organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Amino-2-methyl­benzene­sulfonamide

aSchool of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bSchool of Pharmaceutical Sciences, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: fzcpu@163.com

(Received 26 June 2009; accepted 5 July 2009; online 11 July 2009)

In the crystal structure of the title compound, C7H10N2O2S, a benzoic acid derivative, inter­molecular N—H⋯O inter­actions link the mol­ecules into a three-dimensional network.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10N2O2S

  • Mr = 186.23

  • Orthorhombic, I b a 2

  • a = 10.679 (2) Å

  • b = 22.431 (5) Å

  • c = 7.1980 (14) Å

  • V = 1724.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 294 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.906, Tmax = 0.967

  • 1587 measured reflections

  • 1432 independent reflections

  • 1369 reflections with I > 2σ(I)

  • Rint = 0.044

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.120

  • S = 1.00

  • 1432 reflections

  • 111 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 576 Friedel pairs

  • Flack parameter: 0.04 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O2i 0.86 2.27 2.996 (4) 142
N1—H1C⋯O1ii 0.86 2.16 3.001 (4) 164
N2—H2C⋯O1iii 0.86 2.60 3.278 (4) 137
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) [-x, y, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Some derivatives of benzoic acid are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound, (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C2-C7) is, of course, planar. Atoms S, O1, N2 and C1 are 0.013 (3), -0.102 (3), -0.027 (3) and -0.032 (3) Å away from the plane of ring A, respectively.

In the crystal structure, intermolecular N-H···O interactions (Table 1) link the molecules into a three-dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, ammonium hydroxide (25 ml) was added to N-acetylamino-2-toluenesulfonyl chloride (10.7 g). The mixture was cooled down, and sulfuric acid solution (10 ml, 20%) was slowly added. The mixture was kept at 273–278 K for 5 min. The corresponding sulfonamide was collected, washed with ice water and dried to give a crystalline crude colorless solid (yield; 67%). Then, hydrochloric acid (15 ml, 18%) was added to N-acetyltoluenesulfonamide (5.6 g) and the mixture was refluxed for 20 min. The resulting solution was diluted with an equal volume of water and sodium carbonate until pH = 8. After cooling, the precipitate was collected and washed with ice water (yield; 3.9 g). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH2) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
5-Amino-2-methylbenzenesulfonamide top
Crystal data top
C7H10N2O2SF(000) = 784
Mr = 186.23Dx = 1.435 Mg m3
Orthorhombic, Iba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: I 2 -2cCell parameters from 25 reflections
a = 10.679 (2) Åθ = 10–14°
b = 22.431 (5) ŵ = 0.34 mm1
c = 7.1980 (14) ÅT = 294 K
V = 1724.2 (6) Å3Block, colorless
Z = 80.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1369 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 25.3°, θmin = 1.8°
ω/2θ scansh = 120
Absorption correction: ψ scan
(North et al., 1968)
k = 268
Tmin = 0.906, Tmax = 0.967l = 88
1587 measured reflections3 standard reflections every 120 min
1432 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.1P)2 + 0.35P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.120(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.29 e Å3
1432 reflectionsΔρmin = 0.35 e Å3
111 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.019 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 576 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.04 (14)
Crystal data top
C7H10N2O2SV = 1724.2 (6) Å3
Mr = 186.23Z = 8
Orthorhombic, Iba2Mo Kα radiation
a = 10.679 (2) ŵ = 0.34 mm1
b = 22.431 (5) ÅT = 294 K
c = 7.1980 (14) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1369 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.044
Tmin = 0.906, Tmax = 0.9673 standard reflections every 120 min
1587 measured reflections intensity decay: 1%
1432 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.120Δρmax = 0.29 e Å3
S = 1.00Δρmin = 0.35 e Å3
1432 reflectionsAbsolute structure: Flack (1983), 576 Friedel pairs
111 parametersAbsolute structure parameter: 0.04 (14)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.16988 (6)0.09021 (3)0.64671 (14)0.0332 (3)
O10.06327 (19)0.12096 (9)0.5690 (4)0.0469 (6)
N10.1216 (3)0.05631 (12)0.8282 (5)0.0495 (8)
H1B0.13620.01890.84190.059*
H1C0.08100.07550.91230.059*
C10.4280 (3)0.06855 (16)0.8644 (6)0.0527 (9)
H1D0.51270.06860.90890.079*
H1E0.42100.04200.76040.079*
H1F0.37300.05550.96180.079*
O20.2333 (2)0.04672 (10)0.5348 (4)0.0511 (7)
N20.3024 (3)0.30886 (10)0.6676 (5)0.0489 (8)
H2B0.23290.31690.61250.059*
H2C0.35320.33720.69620.059*
C20.3922 (2)0.13040 (13)0.8053 (4)0.0316 (6)
C30.2794 (2)0.14549 (11)0.7132 (4)0.0272 (6)
C40.2507 (2)0.20373 (11)0.6649 (5)0.0287 (6)
H4A0.17670.21180.60170.034*
C50.3323 (3)0.25064 (13)0.7103 (5)0.0318 (7)
C60.4439 (3)0.23609 (14)0.8042 (5)0.0357 (7)
H6A0.49970.26620.83670.043*
C70.4711 (3)0.17810 (14)0.8483 (4)0.0363 (7)
H7A0.54580.17010.90980.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0294 (4)0.0314 (4)0.0390 (5)0.0021 (2)0.0014 (3)0.0050 (3)
O10.0350 (11)0.0441 (12)0.0615 (15)0.0049 (10)0.0151 (11)0.0014 (11)
N10.0459 (16)0.0367 (14)0.066 (2)0.0010 (12)0.0155 (16)0.0131 (13)
C10.0487 (19)0.0423 (17)0.067 (2)0.0114 (15)0.016 (2)0.0051 (18)
O20.0447 (14)0.0482 (13)0.0603 (17)0.0016 (10)0.0036 (12)0.0242 (12)
N20.0561 (15)0.0312 (12)0.059 (2)0.0070 (11)0.0146 (18)0.0069 (14)
C20.0283 (14)0.0348 (15)0.0317 (15)0.0046 (11)0.0002 (12)0.0003 (11)
C30.0236 (12)0.0307 (13)0.0273 (13)0.0010 (10)0.0024 (11)0.0021 (11)
C40.0249 (12)0.0330 (13)0.0281 (15)0.0009 (10)0.0035 (12)0.0019 (11)
C50.0374 (14)0.0322 (14)0.0258 (14)0.0000 (10)0.0029 (12)0.0010 (11)
C60.0309 (13)0.0422 (16)0.0339 (15)0.0101 (12)0.0014 (13)0.0054 (13)
C70.0248 (14)0.0503 (17)0.0338 (16)0.0022 (11)0.0052 (12)0.0034 (11)
Geometric parameters (Å, º) top
S—O21.435 (2)N2—H2B0.8600
S—O11.444 (2)N2—H2C0.8600
S—N11.597 (3)C2—C71.397 (4)
S—C31.770 (3)C2—C31.416 (4)
N1—H1B0.8600C3—C41.386 (4)
N1—H1C0.8600C4—C51.405 (4)
C1—C21.501 (4)C4—H4A0.9300
C1—H1D0.9600C5—C61.408 (4)
C1—H1E0.9600C6—C71.370 (5)
C1—H1F0.9600C6—H6A0.9300
N2—C51.379 (4)C7—H7A0.9300
O2—S—O1118.64 (18)C7—C2—C3115.7 (3)
O2—S—N1106.75 (16)C7—C2—C1119.5 (3)
O1—S—N1106.85 (15)C3—C2—C1124.8 (3)
O2—S—C3108.43 (14)C4—C3—C2122.1 (2)
O1—S—C3106.92 (12)C4—C3—S116.5 (2)
N1—S—C3108.98 (17)C2—C3—S121.4 (2)
S—N1—H1B120.0C3—C4—C5120.7 (3)
S—N1—H1C120.0C3—C4—H4A119.7
H1B—N1—H1C120.0C5—C4—H4A119.7
C2—C1—H1D109.5N2—C5—C4120.9 (3)
C2—C1—H1E109.5N2—C5—C6121.5 (3)
H1D—C1—H1E109.5C4—C5—C6117.6 (3)
C2—C1—H1F109.5C7—C6—C5120.7 (3)
H1D—C1—H1F109.5C7—C6—H6A119.7
H1E—C1—H1F109.5C5—C6—H6A119.7
C5—N2—H2B120.0C6—C7—C2123.3 (3)
C5—N2—H2C120.0C6—C7—H7A118.4
H2B—N2—H2C120.0C2—C7—H7A118.4
C7—C2—C3—C41.5 (5)C2—C3—C4—C51.6 (5)
C1—C2—C3—C4178.9 (3)S—C3—C4—C5179.5 (2)
C7—C2—C3—S179.3 (2)C3—C4—C5—N2177.9 (3)
C1—C2—C3—S3.3 (5)C3—C4—C5—C60.7 (5)
O2—S—C3—C4123.0 (3)N2—C5—C6—C7178.9 (3)
O1—S—C3—C46.0 (3)C4—C5—C6—C70.3 (5)
N1—S—C3—C4121.1 (3)C5—C6—C7—C20.3 (5)
O2—S—C3—C254.9 (3)C3—C2—C7—C60.6 (5)
O1—S—C3—C2176.1 (3)C1—C2—C7—C6178.1 (3)
N1—S—C3—C261.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.862.272.996 (4)142
N1—H1C···O1ii0.862.163.001 (4)164
N2—H2C···O1iii0.862.603.278 (4)137
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z+1/2; (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC7H10N2O2S
Mr186.23
Crystal system, space groupOrthorhombic, Iba2
Temperature (K)294
a, b, c (Å)10.679 (2), 22.431 (5), 7.1980 (14)
V3)1724.2 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.906, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
1587, 1432, 1369
Rint0.044
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.120, 1.00
No. of reflections1432
No. of parameters111
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.35
Absolute structureFlack (1983), 576 Friedel pairs
Absolute structure parameter0.04 (14)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.862.272.996 (4)142
N1—H1C···O1ii0.862.163.001 (4)164
N2—H2C···O1iii0.862.603.278 (4)137
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z+1/2; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds