organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­methyl-6-nitro-2H-indazole

aCollege of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bSchool of Pharmaceutical Sciences, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: fzcpu@163.com

(Received 26 June 2009; accepted 1 July 2009; online 4 July 2009)

In the mol­ecule of the title compound, C9H9N3O2, the indazole ring system is almost planar [maximum deviation = 0.019 (3) Å for the C atom bearing the nitro group]. In the crystal structure, inter­molecular C—H⋯O inter­actions link the mol­ecules into centrosymmetric dimers, forming R22(18) ring motifs. Aromatic ππ contacts between indazole rings [centroid–centroid distances = 3.632 (1) and 3.705 (1) Å] may further stabilize the structure.

Related literature

For a related structure, see: Xu et al. (1999[Xu, B.-C., Deng, F. & Wang, H.-Z. (1999). Speciality Petro. Chem. pp. 18-20.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring-motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9N3O2

  • Mr = 191.19

  • Triclinic, [P \overline 1]

  • a = 6.5800 (13) Å

  • b = 7.2050 (14) Å

  • c = 10.752 (2) Å

  • α = 75.07 (3)°

  • β = 74.67 (3)°

  • γ = 66.73 (3)°

  • V = 444.81 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 294 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.969, Tmax = 0.990

  • 1756 measured reflections

  • 1606 independent reflections

  • 1292 reflections with I > 2σ(I)

  • Rint = 0.031

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.154

  • S = 1.00

  • 1606 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O2i 0.96 2.58 3.533 (4) 171
Symmetry code: (i) -x-1, -y+2, -z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Some derivatives of indazole are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (N1/N2/C3/C4/C9) and B (C4-C9) are, of course, planar and the dihedral angle between them is A/B = 0.80 (3)°. The indazole ring system is planar with a maximum deviation of -0.019 (3) Å for atom C6. Atoms O1, O2, N3, C1 and C2 are 0.024 (3), -0.124 (3), -0.038 (3), 0.003 (3) and -0.056 (3) Å away from the plane of the indazole ring system, respectively.

In the crystal structure, weak intermolecular C-H···O interactions (Table 1) link the molecules into centrosymmetric dimers forming R22(18) ring motifs (Bernstein et al., 1995) (Fig. 2), in which they may be effective in the stabilization of the structure. The ππ contacts between the indazole rings, Cg1—Cg2i and Cg2—Cg2ii [symmetry codes: (i) 2 - x, 2 - y, -z, (ii) 2 - x, 1 - y, -z, where Cg1 and Cg2 are centroids of the rings A (N1/N2/C3/C4/C9) and B (C4-C9), respectively] may further stabilize the structure, with centroid-centroid distances of 3.632 (1) and 3.705 (1) Å, respectively.

Related literature top

For a related structure, see: Xu et al. (1999). For bond-length data, see: Allen et al. (1987). For ring-motifs, see: Bernstein et al. (1995).

Experimental top

For the preparation of the title compound, metallic sodium (3.22 g) was dissolved in regurgitant 2-propanol (140 ml). Then, the solution was added to 3-methyl-6-nitro-1H-indazole (13 g) and iodomethane (30 g) was added in small portions. The mixture was refluxed for 5 h. The suspension was cooled to room temperature, filtered and washed with 2-propanol to give yellow solid (yield; 12 g) (Xu et al., 1999). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
2,3-Dimethyl-6-nitro-2H-indazole top
Crystal data top
C9H9N3O2Z = 2
Mr = 191.19F(000) = 200
Triclinic, P1Dx = 1.427 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5800 (13) ÅCell parameters from 25 reflections
b = 7.2050 (14) Åθ = 9–13°
c = 10.752 (2) ŵ = 0.11 mm1
α = 75.07 (3)°T = 294 K
β = 74.67 (3)°Block, colorless
γ = 66.73 (3)°0.30 × 0.20 × 0.10 mm
V = 444.81 (19) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1292 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 25.3°, θmin = 2.0°
ω/2θ scansh = 07
Absorption correction: ψ scan
(North et al., 1968)
k = 78
Tmin = 0.969, Tmax = 0.990l = 1212
1756 measured reflections3 standard reflections every 120 min
1606 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.08P)2 + 0.235P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1606 reflectionsΔρmax = 0.32 e Å3
129 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.059 (12)
Crystal data top
C9H9N3O2γ = 66.73 (3)°
Mr = 191.19V = 444.81 (19) Å3
Triclinic, P1Z = 2
a = 6.5800 (13) ÅMo Kα radiation
b = 7.2050 (14) ŵ = 0.11 mm1
c = 10.752 (2) ÅT = 294 K
α = 75.07 (3)°0.30 × 0.20 × 0.10 mm
β = 74.67 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1292 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.031
Tmin = 0.969, Tmax = 0.9903 standard reflections every 120 min
1756 measured reflections intensity decay: 1%
1606 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.00Δρmax = 0.32 e Å3
1606 reflectionsΔρmin = 0.25 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2155 (5)0.7495 (5)0.3831 (2)0.1020 (9)
O20.1339 (4)0.7845 (4)0.33747 (19)0.0803 (7)
N10.2315 (3)0.7731 (3)0.25319 (18)0.0469 (5)
N20.3309 (3)0.7997 (3)0.15107 (18)0.0479 (5)
N30.0392 (4)0.7648 (3)0.3051 (2)0.0611 (6)
C10.3707 (5)0.7880 (5)0.3829 (2)0.0660 (8)
H1A0.51440.89410.37580.099*
H1B0.29790.82020.43680.099*
H1C0.39150.65940.42180.099*
C20.1367 (5)0.6977 (4)0.3176 (3)0.0601 (7)
H2B0.04560.70870.40320.090*
H2C0.20980.79710.29290.090*
H2D0.24820.56250.31860.090*
C30.0080 (4)0.7362 (3)0.2216 (2)0.0432 (6)
C40.1582 (3)0.7777 (3)0.0489 (2)0.0390 (5)
C50.1637 (4)0.7888 (3)0.0830 (2)0.0446 (6)
H5A0.29660.81600.11080.054*
C60.0376 (4)0.7573 (3)0.1678 (2)0.0462 (6)
C70.2431 (4)0.7224 (4)0.1315 (2)0.0517 (6)
H7A0.37410.70570.19430.062*
C80.2482 (4)0.7134 (3)0.0049 (2)0.0470 (6)
H8A0.38190.69100.02040.056*
C90.0474 (3)0.7388 (3)0.0874 (2)0.0387 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1021 (19)0.150 (2)0.0491 (12)0.0512 (17)0.0174 (12)0.0311 (13)
O20.1002 (17)0.0986 (16)0.0521 (12)0.0371 (13)0.0217 (11)0.0183 (11)
N10.0480 (11)0.0573 (12)0.0389 (10)0.0226 (9)0.0063 (8)0.0089 (8)
N20.0436 (11)0.0606 (12)0.0427 (11)0.0218 (9)0.0069 (8)0.0098 (9)
N30.0804 (16)0.0572 (13)0.0453 (12)0.0255 (11)0.0051 (12)0.0129 (10)
C10.0621 (17)0.095 (2)0.0422 (14)0.0311 (15)0.0000 (12)0.0173 (13)
C20.0642 (16)0.0669 (17)0.0564 (15)0.0235 (13)0.0231 (13)0.0092 (12)
C30.0475 (13)0.0402 (12)0.0459 (12)0.0177 (9)0.0112 (10)0.0077 (9)
C40.0400 (11)0.0369 (11)0.0427 (12)0.0162 (9)0.0058 (9)0.0085 (9)
C50.0501 (13)0.0444 (12)0.0442 (13)0.0207 (10)0.0117 (10)0.0061 (9)
C60.0611 (14)0.0384 (12)0.0389 (12)0.0202 (10)0.0034 (10)0.0079 (9)
C70.0465 (13)0.0485 (13)0.0523 (14)0.0148 (10)0.0048 (10)0.0128 (11)
C80.0405 (12)0.0423 (12)0.0579 (14)0.0137 (9)0.0079 (10)0.0104 (10)
C90.0426 (12)0.0306 (10)0.0448 (12)0.0135 (8)0.0098 (9)0.0070 (8)
Geometric parameters (Å, º) top
O1—N31.222 (3)C2—H2C0.9600
O2—N31.223 (3)C2—H2D0.9600
N1—N21.357 (3)C3—C91.389 (3)
N1—C11.456 (3)C4—C51.409 (3)
N1—C31.350 (3)C4—C91.420 (3)
N2—C41.346 (3)C5—C61.366 (3)
N3—C61.460 (3)C5—H5A0.9300
C1—H1A0.9600C6—C71.416 (4)
C1—H1B0.9600C7—C81.354 (3)
C1—H1C0.9600C7—H7A0.9300
C2—C31.487 (3)C8—C91.405 (3)
C2—H2B0.9600C8—H8A0.9300
N2—N1—C1118.6 (2)N1—C3—C2124.3 (2)
C3—N1—N2114.84 (19)C9—C3—C2130.3 (2)
C3—N1—C1126.6 (2)N2—C4—C5127.8 (2)
C4—N2—N1102.99 (17)N2—C4—C9111.81 (19)
O1—N3—O2122.6 (2)C5—C4—C9120.4 (2)
O1—N3—C6118.2 (2)C6—C5—C4116.1 (2)
O2—N3—C6119.2 (2)C6—C5—H5A121.9
N1—C1—H1A109.5C4—C5—H5A121.9
N1—C1—H1B109.5C5—C6—C7124.2 (2)
H1A—C1—H1B109.5C5—C6—N3117.7 (2)
N1—C1—H1C109.5C7—C6—N3118.1 (2)
H1A—C1—H1C109.5C8—C7—C6119.7 (2)
H1B—C1—H1C109.5C8—C7—H7A120.1
C3—C2—H2B109.5C6—C7—H7A120.1
C3—C2—H2C109.5C7—C8—C9118.6 (2)
H2B—C2—H2C109.5C7—C8—H8A120.7
C3—C2—H2D109.5C9—C8—H8A120.7
H2B—C2—H2D109.5C3—C9—C8134.1 (2)
H2C—C2—H2D109.5C3—C9—C4105.00 (19)
N1—C3—C9105.36 (19)C8—C9—C4120.9 (2)
C1—N1—N2—C4179.6 (2)C2—C3—C9—C82.1 (4)
C3—N1—N2—C40.1 (2)N2—C4—C5—C6178.9 (2)
N2—N1—C3—C2178.6 (2)C9—C4—C5—C60.9 (3)
N2—N1—C3—C90.2 (2)N2—C4—C9—C30.4 (2)
C1—N1—C3—C21.9 (4)N2—C4—C9—C8179.25 (18)
C1—N1—C3—C9179.3 (2)C5—C4—C9—C3179.41 (19)
N1—N2—C4—C5179.5 (2)C5—C4—C9—C80.9 (3)
N1—N2—C4—C90.3 (2)C4—C5—C6—C72.2 (3)
O1—N3—C6—C5175.6 (2)C4—C5—C6—N3179.20 (19)
O1—N3—C6—C73.1 (3)C5—C6—C7—C81.8 (4)
O2—N3—C6—C55.0 (3)N3—C6—C7—C8179.7 (2)
O2—N3—C6—C7176.4 (2)C6—C7—C8—C90.2 (3)
N1—C3—C9—C40.4 (2)C7—C8—C9—C3179.0 (2)
N1—C3—C9—C8179.3 (2)C7—C8—C9—C41.4 (3)
C2—C3—C9—C4178.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2i0.962.583.533 (4)171
Symmetry code: (i) x1, y+2, z.

Experimental details

Crystal data
Chemical formulaC9H9N3O2
Mr191.19
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)6.5800 (13), 7.2050 (14), 10.752 (2)
α, β, γ (°)75.07 (3), 74.67 (3), 66.73 (3)
V3)444.81 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.969, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
1756, 1606, 1292
Rint0.031
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.154, 1.00
No. of reflections1606
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.25

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2i0.962.583.533 (4)171
Symmetry code: (i) x1, y+2, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, B.-C., Deng, F. & Wang, H.-Z. (1999). Speciality Petro. Chem. pp. 18–20.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds