organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1992-o1993

4-Butyl-1-(2,3,4-tri-O-acetyl-β-L-fuco­pyranos­yl)-1H-1,2,3-triazole

aDepartment of Chemistry, Youngstown State University, 1 University Plaza, Youngstown, OH 44555-3663, USA
*Correspondence e-mail: mzeller@ysu.edu

(Received 15 July 2009; accepted 20 July 2009; online 25 July 2009)

The title compound, C18H27N3O7, was synthesized by CuI-catalysed coupling of an azide with an alkyne as part of a study into the synthesis of N-glycosyl-1,2,3-triazoles. The crystal structure confirms the selective formation of the β-conformer of the pyran­ose N-glycoside, thus confirming the retention of stereochemistry during heterocycle formation with the N-glycosyl triazole group occupying the equatorial position at the anomeric C atom. The structure exhibits two crystallographically independent mol­ecules (A and B) with essentially identical conformations with a weighted r.m.s. deviation of only 0.09 Å. The mol­ecules are arranged in layers with hydro­phobic and more polar sections built from the butyl triazole units on the one hand and the more polar moieties dominated by the carbohydrate units on the other. Within the polar layers, inter­molecular inter­actions are dominated by a three-dimensional network of weak C—H⋯O hydrogen bonds with the acetyl keto O atoms as the hydrogen-bond acceptors. The triazole units inter­act with each other via C—H⋯N hydrogen bonds which connect the mol­ecules into two infinite chains of mol­ecules made up of either A mol­ecules or B mol­ecules that stretch parallel to each other along [100]. Between the butyl groups no directional inter­actions are observed.

Related literature

For background information on N-glycosidic mimics of naturally occurring carbohydrates, see: Norris (2008[Norris, P. (2008). Curr. Top. Med. Chem. 8, 101-113.]); Temelkoff et al. (2006[Temelkoff, D. P., Zeller, M. & Norris, P. (2006). Carbohydr. Res. 341, 1081-1090.]). For details of the synthesis of the carbohydrate starting material used, see: Zhang et al. (2007[Zhang, J., Chen, H.-N., Chiang, F.-I., Takemoto, J. Y., Bensaci, M. & Chang, C.-W. T. (2007). J. Comb. Chem. 9, 17-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H27N3O7

  • Mr = 397.43

  • Triclinic, P 1

  • a = 5.5173 (3) Å

  • b = 7.7442 (4) Å

  • c = 24.1013 (13) Å

  • α = 94.507 (1)°

  • β = 96.151 (1)°

  • γ = 91.227 (1)°

  • V = 1020.22 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.36 × 0.35 × 0.09 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS in SAINT-Plus; Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.867, Tmax = 0.991

  • 10512 measured reflections

  • 5041 independent reflections

  • 4839 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.120

  • S = 1.11

  • 5041 reflections

  • 515 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1B—H1B⋯O3Bi 1.00 2.53 3.362 (3) 141
C2A—H2A⋯O3A 1.00 2.26 2.701 (3) 105
C2B—H2B⋯O3B 1.00 2.26 2.698 (3) 105
C3A—H3A⋯O3Aii 1.00 2.32 3.214 (3) 149
C3B—H3B⋯O3Bi 1.00 2.27 3.165 (3) 148
C4A—H4A⋯O5A 1.00 2.56 3.046 (3) 110
C4A—H4A⋯O7A 1.00 2.23 2.682 (3) 106
C4B—H4B⋯O5B 1.00 2.57 3.067 (3) 110
C4B—H4B⋯O7B 1.00 2.21 2.670 (3) 106
C7A—H7A⋯N3Aii 0.95 2.39 3.308 (4) 161
C7B—H7B⋯N3Bi 0.95 2.40 3.313 (4) 161
C14A—H14A⋯O1Aiii 0.98 2.47 3.377 (3) 154
C14B—H14D⋯O1Biii 0.98 2.35 3.261 (3) 155
C16A—H16A⋯O7Biii 0.98 2.41 3.295 (4) 150
C16B—H16F⋯O7A 0.98 2.51 3.401 (4) 150
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) x, y-1, z.

Data collection: SMART for WNT/2000 (Bruker, 2002[Bruker (2002). SMART for WNT/2000. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

N-Glycosidic analogs of naturally occurring carbohydrates are receiving a growing amount of attention due to their potential in medicinal chemistry (Norris, 2008; Temelkoff et al., 2006). As part of a study into the synthesis of N-glycosyl-1,2,3-triazoles, the title compound was found to be the only 1,2,3-triazole product formed from the reaction of 2,3,4-tri-O-acetyl-β-L-fucopyranosyl azide (Zhang et al., 2007) with 1-hexyne and catalytic CuSO4/ascorbic acid (Fig. 1).

The structure exhibits two crystallographically independent molecules A and B (Fig. 2) with essentially identical conformations as can be seen in the overlay shown in Fig. 3. The weighted r.m.s. deviation of the two molecules is only 0.09 Å. Both molecules exhibit unexceptional chair conformations for the pyranose ring and straight all-trans chains for the butyl chains. The crystal structure reveals the β-configuration of the pyranose N-glycoside (Fig. 2). This confirms the retention of stereochemistry during heterocycle formation with the N-glycosyl triazole group occupying the equatorial position at the anomeric carbon atom. Also, the complete regioselectivity of the cycloaddition process is supported with only the 1,4–1H-1,2,3-triazole being formed as the 1H NMR spectrum of the crude reaction mixture did not show any additional signals that may indicate the formation of the corresponding 1,5-isomer.

The molecules arrange in the solid state in layers with mainly hydrophobic sections built from the butyl triazole units on the one hand and the more polar moieties dominated by the carbohydrate units on the other. Within the polar layers intermolecular interactions are dominated by a three-dimensional network of weak C—H···O hydrogen bonds with the acetyl keto oxygen atoms as the H bond acceptors (Fig. 4, Table 1). The triazole units interact with each other via C—H···N hydrogen bonds that connect the molecules into two infinite chains made up of either A molecules or B molecules that stretch parallel to each other along the [1 0 0] direction (Figure 4, Table 1). In the hydrophobic layer dominated by the butyl groups no directional interactions are observed.

Related literature top

For background information on N-glycosidic mimics of naturally occurring carbohydrates, see: Norris (2008); Temelkoff et al. (2006). For details of the synthesis of the carbohydrate starting material used, see: Zhang et al. (2007).

Experimental top

The triazole was prepared from 2,3,4-tri-O-acetyl-β-L-fucosyl azide (0.4 g, 1.27 mmol), 1-hexyne (0.16 ml, 1.38 mmol), 1M CuSO4 (0.3 ml, 0.3 mmol), 1M ascorbic acid (0.4 ml, 0.4 mmol) and 10 ml of 1:1 ethanol/H2O as solvent. The mixture was heated to 345.5 K (70 °C) and allowed to stir vigorously until TLC showed the completion of the reaction. The reaction was monitored by TLC (1:1, hexane-ethyl acetate, Rf = 0.41). After cooling to room temperature, ice water was added to the mixture which led to the precipitation of the triazole product which was then isolated by filtration through a glass frit. Purification by flash column chromatography (1:1, hexane-ethyl acetate) and recrystallization with isopropanol gave the title compound as a white solid (0.42 g, 83.3%). Crystals suitable for data collection were grown by slow evaporation from isopropanol. 1H NMR (CDCl3): δ 0.91 (t, 3H, J = 7.32 Hz), 1.23 (d, 3H, J = 6.22 Hz), 1.35 (m, 2H, J = 7.32 Hz), 1.64 (m, 2H, J = 7.32 Hz), 1.85 (s, 3H, COCH3), 1.98 (s, 3H, COCH3), 2.22 (s, 3H, COCH3), 2.70 (t, 2H, J = 7.32 Hz), 4.09 (q, 1H, J = 6.59 Hz), 5.21 (dd, 1H, J = 2.93, 10.25 Hz), 5.37 (d, 1H, J = 3.30 Hz), 5.50 (t, 1H, H-2, J = 9.89 Hz), 5.76 (d, 1H, H-1, J = 9.89 Hz), 7.54 (s, 1H, H-triazole); 13C NMR (CDCl3): δ 15.08, 17.33, 21.55, 21.83, 21.96, 23.45, 26.56, 32.53, 69.01, 71.07, 72.45, 73.75, 87.32, 119.86, 150.02, 170.20, 170.90, 171.39; MS: m/z calculated: 397.18, m/z found (ESI): 420.2 (+Na).

Refinement top

Treatment of hydrogen atoms: All hydrogen atoms were added in calculated positions with a C—H bond distance of 0.95 Å (triazole H), 0.98 Å (methyl) or 1.00 Å (others). They were refined with isotropic displacement parameters of 1.5 times (methyl) or 1.2 times (others) that of the equivalent isotropic displacement parameter of the adjacent carbon atom. Methyl hydrogen atoms were allowed to rotate to best fit the experimental electron density.

Friedel pairs were merged prior to refinement. The absolute structure was assigned based on the known stereochemistry of carbon atoms not being changed during the synthesis of the compound.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008); publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Synthesis of the title compound.
[Figure 2] Fig. 2. Thermal ellipsoid representation of both crystallographically independent molecules. Displacement ellipsoids are at the 50% level, hydrogen atoms are shown as spheres of arbitrary radii.
[Figure 3] Fig. 3. Overlay of the A and B molecules.
[Figure 4] Fig. 4. View of the packing arrangement. Blue dotted lines represent C—H···O and C—H···N interactions.
4-Butyl-1-(2,3,4-tri-O-acetyl-β-L-fucopyranosyl)-1H-1,2,3-triazole top
Crystal data top
C18H27N3O7Z = 2
Mr = 397.43F(000) = 424
Triclinic, P1Dx = 1.294 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.5173 (3) ÅCell parameters from 9354 reflections
b = 7.7442 (4) Åθ = 2.6–30.5°
c = 24.1013 (13) ŵ = 0.10 mm1
α = 94.507 (1)°T = 100 K
β = 96.151 (1)°Plate, colourless
γ = 91.227 (1)°0.36 × 0.35 × 0.09 mm
V = 1020.22 (9) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
5041 independent reflections
Radiation source: fine-focus sealed tube4839 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 28.3°, θmin = 0.9°
Absorption correction: multi-scan
(SADABS in SAINT-Plus; Bruker, 2003)
h = 77
Tmin = 0.867, Tmax = 0.991k = 1010
10512 measured reflectionsl = 3132
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0771P)2 + 0.17P]
where P = (Fo2 + 2Fc2)/3
5041 reflections(Δ/σ)max < 0.001
515 parametersΔρmax = 0.42 e Å3
3 restraintsΔρmin = 0.21 e Å3
Crystal data top
C18H27N3O7γ = 91.227 (1)°
Mr = 397.43V = 1020.22 (9) Å3
Triclinic, P1Z = 2
a = 5.5173 (3) ÅMo Kα radiation
b = 7.7442 (4) ŵ = 0.10 mm1
c = 24.1013 (13) ÅT = 100 K
α = 94.507 (1)°0.36 × 0.35 × 0.09 mm
β = 96.151 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5041 independent reflections
Absorption correction: multi-scan
(SADABS in SAINT-Plus; Bruker, 2003)
4839 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.991Rint = 0.020
10512 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0463 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.11Δρmax = 0.42 e Å3
5041 reflectionsΔρmin = 0.21 e Å3
515 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.1284 (4)0.5904 (3)0.25737 (10)0.0160 (4)
H1A0.28990.54470.24900.019*
C2A0.0093 (4)0.4715 (3)0.29447 (10)0.0160 (4)
H2A0.15300.51590.30270.019*
C3A0.1762 (4)0.4617 (3)0.34855 (10)0.0172 (4)
H3A0.32490.39670.34050.021*
C4A0.2522 (4)0.6418 (3)0.37653 (10)0.0178 (5)
H4A0.38980.63010.40640.021*
C5A0.3353 (5)0.7604 (3)0.33445 (11)0.0201 (5)
H5A0.49500.72060.32290.024*
C6A0.3639 (6)0.9487 (4)0.35723 (13)0.0282 (6)
H6A10.42991.01730.32950.042*
H6A20.47570.95830.39190.042*
H6A30.20450.99230.36500.042*
C7A0.0505 (5)0.6379 (3)0.15536 (11)0.0186 (5)
H7A0.21270.63960.14550.022*
C8A0.1595 (4)0.6638 (3)0.12178 (11)0.0189 (5)
C9A0.1947 (5)0.7003 (4)0.06140 (12)0.0238 (5)
H9A10.21560.82620.05900.029*
H9A20.34630.63990.04340.029*
C10A0.0155 (5)0.6439 (4)0.02915 (11)0.0226 (5)
H10A0.03960.51860.03230.027*
H10B0.16650.70700.04630.027*
C11A0.0269 (5)0.6775 (5)0.03262 (12)0.0307 (6)
H11A0.18120.61800.04940.037*
H11B0.04510.80340.03570.037*
C12A0.1782 (6)0.6156 (5)0.06548 (13)0.0351 (7)
H12A0.33140.67490.04940.053*
H12B0.14250.64160.10460.053*
H12C0.19360.49030.06370.053*
C13A0.2440 (4)0.2243 (3)0.26034 (11)0.0192 (5)
C14A0.2384 (5)0.0438 (3)0.23312 (12)0.0248 (5)
H14A0.14900.02990.25900.037*
H14B0.15690.04580.19900.037*
H14C0.40560.00260.22350.037*
C15A0.1526 (5)0.3080 (3)0.43018 (12)0.0234 (5)
C16A0.0247 (6)0.2183 (5)0.46177 (14)0.0367 (7)
H16A0.06450.15440.49060.055*
H16B0.12920.13730.43590.055*
H16C0.12570.30430.47950.055*
C17A0.0802 (5)0.7476 (3)0.45847 (11)0.0207 (5)
C18A0.1564 (5)0.7616 (4)0.48340 (13)0.0286 (6)
H18A0.12410.79550.52360.043*
H18B0.24470.64940.47770.043*
H18C0.25530.84920.46530.043*
N1A0.0240 (4)0.6093 (3)0.20568 (9)0.0166 (4)
N2A0.2688 (4)0.6186 (3)0.20427 (10)0.0204 (4)
N3A0.3509 (4)0.6499 (3)0.15312 (10)0.0203 (4)
O1A0.1606 (3)0.7576 (2)0.28548 (8)0.0195 (4)
O2A0.0188 (3)0.3011 (2)0.26588 (8)0.0181 (3)
O3A0.4211 (3)0.2926 (3)0.27577 (9)0.0262 (4)
O4A0.0358 (3)0.3647 (2)0.38316 (8)0.0216 (4)
O5A0.3664 (4)0.3301 (3)0.44336 (9)0.0329 (5)
O6A0.0444 (3)0.7086 (2)0.40218 (8)0.0205 (4)
O7A0.2785 (4)0.7661 (4)0.48414 (9)0.0385 (6)
C1B0.2703 (4)0.9784 (3)0.80834 (10)0.0174 (5)
H1B0.10760.93440.81680.021*
C2B0.3807 (4)0.8444 (3)0.76952 (11)0.0166 (4)
H2B0.54390.88620.76080.020*
C3B0.2060 (4)0.8121 (3)0.71631 (10)0.0186 (5)
H3B0.05530.75000.72480.022*
C4B0.1364 (4)0.9804 (3)0.69039 (11)0.0193 (5)
H4B0.00280.95570.66050.023*
C5B0.0619 (5)1.1164 (4)0.73393 (11)0.0212 (5)
H5B0.09751.07890.74600.025*
C6B0.0375 (6)1.2960 (4)0.71358 (12)0.0275 (6)
H6B10.01471.37560.74340.041*
H6B20.08381.29200.68060.041*
H6B30.19531.33670.70360.041*
C7B0.3525 (5)1.0728 (3)0.91047 (11)0.0195 (5)
H7B0.19041.07720.92030.023*
C8B0.5642 (4)1.1177 (3)0.94397 (11)0.0187 (5)
C9B0.6021 (5)1.1841 (4)1.00422 (12)0.0244 (5)
H9B10.63181.31111.00670.029*
H9B20.74961.13201.02220.029*
C10B0.3876 (5)1.1448 (4)1.03638 (11)0.0232 (5)
H10C0.24091.19951.01900.028*
H10D0.35521.01801.03320.028*
C11B0.4303 (6)1.2089 (5)1.09785 (12)0.0309 (6)
H11C0.45831.33611.10100.037*
H11D0.58001.15681.11490.037*
C12B0.2200 (6)1.1658 (5)1.13071 (13)0.0351 (7)
H12D0.07201.21981.11490.053*
H12E0.25931.21001.16990.053*
H12F0.19311.03991.12850.053*
C13B0.6276 (5)0.6187 (3)0.80445 (11)0.0192 (5)
C14B0.6181 (5)0.4532 (4)0.83252 (13)0.0264 (6)
H14D0.52910.36350.80680.040*
H14E0.53450.47190.86630.040*
H14F0.78440.41600.84280.040*
C15B0.1945 (6)0.6211 (4)0.63345 (12)0.0272 (6)
C16B0.3516 (7)0.5229 (5)0.59592 (14)0.0402 (8)
H16D0.26180.41930.57790.060*
H16E0.49960.48860.61810.060*
H16F0.39650.59670.56720.060*
C17B0.3086 (5)1.0620 (4)0.60971 (11)0.0218 (5)
C18B0.5441 (5)1.0822 (5)0.58499 (13)0.0306 (6)
H18D0.51151.12050.54720.046*
H18E0.62510.97090.58320.046*
H18F0.64981.16860.60840.046*
N1B0.4259 (4)1.0209 (3)0.86032 (9)0.0166 (4)
N2B0.6712 (4)1.0341 (3)0.86152 (10)0.0202 (4)
N3B0.7542 (4)1.0919 (3)0.91256 (9)0.0201 (4)
O1B0.2423 (3)1.1344 (2)0.78221 (8)0.0195 (4)
O2B0.4016 (3)0.6857 (2)0.79666 (8)0.0187 (3)
O3B0.8064 (3)0.6837 (3)0.78989 (10)0.0285 (4)
O4B0.3322 (4)0.7019 (2)0.67849 (8)0.0228 (4)
O5B0.0221 (4)0.6326 (3)0.62559 (10)0.0363 (5)
O6B0.3468 (3)1.0408 (2)0.66523 (8)0.0209 (4)
O7B0.1098 (4)1.0641 (4)0.58456 (9)0.0352 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0121 (10)0.0187 (11)0.0174 (11)0.0013 (8)0.0022 (8)0.0014 (9)
C2A0.0137 (10)0.0157 (10)0.0185 (11)0.0005 (8)0.0032 (8)0.0015 (8)
C3A0.0154 (11)0.0187 (11)0.0183 (11)0.0008 (8)0.0032 (8)0.0040 (9)
C4A0.0139 (11)0.0202 (11)0.0191 (11)0.0011 (9)0.0026 (8)0.0017 (9)
C5A0.0167 (11)0.0218 (12)0.0215 (12)0.0022 (9)0.0013 (9)0.0007 (9)
C6A0.0322 (15)0.0227 (13)0.0281 (14)0.0071 (11)0.0006 (11)0.0002 (10)
C7A0.0155 (11)0.0213 (11)0.0195 (12)0.0015 (9)0.0042 (9)0.0003 (9)
C8A0.0134 (11)0.0216 (11)0.0213 (12)0.0008 (9)0.0035 (9)0.0022 (9)
C9A0.0177 (12)0.0311 (14)0.0230 (13)0.0057 (10)0.0015 (9)0.0051 (10)
C10A0.0212 (12)0.0263 (13)0.0209 (12)0.0020 (10)0.0039 (9)0.0031 (10)
C11A0.0249 (14)0.0474 (18)0.0208 (13)0.0034 (12)0.0035 (10)0.0067 (12)
C12A0.0313 (16)0.0507 (19)0.0253 (15)0.0038 (13)0.0087 (12)0.0065 (13)
C13A0.0171 (11)0.0213 (12)0.0192 (12)0.0014 (9)0.0006 (9)0.0023 (9)
C14A0.0240 (13)0.0202 (12)0.0288 (14)0.0010 (10)0.0005 (10)0.0029 (10)
C15A0.0291 (14)0.0182 (11)0.0231 (13)0.0025 (10)0.0035 (10)0.0021 (9)
C16A0.0382 (18)0.0403 (17)0.0343 (16)0.0012 (14)0.0052 (13)0.0192 (13)
C17A0.0157 (11)0.0221 (12)0.0243 (12)0.0011 (9)0.0034 (9)0.0006 (9)
C18A0.0159 (12)0.0402 (16)0.0297 (14)0.0012 (11)0.0062 (10)0.0018 (12)
N1A0.0123 (9)0.0177 (9)0.0199 (10)0.0007 (7)0.0017 (7)0.0010 (7)
N2A0.0121 (9)0.0221 (10)0.0270 (11)0.0006 (8)0.0027 (8)0.0018 (8)
N3A0.0148 (10)0.0221 (10)0.0243 (11)0.0001 (8)0.0037 (8)0.0019 (8)
O1A0.0183 (8)0.0172 (8)0.0222 (9)0.0004 (6)0.0001 (7)0.0001 (7)
O2A0.0133 (8)0.0174 (8)0.0233 (9)0.0017 (6)0.0033 (6)0.0017 (7)
O3A0.0172 (9)0.0231 (9)0.0385 (11)0.0029 (7)0.0079 (8)0.0019 (8)
O4A0.0183 (8)0.0242 (9)0.0230 (9)0.0012 (7)0.0035 (7)0.0049 (7)
O5A0.0300 (11)0.0354 (12)0.0319 (11)0.0004 (9)0.0069 (9)0.0089 (9)
O6A0.0144 (8)0.0229 (9)0.0238 (9)0.0038 (7)0.0023 (7)0.0020 (7)
O7A0.0173 (10)0.0686 (17)0.0267 (11)0.0044 (10)0.0018 (8)0.0144 (11)
C1B0.0139 (10)0.0202 (11)0.0173 (11)0.0023 (9)0.0002 (8)0.0009 (9)
C2B0.0140 (10)0.0161 (10)0.0195 (11)0.0026 (8)0.0013 (8)0.0023 (8)
C3B0.0180 (11)0.0201 (11)0.0171 (11)0.0015 (9)0.0013 (8)0.0005 (9)
C4B0.0134 (11)0.0241 (12)0.0202 (12)0.0022 (9)0.0008 (9)0.0037 (9)
C5B0.0164 (11)0.0252 (12)0.0219 (12)0.0006 (9)0.0003 (9)0.0043 (9)
C6B0.0311 (14)0.0244 (13)0.0266 (14)0.0054 (11)0.0020 (11)0.0046 (11)
C7B0.0155 (11)0.0209 (11)0.0220 (12)0.0009 (9)0.0032 (9)0.0007 (9)
C8B0.0144 (11)0.0185 (11)0.0232 (12)0.0022 (9)0.0017 (9)0.0033 (9)
C9B0.0185 (12)0.0321 (14)0.0216 (13)0.0063 (10)0.0013 (9)0.0007 (10)
C10B0.0199 (12)0.0279 (13)0.0213 (12)0.0035 (10)0.0029 (9)0.0011 (10)
C11B0.0248 (14)0.0444 (17)0.0222 (14)0.0059 (12)0.0040 (10)0.0046 (12)
C12B0.0304 (16)0.0494 (19)0.0253 (14)0.0049 (14)0.0091 (12)0.0043 (13)
C13B0.0184 (12)0.0193 (11)0.0190 (12)0.0015 (9)0.0016 (9)0.0029 (9)
C14B0.0224 (13)0.0248 (13)0.0324 (15)0.0004 (10)0.0006 (10)0.0071 (11)
C15B0.0409 (17)0.0186 (12)0.0204 (13)0.0067 (11)0.0024 (11)0.0012 (10)
C16B0.058 (2)0.0306 (15)0.0298 (16)0.0025 (15)0.0037 (14)0.0102 (12)
C17B0.0167 (12)0.0260 (13)0.0228 (12)0.0006 (9)0.0043 (9)0.0000 (10)
C18B0.0187 (13)0.0454 (17)0.0281 (14)0.0006 (11)0.0073 (11)0.0006 (12)
N1B0.0121 (9)0.0196 (10)0.0179 (10)0.0014 (7)0.0018 (7)0.0005 (8)
N2B0.0117 (9)0.0252 (11)0.0233 (11)0.0001 (8)0.0014 (7)0.0003 (8)
N3B0.0146 (9)0.0244 (11)0.0212 (10)0.0009 (8)0.0023 (8)0.0008 (8)
O1B0.0187 (8)0.0184 (8)0.0207 (9)0.0015 (6)0.0008 (7)0.0015 (7)
O2B0.0153 (8)0.0194 (8)0.0217 (9)0.0017 (6)0.0017 (6)0.0049 (7)
O3B0.0175 (9)0.0261 (10)0.0432 (12)0.0005 (7)0.0081 (8)0.0059 (9)
O4B0.0266 (10)0.0210 (9)0.0200 (9)0.0018 (7)0.0025 (7)0.0028 (7)
O5B0.0365 (13)0.0351 (12)0.0329 (12)0.0066 (9)0.0092 (9)0.0049 (9)
O6B0.0149 (8)0.0252 (9)0.0225 (9)0.0050 (7)0.0006 (7)0.0054 (7)
O7B0.0190 (10)0.0659 (16)0.0212 (10)0.0011 (10)0.0010 (7)0.0101 (10)
Geometric parameters (Å, º) top
C1A—O1A1.412 (3)C1B—O1B1.409 (3)
C1A—N1A1.446 (3)C1B—N1B1.452 (3)
C1A—C2A1.519 (3)C1B—C2B1.523 (3)
C1A—H1A1.0000C1B—H1B1.0000
C2A—O2A1.437 (3)C2B—O2B1.438 (3)
C2A—C3A1.521 (3)C2B—C3B1.520 (3)
C2A—H2A1.0000C2B—H2B1.0000
C3A—O4A1.440 (3)C3B—O4B1.443 (3)
C3A—C4A1.530 (3)C3B—C4B1.528 (3)
C3A—H3A1.0000C3B—H3B1.0000
C4A—O6A1.446 (3)C4B—O6B1.451 (3)
C4A—C5A1.520 (4)C4B—C5B1.522 (4)
C4A—H4A1.0000C4B—H4B1.0000
C5A—O1A1.440 (3)C5B—O1B1.444 (3)
C5A—C6A1.516 (4)C5B—C6B1.515 (4)
C5A—H5A1.0000C5B—H5B1.0000
C6A—H6A10.9800C6B—H6B10.9800
C6A—H6A20.9800C6B—H6B20.9800
C6A—H6A30.9800C6B—H6B30.9800
C7A—N1A1.354 (3)C7B—N1B1.350 (3)
C7A—C8A1.369 (3)C7B—C8B1.369 (3)
C7A—H7A0.9500C7B—H7B0.9500
C8A—N3A1.369 (3)C8B—N3B1.367 (3)
C8A—C9A1.497 (4)C8B—C9B1.493 (4)
C9A—C10A1.517 (4)C9B—C10B1.520 (4)
C9A—H9A10.9900C9B—H9B10.9900
C9A—H9A20.9900C9B—H9B20.9900
C10A—C11A1.526 (4)C10B—C11B1.517 (4)
C10A—H10A0.9900C10B—H10C0.9900
C10A—H10B0.9900C10B—H10D0.9900
C11A—C12A1.514 (4)C11B—C12B1.519 (4)
C11A—H11A0.9900C11B—H11C0.9900
C11A—H11B0.9900C11B—H11D0.9900
C12A—H12A0.9800C12B—H12D0.9800
C12A—H12B0.9800C12B—H12E0.9800
C12A—H12C0.9800C12B—H12F0.9800
C13A—O3A1.200 (3)C13B—O3B1.196 (3)
C13A—O2A1.355 (3)C13B—O2B1.361 (3)
C13A—C14A1.500 (4)C13B—C14B1.498 (4)
C14A—H14A0.9800C14B—H14D0.9800
C14A—H14B0.9800C14B—H14E0.9800
C14A—H14C0.9800C14B—H14F0.9800
C15A—O5A1.193 (4)C15B—O5B1.196 (4)
C15A—O4A1.351 (3)C15B—O4B1.358 (3)
C15A—C16A1.495 (4)C15B—C16B1.495 (5)
C16A—H16A0.9800C16B—H16D0.9800
C16A—H16B0.9800C16B—H16E0.9800
C16A—H16C0.9800C16B—H16F0.9800
C17A—O7A1.198 (3)C17B—O7B1.196 (3)
C17A—O6A1.359 (3)C17B—O6B1.355 (3)
C17A—C18A1.497 (4)C17B—C18B1.496 (4)
C18A—H18A0.9800C18B—H18D0.9800
C18A—H18B0.9800C18B—H18E0.9800
C18A—H18C0.9800C18B—H18F0.9800
N1A—N2A1.351 (3)N1B—N2B1.352 (3)
N2A—N3A1.310 (3)N2B—N3B1.307 (3)
O1A—C1A—N1A106.41 (19)O1B—C1B—N1B106.14 (19)
O1A—C1A—C2A108.84 (19)O1B—C1B—C2B109.43 (19)
N1A—C1A—C2A111.89 (19)N1B—C1B—C2B112.5 (2)
O1A—C1A—H1A109.9O1B—C1B—H1B109.6
N1A—C1A—H1A109.9N1B—C1B—H1B109.6
C2A—C1A—H1A109.9C2B—C1B—H1B109.6
O2A—C2A—C1A108.36 (19)O2B—C2B—C3B108.53 (19)
O2A—C2A—C3A108.51 (19)O2B—C2B—C1B108.20 (19)
C1A—C2A—C3A108.96 (19)C3B—C2B—C1B108.09 (19)
O2A—C2A—H2A110.3O2B—C2B—H2B110.6
C1A—C2A—H2A110.3C3B—C2B—H2B110.6
C3A—C2A—H2A110.3C1B—C2B—H2B110.6
O4A—C3A—C2A104.62 (19)O4B—C3B—C2B105.76 (19)
O4A—C3A—C4A111.7 (2)O4B—C3B—C4B110.6 (2)
C2A—C3A—C4A111.91 (19)C2B—C3B—C4B112.0 (2)
O4A—C3A—H3A109.5O4B—C3B—H3B109.5
C2A—C3A—H3A109.5C2B—C3B—H3B109.5
C4A—C3A—H3A109.5C4B—C3B—H3B109.5
O6A—C4A—C5A111.8 (2)O6B—C4B—C5B110.9 (2)
O6A—C4A—C3A107.00 (19)O6B—C4B—C3B107.1 (2)
C5A—C4A—C3A111.2 (2)C5B—C4B—C3B111.6 (2)
O6A—C4A—H4A108.9O6B—C4B—H4B109.1
C5A—C4A—H4A108.9C5B—C4B—H4B109.1
C3A—C4A—H4A108.9C3B—C4B—H4B109.1
O1A—C5A—C6A105.6 (2)O1B—C5B—C6B105.7 (2)
O1A—C5A—C4A111.2 (2)O1B—C5B—C4B110.5 (2)
C6A—C5A—C4A113.1 (2)C6B—C5B—C4B114.1 (2)
O1A—C5A—H5A108.9O1B—C5B—H5B108.8
C6A—C5A—H5A108.9C6B—C5B—H5B108.8
C4A—C5A—H5A108.9C4B—C5B—H5B108.8
C5A—C6A—H6A1109.5C5B—C6B—H6B1109.5
C5A—C6A—H6A2109.5C5B—C6B—H6B2109.5
H6A1—C6A—H6A2109.5H6B1—C6B—H6B2109.5
C5A—C6A—H6A3109.5C5B—C6B—H6B3109.5
H6A1—C6A—H6A3109.5H6B1—C6B—H6B3109.5
H6A2—C6A—H6A3109.5H6B2—C6B—H6B3109.5
N1A—C7A—C8A104.7 (2)N1B—C7B—C8B104.4 (2)
N1A—C7A—H7A127.6N1B—C7B—H7B127.8
C8A—C7A—H7A127.6C8B—C7B—H7B127.8
C7A—C8A—N3A107.9 (2)N3B—C8B—C7B108.0 (2)
C7A—C8A—C9A129.8 (2)N3B—C8B—C9B122.2 (2)
N3A—C8A—C9A122.3 (2)C7B—C8B—C9B129.8 (2)
C8A—C9A—C10A113.5 (2)C8B—C9B—C10B113.5 (2)
C8A—C9A—H9A1108.9C8B—C9B—H9B1108.9
C10A—C9A—H9A1108.9C10B—C9B—H9B1108.9
C8A—C9A—H9A2108.9C8B—C9B—H9B2108.9
C10A—C9A—H9A2108.9C10B—C9B—H9B2108.9
H9A1—C9A—H9A2107.7H9B1—C9B—H9B2107.7
C9A—C10A—C11A112.7 (2)C11B—C10B—C9B113.1 (2)
C9A—C10A—H10A109.0C11B—C10B—H10C108.9
C11A—C10A—H10A109.0C9B—C10B—H10C108.9
C9A—C10A—H10B109.0C11B—C10B—H10D108.9
C11A—C10A—H10B109.0C9B—C10B—H10D108.9
H10A—C10A—H10B107.8H10C—C10B—H10D107.8
C12A—C11A—C10A113.0 (2)C10B—C11B—C12B113.6 (3)
C12A—C11A—H11A109.0C10B—C11B—H11C108.9
C10A—C11A—H11A109.0C12B—C11B—H11C108.9
C12A—C11A—H11B109.0C10B—C11B—H11D108.9
C10A—C11A—H11B109.0C12B—C11B—H11D108.9
H11A—C11A—H11B107.8H11C—C11B—H11D107.7
C11A—C12A—H12A109.5C11B—C12B—H12D109.5
C11A—C12A—H12B109.5C11B—C12B—H12E109.5
H12A—C12A—H12B109.5H12D—C12B—H12E109.5
C11A—C12A—H12C109.5C11B—C12B—H12F109.5
H12A—C12A—H12C109.5H12D—C12B—H12F109.5
H12B—C12A—H12C109.5H12E—C12B—H12F109.5
O3A—C13A—O2A124.0 (2)O3B—C13B—O2B123.8 (2)
O3A—C13A—C14A125.5 (2)O3B—C13B—C14B125.6 (2)
O2A—C13A—C14A110.5 (2)O2B—C13B—C14B110.6 (2)
C13A—C14A—H14A109.5C13B—C14B—H14D109.5
C13A—C14A—H14B109.5C13B—C14B—H14E109.5
H14A—C14A—H14B109.5H14D—C14B—H14E109.5
C13A—C14A—H14C109.5C13B—C14B—H14F109.5
H14A—C14A—H14C109.5H14D—C14B—H14F109.5
H14B—C14A—H14C109.5H14E—C14B—H14F109.5
O5A—C15A—O4A123.3 (3)O5B—C15B—O4B123.1 (3)
O5A—C15A—C16A126.7 (3)O5B—C15B—C16B126.2 (3)
O4A—C15A—C16A110.0 (2)O4B—C15B—C16B110.7 (3)
C15A—C16A—H16A109.5C15B—C16B—H16D109.5
C15A—C16A—H16B109.5C15B—C16B—H16E109.5
H16A—C16A—H16B109.5H16D—C16B—H16E109.5
C15A—C16A—H16C109.5C15B—C16B—H16F109.5
H16A—C16A—H16C109.5H16D—C16B—H16F109.5
H16B—C16A—H16C109.5H16E—C16B—H16F109.5
O7A—C17A—O6A123.1 (2)O7B—C17B—O6B123.2 (2)
O7A—C17A—C18A125.3 (3)O7B—C17B—C18B125.3 (3)
O6A—C17A—C18A111.6 (2)O6B—C17B—C18B111.5 (2)
C17A—C18A—H18A109.5C17B—C18B—H18D109.5
C17A—C18A—H18B109.5C17B—C18B—H18E109.5
H18A—C18A—H18B109.5H18D—C18B—H18E109.5
C17A—C18A—H18C109.5C17B—C18B—H18F109.5
H18A—C18A—H18C109.5H18D—C18B—H18F109.5
H18B—C18A—H18C109.5H18E—C18B—H18F109.5
N2A—N1A—C7A111.1 (2)C7B—N1B—N2B111.4 (2)
N2A—N1A—C1A121.4 (2)C7B—N1B—C1B126.5 (2)
C7A—N1A—C1A127.1 (2)N2B—N1B—C1B121.5 (2)
N3A—N2A—N1A106.6 (2)N3B—N2B—N1B106.3 (2)
N2A—N3A—C8A109.6 (2)N2B—N3B—C8B109.8 (2)
C1A—O1A—C5A111.88 (18)C1B—O1B—C5B111.96 (19)
C13A—O2A—C2A117.27 (19)C13B—O2B—C2B117.18 (19)
C15A—O4A—C3A117.9 (2)C15B—O4B—C3B116.7 (2)
C17A—O6A—C4A115.87 (19)C17B—O6B—C4B115.64 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1B—H1B···O3Bi1.002.533.362 (3)141
C2A—H2A···O3A1.002.262.701 (3)105
C2B—H2B···O3B1.002.262.698 (3)105
C3A—H3A···O3Aii1.002.323.214 (3)149
C3B—H3B···O3Bi1.002.273.165 (3)148
C4A—H4A···O5A1.002.563.046 (3)110
C4A—H4A···O7A1.002.232.682 (3)106
C4B—H4B···O5B1.002.573.067 (3)110
C4B—H4B···O7B1.002.212.670 (3)106
C7A—H7A···N3Aii0.952.393.308 (4)161
C7B—H7B···N3Bi0.952.403.313 (4)161
C14A—H14A···O1Aiii0.982.473.377 (3)154
C14B—H14D···O1Biii0.982.353.261 (3)155
C16A—H16A···O7Biii0.982.413.295 (4)150
C16B—H16F···O7A0.982.513.401 (4)150
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC18H27N3O7
Mr397.43
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.5173 (3), 7.7442 (4), 24.1013 (13)
α, β, γ (°)94.507 (1), 96.151 (1), 91.227 (1)
V3)1020.22 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.36 × 0.35 × 0.09
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS in SAINT-Plus; Bruker, 2003)
Tmin, Tmax0.867, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
10512, 5041, 4839
Rint0.020
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.120, 1.11
No. of reflections5041
No. of parameters515
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.21

Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008); publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1B—H1B···O3Bi1.002.533.362 (3)141
C2A—H2A···O3A1.002.262.701 (3)105
C2B—H2B···O3B1.002.262.698 (3)105
C3A—H3A···O3Aii1.002.323.214 (3)149
C3B—H3B···O3Bi1.002.273.165 (3)148
C4A—H4A···O5A1.002.563.046 (3)110
C4A—H4A···O7A1.002.232.682 (3)106
C4B—H4B···O5B1.002.573.067 (3)110
C4B—H4B···O7B1.002.212.670 (3)106
C7A—H7A···N3Aii0.952.393.308 (4)161
C7B—H7B···N3Bi0.952.403.313 (4)161
C14A—H14A···O1Aiii0.982.473.377 (3)154
C14B—H14D···O1Biii0.982.353.261 (3)155
C16A—H16A···O7Biii0.982.413.295 (4)150
C16B—H16F···O7A0.982.513.401 (4)150
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x, y1, z.
 

Acknowledgements

The authors thank the National Institutes of Health (grant R15 AI053112–01) for funding this study. The diffractometer was funded by NSF grant 0087210, by Ohio Board of Regents grant CAP-491, and by YSU.

References

First citationBruker (2002). SMART for WNT/2000. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNorris, P. (2008). Curr. Top. Med. Chem. 8, 101–113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTemelkoff, D. P., Zeller, M. & Norris, P. (2006). Carbohydr. Res. 341, 1081–1090.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationZhang, J., Chen, H.-N., Chiang, F.-I., Takemoto, J. Y., Bensaci, M. & Chang, C.-W. T. (2007). J. Comb. Chem. 9, 17–19.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1992-o1993
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds