148.6
N8—H8B···O1W0.862.032.854 (3)159.8
O1W—H1WB···Cl40.842.823.478 (3)136.3
N3—H3···Cl2i0.862.563.196 (2)131.7
N5—H5B···Cl2i0.862.753.394 (3)133.3
N5—H5B···Cl4i0.862.603.313 (3)140.3
N7—H7···Cl4ii0.862.563.367 (2)156.3
N8—H8A···Cl1iii0.862.403.247 (3)167.6
N9—H9A···Cl2iii0.862.413.227 (3)160.1
N9—H9B···Cl4ii0.862.673.450 (3)151.5
O1W—H1WA···Cl3iv0.852.673.266 (3)128.7
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+2, y, z+1; (iii) x+3/2, y1/2, z+1/2; (iv) x1/2, y+1/2, z+1/2.
 

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValdes-Martinez, J., Alstrum-Acevedo, J. H., Toscano, R. A., Hernandez-Ortega, S., Espinosa-Perez, G., West, X. D. & Helfrich, B. (2002). Polyhedron, 21, 409–416.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds