metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m987-m988

Bis(1H-imidazole-κN3)bis­­(2-oxidopyridinium-3-carboxyl­ato-κ2O2,O3)cobalt(II)

aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 18 July 2009; accepted 20 July 2009; online 25 July 2009)

In the mol­ecule of the title CoII complex, [Co(C6H4NO3)2(C3H4N2)2], the CoII atom is located on a twofold rotation axis and chelated by two oxidopyridiniumcarboxyl­ate anions and further cis-coordinated by two imidazole ligands in a distorted octa­hedral geometry. The shorter C—O bond distance of 1.260 (2) Å suggests electron delocalization between the oxido group and the pyridinium ring. The uncoordinated carboxyl­ate O atom links with the imidazole and pyridinium rings of adjacent mol­ecules via N—H⋯O hydrogen bonding. Weak C—H⋯O hydrogen bonding is also present in the crystal structure.

Related literature

For the isostructural NiII complex, see: Zhang et al. (2009[Zhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2009). Acta Cryst. E65, m977.]). For the shorter C—O bond distance between the pyridine ring and the hydr­oxy-O atom in 2-oxidopyridinium-3-carboxyl­ate complexes and in 2-hydroxy­pyridine­carboxyl­ate complexes, see: Yao et al. (2004[Yao, Y., Cai, Q., Kou, H., Li, H., Wang, D., Yu, R., Chen, Y. & Xing, X. (2004). Chem. Lett. 33, 1270-1271.]); Yan & Hu (2007a[Yan, H.-Y. & Hu, T.-Q. (2007a). Acta Cryst. E63, m2325.],b[Yan, H.-Y. & Hu, T.-Q. (2007b). Acta Cryst. E63, m2326.]); Wen & Liu (2007[Wen, D.-C. & Liu, S.-X. (2007). Chin. J. Struct. Chem. 26, 1281-1284.]); Quintal et al. (2002[Quintal, S. M. O., Nogueira, H. I. S., Felix, V. & Drew, M. G. B. (2002). Polyhedron, 21, 2783-2791.]). For the corresponding C—O bond distances in 2-hydroxy­benzencarboxylic acid and in metal complexes of 2-hydroxy­benzencarboxyl­ate, see: Munshi & Guru Row (2006[Munshi, P. & Guru Row, T. N. (2006). Acta Cryst. B62, 612-626.]); Su & Xu (2005[Su, J.-R. & Xu, D.-J. (2005). Acta Cryst. C61, m256-m258.]); Li et al. (2005[Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C6H4NO3)2(C3H4N2)2]

  • Mr = 471.30

  • Monoclinic, C 2/c

  • a = 16.594 (2) Å

  • b = 10.0524 (12) Å

  • c = 12.8271 (15) Å

  • β = 111.407 (4)°

  • V = 1992.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 294 K

  • 0.40 × 0.30 × 0.26 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.665, Tmax = 0.790

  • 10627 measured reflections

  • 1824 independent reflections

  • 1527 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.065

  • S = 1.07

  • 1824 reflections

  • 141 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected bond lengths (Å)

Co—O1 2.0684 (13)
Co—O3 2.1402 (13)
Co—N2 2.1107 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 1.93 2.789 (2) 177
N3—H3⋯O2ii 0.86 2.04 2.806 (2) 148
C3—H3A⋯O3iii 0.93 2.43 3.341 (3) 168
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [x, -y, z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title CoII complex is isostructural with the NiII complex (Zhang et al. 2009).

In the title molecule, the Co atom is located on a twofold axis and is coordinated by two imidazole molecules in cis-configuration, two oxidopyridinium-carboxylate anions further chelate to the Co atom with carboxyl-O and deprotonated hydroxy-O atoms to complete the distorted octahedral coordination geometry (Fig. 1 and Table 1). The benzene ring is twisted with respect to the carboxyl group and O1/O3/Co coordination plane with dihedral angles of 21.52 (13)° and 41.05 (7)°, respectively. The shorter C1—O3 [1.260 (2) Å] bond agrees with those found in the isostructural Ni complex (Zhang et al. 2009) and in the other transition metal complexes of oxidopyridinium-carboxylate (Yao et al., 2004; Yan & Hu, 2007a, b; Wen & Liu, 2007), it is also consistent with that found in hydroxy-pyridinecarboxylate complexes (Quintal et al. 2002). This finding suggests the electron delocalization between pyridine ring and hydroxy group. But this shorter C1—O3 bond is much different from the C—O bond distance of ca 1.35 Å between benzene ring and hydroxy-O atom found in hydroxybenzencarboxylic acid (Munshi & Row, 2006) and metal complexes of hydroxybenzenecarboxylate (Su & Xu, 2005; Li et al., 2005).

The uncoordinated carboxyl O atom simultaneously links with the imidazole and pyridinium rings via N—H···O hydrogen bonding of adjacent molecules (Table 2). Weak C—H···O hydrogen bonding is also present in the crystal structure.

Related literature top

For the isostructural NiII complex, see: Zhang et al. (2009). For the shorter C—O bond distance between the pyridine ring and hydroxy-O atom in 2-oxidopyridinium-3-carboxylate complexes and in 2-hydroxypyridinecarboxylate complexes, see: Yao et al. (2004); Yan & Hu (2007a,b); Wen & Liu (2007); Quintal et al. (2002). For the corresponding C—O bond distances in 2-hydroxybenzencarboxylic acid and in metal complexes of 2-hydroxybenzencarboxylate, see: Munshi & Row (2006); Su & Xu (2005); Li et al. (2005).

Experimental top

2-Hydroxy-pyridine-3-carboxylic acid (0.13 g, 1 mmol), NaOH (0.04 g, 1 mmol), imidazole (0.14 g, 2 mmol) and CoCl2.6H2O (0.24 g, 1 mmol) were dissolved in water (15 ml). The solution was refluxed for 4.5 h, after cooling to room temperature the solution was filtered. The single crystals of the title complex were obtained from the filtrate after one week.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with 40% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry code: (i) 1 - x, y, 1/2 - z].
Bis(1H-imidazole-κN3)bis(2-oxidopyridinium-3-carboxylato- κ2O2,O3)cobalt(II) top
Crystal data top
[Co(C6H4NO3)2(C3H4N2)2]F(000) = 964
Mr = 471.30Dx = 1.571 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4226 reflections
a = 16.594 (2) Åθ = 2.5–25.2°
b = 10.0524 (12) ŵ = 0.91 mm1
c = 12.8271 (15) ÅT = 294 K
β = 111.407 (4)°Block, pink
V = 1992.1 (4) Å30.40 × 0.30 × 0.26 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1824 independent reflections
Radiation source: fine-focus sealed tube1527 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 10.00 pixels mm-1θmax = 25.4°, θmin = 2.4°
ω scansh = 2020
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1212
Tmin = 0.665, Tmax = 0.790l = 1415
10627 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0231P)2 + 1.9358P]
where P = (Fo2 + 2Fc2)/3
1824 reflections(Δ/σ)max < 0.001
141 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Co(C6H4NO3)2(C3H4N2)2]V = 1992.1 (4) Å3
Mr = 471.30Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.594 (2) ŵ = 0.91 mm1
b = 10.0524 (12) ÅT = 294 K
c = 12.8271 (15) Å0.40 × 0.30 × 0.26 mm
β = 111.407 (4)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1824 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1527 reflections with I > 2σ(I)
Tmin = 0.665, Tmax = 0.790Rint = 0.034
10627 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.07Δρmax = 0.24 e Å3
1824 reflectionsΔρmin = 0.22 e Å3
141 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.50000.24771 (3)0.25000.02958 (13)
N10.61270 (11)0.12644 (16)0.30331 (13)0.0369 (4)
H10.61380.13910.23760.044*
N20.58362 (11)0.39282 (16)0.22623 (13)0.0348 (4)
N30.62322 (13)0.56271 (17)0.14899 (16)0.0468 (5)
H30.61980.63080.10700.056*
O10.56130 (10)0.24739 (13)0.42230 (11)0.0392 (4)
O20.62213 (10)0.16732 (14)0.59300 (10)0.0410 (4)
O30.58952 (9)0.09062 (13)0.25972 (10)0.0352 (3)
C10.59989 (12)0.00073 (18)0.33196 (15)0.0293 (4)
C20.60117 (12)0.01700 (18)0.44393 (15)0.0288 (4)
C30.61152 (14)0.0923 (2)0.51100 (17)0.0375 (5)
H3A0.61150.08140.58300.045*
C40.62211 (16)0.2203 (2)0.47472 (18)0.0454 (6)
H40.62780.29380.52090.055*
C50.62375 (16)0.2340 (2)0.37099 (19)0.0449 (6)
H50.63250.31750.34570.054*
C60.59387 (12)0.15307 (19)0.48875 (15)0.0299 (4)
C70.55679 (15)0.4904 (2)0.15344 (18)0.0396 (5)
H70.49900.50710.11050.048*
C80.67219 (15)0.4046 (2)0.27010 (19)0.0458 (6)
H80.70940.34880.32420.055*
C90.69703 (16)0.5089 (2)0.2231 (2)0.0510 (6)
H90.75330.53810.23830.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0402 (2)0.02722 (19)0.0222 (2)0.0000.01241 (16)0.000
N10.0554 (12)0.0342 (9)0.0257 (9)0.0042 (8)0.0204 (8)0.0020 (7)
N20.0400 (11)0.0327 (9)0.0318 (9)0.0006 (8)0.0132 (8)0.0052 (7)
N30.0641 (14)0.0341 (10)0.0528 (12)0.0039 (9)0.0340 (11)0.0065 (9)
O10.0589 (10)0.0309 (7)0.0245 (7)0.0071 (7)0.0115 (7)0.0005 (6)
O20.0612 (10)0.0410 (8)0.0201 (7)0.0046 (7)0.0142 (7)0.0032 (6)
O30.0529 (9)0.0334 (7)0.0254 (7)0.0071 (6)0.0214 (7)0.0040 (6)
C10.0330 (11)0.0313 (10)0.0254 (10)0.0008 (8)0.0129 (8)0.0023 (8)
C20.0332 (11)0.0319 (10)0.0227 (10)0.0011 (8)0.0118 (8)0.0005 (8)
C30.0507 (14)0.0394 (11)0.0271 (10)0.0019 (10)0.0196 (10)0.0012 (9)
C40.0715 (17)0.0337 (11)0.0357 (12)0.0057 (11)0.0250 (12)0.0072 (9)
C50.0686 (16)0.0295 (11)0.0415 (13)0.0051 (10)0.0259 (12)0.0002 (9)
C60.0332 (11)0.0354 (10)0.0243 (10)0.0003 (9)0.0142 (8)0.0014 (8)
C70.0446 (13)0.0367 (11)0.0375 (12)0.0002 (10)0.0149 (10)0.0041 (9)
C80.0411 (14)0.0475 (13)0.0471 (14)0.0035 (10)0.0141 (11)0.0018 (10)
C90.0435 (15)0.0493 (14)0.0666 (17)0.0068 (11)0.0278 (13)0.0092 (12)
Geometric parameters (Å, º) top
Co—O1i2.0684 (13)O2—C61.253 (2)
Co—O12.0684 (13)O3—C11.260 (2)
Co—O3i2.1402 (13)C1—C21.438 (3)
Co—O32.1402 (13)C2—C31.367 (3)
Co—N22.1107 (16)C2—C61.506 (3)
Co—N2i2.1107 (16)C3—C41.401 (3)
N1—C51.357 (3)C3—H3A0.9300
N1—C11.368 (2)C4—C51.348 (3)
N1—H10.8600C4—H40.9300
N2—C71.315 (2)C5—H50.9300
N2—C81.374 (3)C7—H70.9300
N3—C71.339 (3)C8—C91.347 (3)
N3—C91.359 (3)C8—H80.9300
N3—H30.8600C9—H90.9300
O1—C61.258 (2)
O1i—Co—O1179.82 (7)O3—C1—C2126.95 (17)
O1i—Co—N286.54 (6)N1—C1—C2115.31 (16)
O1—Co—N293.59 (6)C3—C2—C1119.33 (17)
O1i—Co—N2i93.59 (6)C3—C2—C6119.94 (16)
O1—Co—N2i86.54 (6)C1—C2—C6120.71 (16)
N2—Co—N2i92.57 (9)C2—C3—C4122.10 (18)
O1i—Co—O3i82.90 (5)C2—C3—H3A119.0
O1—Co—O3i96.97 (5)C4—C3—H3A119.0
N2—Co—O3i168.64 (5)C5—C4—C3118.14 (19)
N2i—Co—O3i92.26 (6)C5—C4—H4120.9
O1i—Co—O396.97 (5)C3—C4—H4120.9
O1—Co—O382.90 (5)C4—C5—N1120.26 (19)
N2—Co—O392.26 (6)C4—C5—H5119.9
N2i—Co—O3168.64 (5)N1—C5—H5119.9
O3i—Co—O384.91 (8)O2—C6—O1122.54 (17)
C5—N1—C1124.81 (17)O2—C6—C2117.41 (17)
C5—N1—H1117.6O1—C6—C2120.05 (16)
C1—N1—H1117.6N2—C7—N3111.4 (2)
C7—N2—C8105.13 (18)N2—C7—H7124.3
C7—N2—Co123.24 (15)N3—C7—H7124.3
C8—N2—Co131.44 (14)C9—C8—N2109.9 (2)
C7—N3—C9107.46 (18)C9—C8—H8125.1
C7—N3—H3126.3N2—C8—H8125.1
C9—N3—H3126.3C8—C9—N3106.1 (2)
C6—O1—Co130.35 (12)C8—C9—H9126.9
C1—O3—Co118.52 (12)N3—C9—H9126.9
O3—C1—N1117.74 (16)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2ii0.861.932.789 (2)177
N3—H3···O2iii0.862.042.806 (2)148
C3—H3A···O3iv0.932.433.341 (3)168
Symmetry codes: (ii) x, y, z1/2; (iii) x, y+1, z1/2; (iv) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C6H4NO3)2(C3H4N2)2]
Mr471.30
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)16.594 (2), 10.0524 (12), 12.8271 (15)
β (°) 111.407 (4)
V3)1992.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.40 × 0.30 × 0.26
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.665, 0.790
No. of measured, independent and
observed [I > 2σ(I)] reflections
10627, 1824, 1527
Rint0.034
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.065, 1.07
No. of reflections1824
No. of parameters141
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.22

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Co—O12.0684 (13)Co—N22.1107 (16)
Co—O32.1402 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.932.789 (2)177
N3—H3···O2ii0.862.042.806 (2)148
C3—H3A···O3iii0.932.433.341 (3)168
Symmetry codes: (i) x, y, z1/2; (ii) x, y+1, z1/2; (iii) x, y, z+1/2.
 

Acknowledgements

The project was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMunshi, P. & Guru Row, T. N. (2006). Acta Cryst. B62, 612–626.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationQuintal, S. M. O., Nogueira, H. I. S., Felix, V. & Drew, M. G. B. (2002). Polyhedron, 21, 2783–2791.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-R. & Xu, D.-J. (2005). Acta Cryst. C61, m256–m258.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWen, D.-C. & Liu, S.-X. (2007). Chin. J. Struct. Chem. 26, 1281–1284.  CAS Google Scholar
First citationYan, H.-Y. & Hu, T.-Q. (2007a). Acta Cryst. E63, m2325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYan, H.-Y. & Hu, T.-Q. (2007b). Acta Cryst. E63, m2326.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYao, Y., Cai, Q., Kou, H., Li, H., Wang, D., Yu, R., Chen, Y. & Xing, X. (2004). Chem. Lett. 33, 1270–1271.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2009). Acta Cryst. E65, m977.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m987-m988
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds