organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1942-o1943

6α-Acet­oxy­gedunin

aComparative and Ecological Phytochemistry, University of Vienna, Rennweg 14, A-1030 Vienna, Austria, and bInstitute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria
*Correspondence e-mail: kurt.mereiter@tuwien.ac.at

(Received 14 July 2009; accepted 16 July 2009; online 22 July 2009)

The title compound [systematic name: (1S,3aS,4aR,4bS,5S,6R,6aR,10aR,10bR,12aS)-5,6-bis­(acet­yloxy)-1-(3-fur­yl)-1,5,6,6a,7,10a,10b,11,12,12a-deca­hydro-4b,7,7,10a,12a-penta­methyl­oxireno[c]phenanthro[1,2-d]pyran-3,8(3aH,4bH)-dione], C30H36O9, is a limonoid-type triterpene isolated from Aglaia elaeagnoidea (A. Juss.) Benth. (Meliaceae) from Queensland, northern Australia. It contains the gedunin core of four trans-fused six-membered rings with an oxirane ring annelated to the fourth ring. A terminal 3-furyl unity and two acet­oxy groups in a mutual cis-disposition supplement the mol­ecule. A comparison between the gedunin cores of the title compound, the parent compound gedunin, and three further gedunin derivatives revealed considerable variations in their conformation stemming from the conformational lability of the first screw-boat ring and the third twist-boat ring. A sensitive measure for the third ring is one C—C—C—C torsion angle, which is 14.2 (2)° in the title compound, but varies in other cases from ca 20 to ca −40°. In the crystalline state, 6α-acetoxy­gedunin shows ten comparatively weak C—H⋯O inter­actions, with H⋯O distances in the range of 2.33–2.69 Å.

Related literature

For general background to the genus Aglaia and its potential bioctivity, see: Brader et al. (1998[Brader, G., Vajrodaya, S., Greger, H., Bacher, M., Kalchhauser, H. & Hofer, O. (1998). J. Nat. Prod. 61, 1482-1490.]); Engelmeier et al. (2000[Engelmeier, D., Hadacek, F., Pacher, T., Vajrodaya, S. & Greger, H. (2000). J. Agric. Food. Chem. 48, 1400-1404.]); Fuzzati et al. (1996[Fuzzati, N., Dyatmiko, W., Rahman, A., Achmad, F. & Hostettmann, K. (1996). Phytochemistry, 42, 1395-1398.]); Greger et al. (2000[Greger, H., Pacher, T., Vajrodaya, S., Bacher, M. & Hofer, O. (2000). J. Nat. Prod. 63, 616-620.], 2001[Greger, H., Pacher, T., Brem, B., Bacher, M. & Hofer, O. (2001). Phytochemistry, 57, 57-64.]); Hausott et al. (2004[Hausott, B., Greger, H. & Marian, B. (2004). Int. J. Cancer, 109, 933-940.]); Jimenez et al. (1998[Jimenez, A., Villarreal, C., Toscano, R. A., Cook, M., Arnason, J. T., Bye, R. & Mata, R. (1998). Phytochemistry, 49, 1981-1988.]); Lavie et al. (1972[Lavie, D., Levy, E. C. & Zelnik, R. (1972). Bioorg. Chem. 2, 59-64.]). For related structures, see: Mitsui et al. (2006[Mitsui, K., Saito, H., Yamamura, R., Fukaya, H., Hitotsuyanagi, Y. & Takeya, K. (2006). J. Nat. Prod. 69, 1310-1314.]); Sutherland et al. (1962[Sutherland, S. A., Sim, G. A. & Robertson, J. M. (1962). Proc. Chem. Soc. pp. 222.]); Toscano et al. (1996[Toscano, R. A., Mata, R., Calderon, J. & Segura, R. (1996). J. Chem. Crystallogr. 26, 707-711.]); Waratchareeyakul et al. (2004[Waratchareeyakul, W., Chantrapromma, S., Fun, H.-K., Razak, I. A., Karalai, C. & Ponglimanont, C. (2004). Acta Cryst. E60, o1964-o1966.]). For the NMR spectra of related compounds, see: Connolly et al. (1966[Connolly, J. D., McCrindle, R., Overton, K. H. & Feeney, J. (1966). Tetrahedron, 22, 891-896.]); Mitsui et al. (2006[Mitsui, K., Saito, H., Yamamura, R., Fukaya, H., Hitotsuyanagi, Y. & Takeya, K. (2006). J. Nat. Prod. 69, 1310-1314.]); Taylor (1974[Taylor, D. A. H. (1974). J. Chem. Soc. Perkin Trans. pp. 437-441.]); Waratchareeyakul et al. (2004[Waratchareeyakul, W., Chantrapromma, S., Fun, H.-K., Razak, I. A., Karalai, C. & Ponglimanont, C. (2004). Acta Cryst. E60, o1964-o1966.]).

[Scheme 1]

Experimental

Crystal data
  • C30H36O9

  • Mr = 540.59

  • Orthorhombic, P 21 21 21

  • a = 6.475 (2) Å

  • b = 14.914 (5) Å

  • c = 28.713 (9) Å

  • V = 2772.8 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.62 × 0.40 × 0.25 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.89, Tmax = 0.98

  • 39048 measured reflections

  • 4509 independent reflections

  • 4077 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.099

  • S = 1.04

  • 4509 reflections

  • 359 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯O1i 0.99 2.59 3.410 (3) 141
C18—H18C⋯O1i 0.98 2.68 3.571 (2) 152
C18—H18B⋯O6ii 0.98 2.56 3.497 (2) 160
C22—H22⋯O6ii 0.95 2.69 3.601 (3) 162
C24—H24B⋯O2 0.98 2.40 3.066 (3) 125
C25—H25C⋯O2 0.98 2.50 3.112 (2) 121
C5—H5⋯O3 1.00 2.50 2.931 (2) 105
C9—H9⋯O3 1.00 2.55 2.944 (2) 103
C18—H18B⋯O5 0.98 2.45 2.934 (2) 110
C7—H7⋯O9 1.00 2.33 2.735 (2) 103
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT, SADABS and XPREP (Bruker, 2003[Bruker (2003). SMART, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The genus Aglaia of the family Meliaceae has received scientific attention due to its bioactivity potential. Besides its unique chemical capacity to produce flavaglines with pronounced insecticidal, antifungal, and anticancer activities (Greger et al., 2001; Engelmeier et al., 2000; Hausott et al., 2004), Aglaia is also characterized by the accumulation of bisamides, lignans, and triterpenes (Greger et al., 2000). However, in contrast to other genera of that family the highly active triterpenoid limonoids appear to be rare in Aglaia only known so far from Aglaia elaeagnoidea collected in Sempu Island, Java, Indonesia (6α,11β-diacetoxygedunin; Fuzzati et al., 1996), but not from samples collected in India and Thailand (Brader et al., 1998). Our investigation of the root bark of Aglaia elaeagnoidea originating from northern Australia led now to the second isolation of a limonoid from this genus, namely the title compound 6α-acetoxygedunin. This compound was previously isolated from several other genera of the Meliaceae family, such as Guarea grandiflora Decne.ex Steud. (Jimenez et al., 1998) or Carapa guianensis Aubl. (Lavie et al., 1972), but its crystal structure has not been determined as yet.

6α-Acetoxygedunin contains the gedunin skeleton with four six-membered rings (A, B, C, D), which are all trans-fused and adopt screw-boat, chair, twist-boat, and twisted half-chair conformation, respectively (Fig. 1). The D-ring, a lactone, is stiffened by fusion with an oxiran ring and bears in equatorial position a furan ring in approximately perpendicular orientation to the main plane of the molecule. Bond length and angles are normal (cf. geometric parameters) and compare well with the parent compound gedunin (Toscano et al., 1996), which is devoid of the 6-acetoxy group O2—(C27O8)—C28H3, and with three more gedunin derivatives, 11α-hydroxygedunin (Mitsui et al., 2006), 11β-hydroxygedunin (Mitsui et al., 2006), and 7-oxogedunin (Waratchareeyakul et al., 2004; 7-acetoxy group replaced by a carbonyl oxygen with concomitant change of C7 from sp3 to sp2 hybridization). However, the torsion angles within the A/B/C/D rings of these five compounds show in part considerable variations and consequently the molecular conformations as well. This is visualized by three superposition plots of 6α-acetoxygedunin and its congeners shown in Figures 2 to 4. Fig. 2 demonstrates that 6α-acetoxygedunin and 11α-hydroxygedunin (Mitsui et al. 2006; it contains two independent molecules) have relatively closely matching conformations of their A/B/C/D rings. Fig. 3 compares 6α-acetoxygedunin and gedunin showing that their B, C, and D rings match very well, but that the A-rings display a significant mismatch. The torsion angle T1 = C3—C4—C5—C10 may be used as a qualitative measure for this match/mismatch: It is 30.7 (2)° in 6α-acetoxygedunin and 51.2° in gedunin, while the remaining three gedunin-type compounds have T1 angles between 32.2° (11α-hydroxygedunin) and 45.3° (7-oxogedunin). Fig. 4 demonstrates that the most outstanding difference in conformation exists between 6α-acetoxygedunin and 7-oxogedunin. This difference does not arise from the unlike hybridization of C7 (sp3 in title compound and sp2 in 7-oxogedunin), but is clearly provoked by ring C, which switches from a twist-boat conformation in 6α-acetoxygedunin via a virtual boat-intermediate into a twist-boat conformation of opposite twist in 7-oxogedunin. This can be tracked by the torsion angle T2 = C9—C11—C12—C13, which is +14.2 (2)° in 6α-acetoxygedunin (+21.6° in gedunin; +9.5° and +14.5° for the two independent molecules in 11α-hydroxygedunin), while it is -38.9° in 7-oxogedunin and -20.7° in 11β-hydroxygedunin. The described variations come essentially from the fact that B– and D-rings behave hard (B-ring in a relaxed and essentially invariant chair-conformation, D-ring in a twisted half-chair conformation fixed by oxiran ring and lacton group) while A-rings (screw-boat) and C-rings (between boat and twist-boat) behave soft and labile in conformation. The soft parts of the molecules are certainly controlled by the steric requirements of the ring substituents and by the crystal packing with its interplay of intra- and intermolecular forces. In the title compound 6α-acetoxygedunin such forces involve only several quite weak intra- and inter-molecular C—H···O interactions, which are listed in Table 1. For a packing diagram of 6α-acetoxygedunin, see Fig. 5.

Related literature top

For general background to the genus Aglaia and its potential bioctivity, see: Brader et al. (1998); Engelmeier et al. (2000); Fuzzati et al. (1996); Greger et al. (2000, 2001); Hausott et al. (2004); Jimenez et al. (1998); Lavie et al. (1972). For related structures, see: Mitsui et al. (2006); Sutherland et al. (1962); Toscano et al. (1996); Waratchareeyakul et al. (2004). For the NMR spectra of related compounds, see: Connolly et al. (1966); Mitsui et al. (2006); Taylor (1974); Waratchareeyakul et al. (2004).

Experimental top

Air-dried root bark of Aglaia elaeagnoidea (28 g) collected at the shore near Port Douglas, Queensland, northern Australia, was ground and extracted with MeOH at room temperature for 3 days, filtered and concentrated. The CHCl3 fraction (1.2 g) of the aqueous residue was roughly separated by column chromatography (Merck Si gel 60, 35–70 mesh) eluted initially with hexane enriched with EtOAc, followed by an increasing amount of MeOH in EtOAc and finally with MeOH. The fraction eluted with 50% EtOAc in hexane was further separated by repeated preparative MPLC (400 x 40 mm column, Merck LiChroprep silica 60, 25–40 µm, UV detection at 229 and 254 nm) using 5% 2-propanol in hexane yielding 15 mg of impure 6α-acetoxygedunin from which 3.8 mg of crystals could be obtained.

The resonances of the 1H and 13C NMR spectra of the title compound were assigned by two-dimensional NMR (H/H COSY, NOESY, HMBC, HMQC) and relevant literature for 11β-acetoxygedunin (Connolly et al., 1966) and gedunin (Taylor, 1974). 1H NMR (400 MHz, CDCl3, δ/p.p.m.): 7.41 (d, 1H, J= 1.3 Hz, 21-H), 7.41 (d, 1H, J = 1.3 Hz, 23-H), 7.07 (d, 1H, J = 10.1 Hz, 1-H), 6.33 (t, 1H, J = 1.3 Hz, 22-H), 5.94 (d, 1H, J = 10.1 Hz, 2-H), 5.61 (s, 1H, 17-H), 5.27 (dd, 1H, J = 12.4 and 2.4 Hz, 6-H), 4.89 (d, 1H, J = 2.4 Hz, 7-H), 3.61 (s, 1H, 15-H), 2.53 (m, 1H, 9-H), 2.52 (d, 1H, J = 12.4 Hz, 5-H), 2.15 (s, 3H, 7-OAc), 2.03 (s, 3H, 6-OAc), 1.60, 1.35, 1.30, and 1.10 (m, 1H each, 11-H2 and 12-H2), 1.27 (s, 3H, 26-H3), 1.26 (s, 3H, 24-H3), 1.24 (s, 3H, 18-H3), 1.21 (s, 3H, 19-H3), 1.17 (s, 3H, 25-H3). 13C NMR (CDCl3, δ/p.p.m.): 204.1 (s, C-3), 170.1 and 170.0 (s, 6- and 7-acetyl CO), 167.1 (s, C-16), 156.2 (d, C-1), 143.1 (d, C-23), 141.2 (d, C-21), 126.6 (d, C-2), 120.3 (s, C-20), 109.8 (d, C-22), 78.1 (d, C-17), 72.6 (d, C-7), 69.7 (d, C-6), 69.5 (s, C-14), 56.2 (d, C-15), 47.8 (d, C-5), 44.9 (s, C-4), 43.1 (s, C-8), 40.6 (s, C10), 48.8 (s, C-13), 38.4 (d, C-9), 31.6 (q, C-24), 25.9 (t, C-12), 21.4 (q, C-19), 21.2 (q, 6-acetyl CH3), 20.9 (q, 7-acetyl CH3), 20.2 (q, C-25), 18.1 (q, C-26), 17.9 (q, C-18), 15.0 (t, C-11).

Refinement top

All C-bound H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and thereafter treated as riding. A torsional parameter was refined for each methyl group. Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(Cmethyl) were applied. The absolute structure could not be determined from the X-ray analysis, but it is known from earlier work on related compounds (e.g. Sutherland et al., 1962). Friedel pairs were therefore merged before final refinement.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT, SADABS and XPREP (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Superposition plot of the title compound (red) and 11α-hydroxygedunin (Mitsui et al., 2006; two independent molecules in blue and pink) after least squares fit of the A/B/C/D rings.
[Figure 3] Fig. 3. Superposition plot of the title compound (red) and gedunin (Toscano et al., 1996; green) after least squares fit of the B/C/D rings. The distance between the two terminal keto oxygen atoms O(1) (leftmost red and green atom) is 2.01 Å.
[Figure 4] Fig. 4. Superposition plot the title compound (red) and 7-oxogedunin (Waratchareeyakul et al., 2004; cyan) after least squares fit of the A/B/C/D rings. Note the difference in torsion angle T2 = C9—C11—C12—C13 (upper part of ring C), which is +14.2 (2)° in 6α-acetoxygedunin and -38.9° in 7-oxogedunin.
[Figure 5] Fig. 5. Packing diagram of 6α-acetoxygedunin viewed down the a axis.
(1S,3aS,4aR,4bS,5S,6R, 6aR,10aR,10bR,12aS)-5,6-bis(acetyloxy)- 1-(3-furyl)-1,5,6,6a,7,10a,10b,11,12,12a-decahydro-4b,7,7,10a,12a- pentamethyloxireno[c]phenanthro[1,2-d]pyran- 3,8(3aH,4bH)-dione top
Crystal data top
C30H36O9F(000) = 1152
Mr = 540.59Dx = 1.295 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 852 reflections
a = 6.475 (2) Åθ = 2.4–29.8°
b = 14.914 (5) ŵ = 0.10 mm1
c = 28.713 (9) ÅT = 173 K
V = 2772.8 (15) Å3Prism, colourless
Z = 40.62 × 0.40 × 0.25 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4509 independent reflections
Radiation source: fine-focus sealed tube4077 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 30.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 99
Tmin = 0.89, Tmax = 0.98k = 2020
39048 measured reflectionsl = 4040
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0617P)2 + 0.3403P]
where P = (Fo2 + 2Fc2)/3
4509 reflections(Δ/σ)max < 0.001
359 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C30H36O9V = 2772.8 (15) Å3
Mr = 540.59Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.475 (2) ŵ = 0.10 mm1
b = 14.914 (5) ÅT = 173 K
c = 28.713 (9) Å0.62 × 0.40 × 0.25 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4509 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
4077 reflections with I > 2σ(I)
Tmin = 0.89, Tmax = 0.98Rint = 0.031
39048 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.04Δρmax = 0.26 e Å3
4509 reflectionsΔρmin = 0.24 e Å3
359 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0587 (3)0.73999 (11)0.23019 (6)0.0535 (4)
O20.3222 (2)0.68452 (7)0.40284 (4)0.0308 (3)
O30.21379 (17)0.50631 (7)0.42004 (3)0.0218 (2)
O40.67376 (18)0.33557 (9)0.41784 (4)0.0303 (3)
O50.3916 (2)0.20217 (8)0.45502 (4)0.0311 (3)
O60.3600 (2)0.29114 (9)0.51630 (4)0.0371 (3)
O70.3049 (7)0.02998 (11)0.35841 (9)0.1021 (11)
O80.6555 (3)0.70255 (12)0.42549 (6)0.0546 (4)
O90.3152 (3)0.55979 (10)0.49051 (4)0.0413 (3)
C10.1155 (3)0.51480 (13)0.26444 (5)0.0295 (3)
H10.07120.45580.25690.035*
C20.0178 (3)0.58569 (14)0.24571 (6)0.0342 (4)
H20.09370.57650.22470.041*
C30.0830 (3)0.67781 (14)0.25763 (6)0.0354 (4)
C40.1727 (3)0.69563 (11)0.30666 (6)0.0289 (3)
C50.2297 (2)0.60496 (10)0.33182 (5)0.0220 (3)
H50.09980.58370.34710.026*
C60.3893 (2)0.61484 (10)0.37098 (5)0.0230 (3)
H60.52580.63180.35730.028*
C70.4135 (2)0.52809 (10)0.39934 (5)0.0210 (3)
H70.51760.53760.42460.025*
C80.4803 (2)0.44830 (10)0.36887 (5)0.0198 (3)
C90.3279 (2)0.43982 (10)0.32698 (5)0.0208 (3)
H90.19010.42740.34130.025*
C100.2973 (2)0.52800 (10)0.29783 (5)0.0217 (3)
C110.3781 (3)0.35593 (11)0.29761 (5)0.0302 (3)
H11A0.49950.36920.27780.036*
H11B0.26000.34360.27670.036*
C120.4241 (3)0.27008 (11)0.32647 (6)0.0300 (3)
H12A0.35030.21880.31220.036*
H12B0.57390.25720.32490.036*
C130.3597 (2)0.27762 (10)0.37810 (5)0.0230 (3)
C140.4749 (2)0.35925 (10)0.39801 (5)0.0210 (3)
C150.5091 (2)0.35775 (11)0.44934 (5)0.0248 (3)
H150.51810.41710.46540.030*
C160.4171 (3)0.28141 (11)0.47670 (5)0.0268 (3)
C170.4394 (3)0.19354 (11)0.40509 (6)0.0325 (4)
H170.59260.18920.40120.039*
C180.1228 (2)0.28506 (11)0.38491 (5)0.0254 (3)
H18A0.08240.34840.38510.038*
H18B0.08400.25740.41460.038*
H18C0.05220.25410.35940.038*
C190.4839 (3)0.55432 (12)0.26637 (5)0.0286 (3)
H19A0.53080.50160.24900.043*
H19B0.59690.57670.28590.043*
H19C0.44130.60120.24450.043*
C200.3434 (4)0.10558 (12)0.39106 (7)0.0455 (5)
C210.4335 (7)0.04307 (15)0.36416 (10)0.0767 (11)
H210.56730.04840.35090.092*
C220.1459 (5)0.06906 (14)0.40432 (10)0.0588 (7)
H220.04510.09690.42350.071*
C230.1322 (8)0.01205 (18)0.38421 (13)0.0876 (13)
H230.01810.05160.38750.105*
C240.0104 (3)0.74131 (13)0.33278 (7)0.0399 (4)
H24A0.04090.79930.31820.060*
H24B0.02740.75070.36550.060*
H24C0.13270.70270.33110.060*
C250.3518 (3)0.76299 (12)0.30263 (7)0.0367 (4)
H25A0.30570.81580.28520.055*
H25B0.46780.73480.28630.055*
H25C0.39610.78130.33390.055*
C260.7086 (2)0.46280 (12)0.35367 (6)0.0269 (3)
H26A0.72110.52040.33750.040*
H26B0.75070.41420.33270.040*
H26C0.79780.46290.38130.040*
C270.4760 (4)0.72270 (14)0.42919 (7)0.0419 (5)
C280.3892 (6)0.79118 (17)0.46226 (9)0.0655 (8)
H28A0.49660.83490.47020.098*
H28B0.34150.76120.49070.098*
H28C0.27290.82210.44750.098*
C290.1864 (3)0.52448 (11)0.46639 (5)0.0268 (3)
C300.0241 (3)0.49403 (14)0.48189 (6)0.0382 (4)
H30A0.03160.49560.51600.057*
H30B0.04850.43270.47100.057*
H30C0.12940.53400.46880.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0596 (10)0.0553 (9)0.0454 (8)0.0088 (8)0.0091 (7)0.0263 (7)
O20.0402 (7)0.0240 (5)0.0281 (5)0.0007 (5)0.0018 (5)0.0018 (4)
O30.0219 (5)0.0257 (5)0.0177 (4)0.0016 (4)0.0032 (4)0.0006 (4)
O40.0194 (5)0.0432 (6)0.0284 (5)0.0036 (5)0.0000 (4)0.0133 (5)
O50.0357 (6)0.0287 (6)0.0289 (6)0.0005 (5)0.0027 (5)0.0088 (5)
O60.0407 (7)0.0463 (7)0.0242 (5)0.0066 (6)0.0035 (5)0.0092 (5)
O70.200 (3)0.0281 (8)0.0781 (14)0.0038 (15)0.016 (2)0.0129 (8)
O80.0467 (9)0.0676 (10)0.0496 (8)0.0210 (8)0.0039 (7)0.0149 (8)
O90.0463 (8)0.0528 (8)0.0247 (5)0.0105 (7)0.0018 (6)0.0083 (6)
C10.0263 (8)0.0408 (9)0.0213 (6)0.0019 (7)0.0024 (6)0.0031 (6)
C20.0247 (8)0.0528 (10)0.0251 (7)0.0013 (8)0.0037 (6)0.0097 (7)
C30.0259 (8)0.0483 (10)0.0319 (8)0.0067 (8)0.0012 (7)0.0147 (7)
C40.0283 (8)0.0298 (7)0.0285 (7)0.0048 (7)0.0039 (6)0.0101 (6)
C50.0198 (6)0.0259 (7)0.0202 (6)0.0005 (5)0.0021 (5)0.0052 (5)
C60.0242 (7)0.0232 (7)0.0215 (6)0.0016 (6)0.0023 (6)0.0006 (5)
C70.0198 (6)0.0250 (7)0.0182 (6)0.0022 (5)0.0004 (5)0.0015 (5)
C80.0178 (6)0.0238 (6)0.0179 (6)0.0006 (5)0.0002 (5)0.0035 (5)
C90.0211 (6)0.0248 (6)0.0166 (6)0.0007 (6)0.0007 (5)0.0023 (5)
C100.0205 (6)0.0278 (7)0.0169 (6)0.0005 (6)0.0011 (5)0.0037 (5)
C110.0451 (10)0.0276 (7)0.0178 (6)0.0009 (7)0.0028 (7)0.0010 (6)
C120.0372 (9)0.0284 (7)0.0244 (7)0.0084 (7)0.0042 (6)0.0021 (6)
C130.0253 (7)0.0213 (6)0.0224 (6)0.0049 (6)0.0016 (5)0.0015 (5)
C140.0184 (6)0.0259 (7)0.0187 (6)0.0027 (5)0.0010 (5)0.0037 (5)
C150.0224 (7)0.0308 (7)0.0212 (6)0.0018 (6)0.0020 (6)0.0065 (5)
C160.0229 (7)0.0325 (8)0.0249 (7)0.0006 (6)0.0026 (6)0.0093 (6)
C170.0406 (9)0.0257 (7)0.0311 (8)0.0103 (7)0.0012 (7)0.0049 (6)
C180.0242 (7)0.0258 (7)0.0262 (7)0.0016 (6)0.0013 (6)0.0031 (6)
C190.0257 (7)0.0383 (8)0.0217 (6)0.0022 (7)0.0056 (6)0.0082 (6)
C200.0767 (16)0.0233 (8)0.0365 (9)0.0091 (10)0.0058 (10)0.0034 (7)
C210.138 (3)0.0313 (10)0.0610 (15)0.0238 (15)0.0115 (19)0.0033 (10)
C220.0819 (18)0.0284 (9)0.0661 (14)0.0109 (11)0.0189 (14)0.0047 (9)
C230.142 (4)0.0335 (12)0.087 (2)0.0168 (18)0.032 (3)0.0012 (13)
C240.0366 (9)0.0372 (9)0.0458 (10)0.0111 (8)0.0102 (8)0.0104 (8)
C250.0387 (9)0.0318 (8)0.0397 (9)0.0024 (7)0.0049 (8)0.0140 (7)
C260.0180 (6)0.0364 (8)0.0263 (7)0.0001 (6)0.0030 (6)0.0083 (6)
C270.0607 (13)0.0341 (9)0.0309 (8)0.0134 (9)0.0003 (9)0.0065 (7)
C280.095 (2)0.0476 (13)0.0538 (13)0.0037 (15)0.0014 (14)0.0251 (11)
C290.0343 (8)0.0266 (7)0.0195 (6)0.0010 (7)0.0055 (6)0.0014 (5)
C300.0412 (10)0.0434 (10)0.0299 (8)0.0086 (8)0.0164 (7)0.0055 (7)
Geometric parameters (Å, º) top
O1—C31.227 (2)C12—C131.544 (2)
O2—C271.374 (3)C12—H12A0.9900
O2—C61.4510 (18)C12—H12B0.9900
O3—C291.3697 (18)C13—C141.538 (2)
O3—C71.4600 (18)C13—C181.551 (2)
O4—C151.436 (2)C13—C171.562 (2)
O4—C141.4517 (18)C14—C151.491 (2)
O5—C161.346 (2)C15—C161.506 (2)
O5—C171.472 (2)C15—H151.0000
O6—C161.204 (2)C17—C201.507 (3)
O7—C231.368 (6)C17—H171.0000
O7—C211.381 (5)C18—H18A0.9800
O8—C271.205 (3)C18—H18B0.9800
O9—C291.205 (2)C18—H18C0.9800
C1—C21.344 (2)C19—H19A0.9800
C1—C101.531 (2)C19—H19B0.9800
C1—H10.9500C19—H19C0.9800
C2—C31.478 (3)C20—C211.344 (3)
C2—H20.9500C20—C221.441 (4)
C3—C41.546 (3)C21—H210.9500
C4—C251.539 (3)C22—C231.343 (4)
C4—C241.560 (3)C22—H220.9500
C4—C51.577 (2)C23—H230.9500
C5—C61.534 (2)C24—H24A0.9800
C5—C101.569 (2)C24—H24B0.9800
C5—H51.0000C24—H24C0.9800
C6—C71.537 (2)C25—H25A0.9800
C6—H61.0000C25—H25B0.9800
C7—C81.539 (2)C25—H25C0.9800
C7—H71.0000C26—H26A0.9800
C8—C261.557 (2)C26—H26B0.9800
C8—C91.561 (2)C26—H26C0.9800
C8—C141.570 (2)C27—C281.504 (3)
C9—C111.544 (2)C28—H28A0.9800
C9—C101.571 (2)C28—H28B0.9800
C9—H91.0000C28—H28C0.9800
C10—C191.559 (2)C29—C301.504 (3)
C11—C121.554 (2)C30—H30A0.9800
C11—H11A0.9900C30—H30B0.9800
C11—H11B0.9900C30—H30C0.9800
C27—O2—C6115.28 (15)C15—C14—C8122.44 (13)
C29—O3—C7117.80 (12)C13—C14—C8118.83 (12)
C15—O4—C1462.14 (9)O4—C15—C1459.43 (9)
C16—O5—C17120.09 (12)O4—C15—C16116.61 (14)
C23—O7—C21105.9 (2)C14—C15—C16117.91 (14)
C2—C1—C10120.74 (16)O4—C15—H15116.8
C2—C1—H1119.6C14—C15—H15116.8
C10—C1—H1119.6C16—C15—H15116.8
C1—C2—C3120.26 (16)O6—C16—O5120.32 (15)
C1—C2—H2119.9O6—C16—C15121.52 (16)
C3—C2—H2119.9O5—C16—C15118.11 (14)
O1—C3—C2121.14 (18)O5—C17—C20104.45 (14)
O1—C3—C4120.21 (19)O5—C17—C13110.09 (13)
C2—C3—C4118.58 (14)C20—C17—C13115.47 (15)
C25—C4—C3109.08 (14)O5—C17—H17108.9
C25—C4—C24108.90 (16)C20—C17—H17108.9
C3—C4—C24103.16 (15)C13—C17—H17108.9
C25—C4—C5114.70 (14)C13—C18—H18A109.5
C3—C4—C5110.96 (14)C13—C18—H18B109.5
C24—C4—C5109.39 (13)H18A—C18—H18B109.5
C6—C5—C10109.77 (12)C13—C18—H18C109.5
C6—C5—C4114.27 (13)H18A—C18—H18C109.5
C10—C5—C4114.05 (12)H18B—C18—H18C109.5
C6—C5—H5106.0C10—C19—H19A109.5
C10—C5—H5106.0C10—C19—H19B109.5
C4—C5—H5106.0H19A—C19—H19B109.5
O2—C6—C5109.22 (12)C10—C19—H19C109.5
O2—C6—C7107.43 (12)H19A—C19—H19C109.5
C5—C6—C7112.10 (12)H19B—C19—H19C109.5
O2—C6—H6109.3C21—C20—C22106.0 (3)
C5—C6—H6109.3C21—C20—C17125.3 (3)
C7—C6—H6109.3C22—C20—C17128.7 (2)
O3—C7—C6108.21 (12)C20—C21—O7110.8 (4)
O3—C7—C8107.95 (11)C20—C21—H21124.6
C6—C7—C8112.24 (12)O7—C21—H21124.6
O3—C7—H7109.5C23—C22—C20106.6 (3)
C6—C7—H7109.5C23—C22—H22126.7
C8—C7—H7109.5C20—C22—H22126.7
C7—C8—C26108.58 (13)C22—C23—O7110.8 (4)
C7—C8—C9108.85 (12)C22—C23—H23124.6
C26—C8—C9113.32 (11)O7—C23—H23124.6
C7—C8—C14110.18 (11)C4—C24—H24A109.5
C26—C8—C14106.74 (12)C4—C24—H24B109.5
C9—C8—C14109.15 (12)H24A—C24—H24B109.5
C11—C9—C8110.69 (12)C4—C24—H24C109.5
C11—C9—C10114.45 (11)H24A—C24—H24C109.5
C8—C9—C10114.98 (12)H24B—C24—H24C109.5
C11—C9—H9105.2C4—C25—H25A109.5
C8—C9—H9105.2C4—C25—H25B109.5
C10—C9—H9105.2H25A—C25—H25B109.5
C1—C10—C19105.40 (12)C4—C25—H25C109.5
C1—C10—C5105.61 (13)H25A—C25—H25C109.5
C19—C10—C5113.12 (13)H25B—C25—H25C109.5
C1—C10—C9108.83 (13)C8—C26—H26A109.5
C19—C10—C9114.95 (13)C8—C26—H26B109.5
C5—C10—C9108.42 (11)H26A—C26—H26B109.5
C9—C11—C12114.64 (12)C8—C26—H26C109.5
C9—C11—H11A108.6H26A—C26—H26C109.5
C12—C11—H11A108.6H26B—C26—H26C109.5
C9—C11—H11B108.6O8—C27—O2123.16 (18)
C12—C11—H11B108.6O8—C27—C28125.8 (2)
H11A—C11—H11B107.6O2—C27—C28111.0 (2)
C13—C12—C11113.60 (13)C27—C28—H28A109.5
C13—C12—H12A108.8C27—C28—H28B109.5
C11—C12—H12A108.8H28A—C28—H28B109.5
C13—C12—H12B108.8C27—C28—H28C109.5
C11—C12—H12B108.8H28A—C28—H28C109.5
H12A—C12—H12B107.7H28B—C28—H28C109.5
C14—C13—C12106.49 (13)O9—C29—O3123.71 (16)
C14—C13—C18112.10 (13)O9—C29—C30126.10 (15)
C12—C13—C18113.16 (13)O3—C29—C30110.19 (14)
C14—C13—C17106.91 (13)C29—C30—H30A109.5
C12—C13—C17109.19 (13)C29—C30—H30B109.5
C18—C13—C17108.77 (14)H30A—C30—H30B109.5
O4—C14—C1558.43 (9)C29—C30—H30C109.5
O4—C14—C13112.54 (12)H30A—C30—H30C109.5
C15—C14—C13115.33 (12)H30B—C30—H30C109.5
O4—C14—C8113.27 (12)
C10—C1—C2—C30.8 (3)C11—C12—C13—C1866.3 (2)
C1—C2—C3—O1151.7 (2)C11—C12—C13—C17172.40 (15)
C1—C2—C3—C431.5 (3)C15—O4—C14—C13106.78 (14)
O1—C3—C4—C2541.8 (2)C15—O4—C14—C8114.90 (14)
C2—C3—C4—C25141.42 (17)C12—C13—C14—O490.70 (14)
O1—C3—C4—C2473.9 (2)C18—C13—C14—O4145.05 (12)
C2—C3—C4—C24102.93 (18)C17—C13—C14—O425.94 (16)
O1—C3—C4—C5169.06 (17)C12—C13—C14—C15155.18 (13)
C2—C3—C4—C514.1 (2)C18—C13—C14—C1580.56 (16)
C25—C4—C5—C633.94 (19)C17—C13—C14—C1538.54 (18)
C3—C4—C5—C6158.10 (13)C12—C13—C14—C845.10 (17)
C24—C4—C5—C688.73 (17)C18—C13—C14—C879.16 (16)
C25—C4—C5—C1093.47 (17)C17—C13—C14—C8161.74 (13)
C3—C4—C5—C1030.69 (18)C7—C8—C14—O495.19 (14)
C24—C4—C5—C10143.86 (15)C26—C8—C14—O422.52 (16)
C27—O2—C6—C5157.85 (14)C9—C8—C14—O4145.34 (12)
C27—O2—C6—C780.34 (16)C7—C8—C14—C1528.89 (19)
C10—C5—C6—O2178.48 (11)C26—C8—C14—C1588.82 (16)
C4—C5—C6—O251.94 (16)C9—C8—C14—C15148.36 (14)
C10—C5—C6—C759.54 (15)C7—C8—C14—C13129.32 (13)
C4—C5—C6—C7170.89 (12)C26—C8—C14—C13112.97 (14)
C29—O3—C7—C6103.01 (14)C9—C8—C14—C139.85 (17)
C29—O3—C7—C8135.29 (13)C14—O4—C15—C16108.19 (15)
O2—C6—C7—O359.79 (15)C13—C14—C15—O4101.94 (14)
C5—C6—C7—O360.21 (15)C8—C14—C15—O499.15 (15)
O2—C6—C7—C8178.81 (12)O4—C14—C15—C16106.01 (16)
C5—C6—C7—C858.81 (16)C13—C14—C15—C164.1 (2)
O3—C7—C8—C26170.06 (11)C8—C14—C15—C16154.85 (14)
C6—C7—C8—C2670.76 (15)C17—O5—C16—O6172.96 (16)
O3—C7—C8—C966.16 (14)C17—O5—C16—C154.3 (2)
C6—C7—C8—C953.01 (16)O4—C15—C16—O6143.88 (16)
O3—C7—C8—C1453.49 (14)C14—C15—C16—O6148.35 (16)
C6—C7—C8—C14172.67 (12)O4—C15—C16—O538.9 (2)
C7—C8—C9—C11175.38 (12)C14—C15—C16—O528.8 (2)
C26—C8—C9—C1163.71 (16)C16—O5—C17—C20166.21 (16)
C14—C8—C9—C1155.09 (15)C16—O5—C17—C1341.7 (2)
C7—C8—C9—C1053.01 (15)C14—C13—C17—O561.47 (17)
C26—C8—C9—C1067.90 (16)C12—C13—C17—O5176.30 (14)
C14—C8—C9—C10173.30 (12)C18—C13—C17—O559.77 (18)
C2—C1—C10—C1975.97 (19)C14—C13—C17—C20179.41 (16)
C2—C1—C10—C544.02 (19)C12—C13—C17—C2065.8 (2)
C2—C1—C10—C9160.24 (15)C18—C13—C17—C2058.2 (2)
C6—C5—C10—C1172.32 (12)O5—C17—C20—C21135.9 (2)
C4—C5—C10—C157.99 (16)C13—C17—C20—C21103.1 (3)
C6—C5—C10—C1972.91 (15)O5—C17—C20—C2241.4 (3)
C4—C5—C10—C1956.78 (17)C13—C17—C20—C2279.6 (2)
C6—C5—C10—C955.81 (15)C22—C20—C21—O71.5 (3)
C4—C5—C10—C9174.49 (12)C17—C20—C21—O7179.3 (2)
C11—C9—C10—C161.00 (17)C23—O7—C21—C202.0 (3)
C8—C9—C10—C1169.21 (12)C21—C20—C22—C230.3 (3)
C11—C9—C10—C1956.92 (18)C17—C20—C22—C23178.1 (2)
C8—C9—C10—C1972.88 (16)C20—C22—C23—O70.9 (3)
C11—C9—C10—C5175.40 (13)C21—O7—C23—C221.8 (4)
C8—C9—C10—C554.81 (16)C6—O2—C27—O82.3 (3)
C8—C9—C11—C1243.91 (19)C6—O2—C27—C28177.72 (17)
C10—C9—C11—C12175.79 (14)C7—O3—C29—O92.3 (2)
C9—C11—C12—C1314.2 (2)C7—O3—C29—C30177.55 (13)
C11—C12—C13—C1457.29 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O1i0.992.593.410 (3)141
C18—H18C···O1i0.982.683.571 (2)152
C18—H18B···O6ii0.982.563.497 (2)160
C22—H22···O6ii0.952.693.601 (3)162
C24—H24B···O20.982.403.066 (3)125
C25—H25C···O20.982.503.112 (2)121
C5—H5···O31.002.502.931 (2)105
C9—H9···O31.002.552.944 (2)103
C18—H18B···O50.982.452.934 (2)110
C7—H7···O91.002.332.735 (2)103
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC30H36O9
Mr540.59
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)6.475 (2), 14.914 (5), 28.713 (9)
V3)2772.8 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.62 × 0.40 × 0.25
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.89, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
39048, 4509, 4077
Rint0.031
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.04
No. of reflections4509
No. of parameters359
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.24

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SAINT, SADABS and XPREP (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O1i0.992.593.410 (3)141
C18—H18C···O1i0.982.683.571 (2)152
C18—H18B···O6ii0.982.563.497 (2)160
C22—H22···O6ii0.952.693.601 (3)162
C24—H24B···O20.982.403.066 (3)125
C25—H25C···O20.982.503.112 (2)121
C5—H5···O31.002.502.931 (2)105
C9—H9···O31.002.552.944 (2)103
C18—H18B···O50.982.452.934 (2)110
C7—H7···O91.002.332.735 (2)103
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x1/2, y+1/2, z+1.
 

Acknowledgements

We dedicate this paper to the memory of Professor Otmar Hofer (1942–2009), an oustanding scientist and magnificent person, who contributed his expertise to this as well as many other works.

References

First citationBrader, G., Vajrodaya, S., Greger, H., Bacher, M., Kalchhauser, H. & Hofer, O. (1998). J. Nat. Prod. 61, 1482–1490.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2003). SMART, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConnolly, J. D., McCrindle, R., Overton, K. H. & Feeney, J. (1966). Tetrahedron, 22, 891–896.  CrossRef CAS Web of Science Google Scholar
First citationEngelmeier, D., Hadacek, F., Pacher, T., Vajrodaya, S. & Greger, H. (2000). J. Agric. Food. Chem. 48, 1400–1404.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFuzzati, N., Dyatmiko, W., Rahman, A., Achmad, F. & Hostettmann, K. (1996). Phytochemistry, 42, 1395–1398.  CrossRef CAS Web of Science Google Scholar
First citationGreger, H., Pacher, T., Brem, B., Bacher, M. & Hofer, O. (2001). Phytochemistry, 57, 57–64.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGreger, H., Pacher, T., Vajrodaya, S., Bacher, M. & Hofer, O. (2000). J. Nat. Prod. 63, 616–620.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHausott, B., Greger, H. & Marian, B. (2004). Int. J. Cancer, 109, 933–940.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJimenez, A., Villarreal, C., Toscano, R. A., Cook, M., Arnason, J. T., Bye, R. & Mata, R. (1998). Phytochemistry, 49, 1981–1988.  Web of Science CSD CrossRef CAS Google Scholar
First citationLavie, D., Levy, E. C. & Zelnik, R. (1972). Bioorg. Chem. 2, 59–64.  CrossRef CAS Google Scholar
First citationMitsui, K., Saito, H., Yamamura, R., Fukaya, H., Hitotsuyanagi, Y. & Takeya, K. (2006). J. Nat. Prod. 69, 1310–1314.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSutherland, S. A., Sim, G. A. & Robertson, J. M. (1962). Proc. Chem. Soc. pp. 222.  Google Scholar
First citationTaylor, D. A. H. (1974). J. Chem. Soc. Perkin Trans. pp. 437–441.  CrossRef Web of Science Google Scholar
First citationToscano, R. A., Mata, R., Calderon, J. & Segura, R. (1996). J. Chem. Crystallogr. 26, 707–711.  CSD CrossRef CAS Web of Science Google Scholar
First citationWaratchareeyakul, W., Chantrapromma, S., Fun, H.-K., Razak, I. A., Karalai, C. & Ponglimanont, C. (2004). Acta Cryst. E60, o1964–o1966.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1942-o1943
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds