metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­aqua­(μ3-8-oxido­quinoline-5-sulfonato-κ4N,O8:O5:O8)nickel(II)]

aKey Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: xujianing@email.jlu.edu.cn

(Received 30 May 2009; accepted 5 July 2009; online 11 July 2009)

In title compound, [Ni(C9H5NO4S)(H2O)2]n, the NiII atom is coordinated by one N atom and two bridging O atoms from two 8-oxidoquinoline-5-sulfonate ligands, one sulfonate O atom from a third ligand, and two water mol­ecules in a distorted octa­hedral geometry. The two NiII atoms are linked to each other through the bridging O atoms, forming a dimer. Adjacent dimers are connected through the coordination of the sulfonate O atom into a two-dimensional coordination network parallel to (010). Hydrogen bonds between the coordinated water mol­ecules and the uncoordinated O atoms of the sulfonate groups result in the construction of a three-dimensional supra­molecular structure.

Related literature

For related structures, see: Ammor et al. (1992[Ammor, S., Coquerel, G., Perez, G. & Robert, F. (1992). Eur. J. Solid State Inorg. Chem. 29, 131-139.]); Petit et al. (1993a[Petit, S., Ammor, S., Coquerel, G., Mayer, G., Perez, G. & Dance, J.-M. (1993a). Eur. J. Solid State Inorg. Chem. 39, 497-507.],b[Petit, S., Coquerel, G., Perez, G., Louer, D. & Louer, M. (1993b). New J. Chem. 17, 187-192.]); Rao et al. (2003[Rao, H.-Y., Tao, J. & Ng, S. W. (2003). Acta Cryst. E59, m859-m860.]); Wu et al. (2008[Wu, H., Dong, X. W., Liu, H.-Y., Ma, J.-F., Li, S.-L., Yang, J., Liu, Y.-Y. & Su, Z.-M. (2008). Dalton Trans. pp. 5331-5341.]); Xie et al. (1992[Xie, Z. X., Liu, W., Liu, H. F. & Zheng, L. S. (1992). Chin. J. Struct. Chem. 11, 139-142.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C9H5NO4S)(H2O)2]

  • Mr = 317.94

  • Orthorhombic, P b c a

  • a = 9.2067 (8) Å

  • b = 15.0504 (13) Å

  • c = 16.1599 (14) Å

  • V = 2239.2 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.94 mm−1

  • T = 293 K

  • 0.28 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.601, Tmax = 0.701

  • 11973 measured reflections

  • 2198 independent reflections

  • 1874 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.079

  • S = 1.02

  • 2198 reflections

  • 171 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1i 2.0153 (17)
Ni1—O6W 2.0285 (19)
Ni1—O1 2.0443 (16)
Ni1—N1 2.052 (2)
Ni1—O5W 2.0936 (19)
Ni1—O2ii 2.1437 (17)
Symmetry codes: (i) -x, -y, -z+1; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5W—H5WA⋯O3iii 0.82 2.00 2.812 (2) 171
O5W—H5WB⋯O4iv 0.80 (2) 2.07 (2) 2.866 (3) 170 (2)
O6W—H6WA⋯O3iv 0.82 1.93 2.687 (2) 153
O6W—H6WB⋯O4v 0.78 (2) 2.04 (2) 2.787 (3) 159 (3)
Symmetry codes: (iii) [-x-{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The metal complexes with organic ligands containing sulfonate group still remain largely unexplored. We have been investigating the formation of novel transition metal coordination polymers employing hydrothermal methods. During the course of the investigation employing 8-hydroxylquinoline-5-sulfonic acids (H2QS) as organic ligand, which has received a little attention (Ammor et al., 1992; Petit et al., 1993a,b; Rao et al., 2003; Wu et al., 2008; Xie et al., 1992), and nickel(II) as metal center, we isolated a new two-dimensional coordination polymer.

As shown in Fig. 1, the asymmetric unit of the title compound contains one NiII atom, one QS ligand, and two water molecules. The NiII atom adopts a distorted octahedral coordination geometry, defined by one N atom and two bridging olate O atoms from two QS ligands, one sulfonate O atom from a third ligand, and two water molecules (Table 1). Two crystallographically equivalent Ni atoms [Ni1 and Ni1i, symmetry code: (i) -x, -y, 1 - z] link to each other through two bridging atoms O1 and O1i, forming an edge-sharing dimer. These dimers are connected by the sulfonate groups of the QS ligands into an infinite two-dimensional coordination network with a (4,4) topology along the [0 1 0] direction, as shown in Fig. 2. These networks are further connected by hydrogen bonds between the coordinated water molecules and the uncoordinated O atoms of the sulfonate groups into a three-dimensional supramolecular structure (Fig. 3 and Table 2).

Related literature top

For related structures, see: Ammor et al. (1992); Petit et al. (1993a,b); Rao et al. (2003); Wu et al. (2008); Xie et al. (1992).

Experimental top

A mixture of Ni(NO3)2.4H2O (0.250 g, 1 mmol) and H2QS (0.024 g, 0.1 mmol) was dissolved in 6 ml H2O with stirring about half an hour and pH = 6. The mixture was transferred to a 15 ml Teflon-lined stainless-steel hydrothermal autoclave and heated at 413 K for two weeks under autogenous pressure. The green block crystals were filtered off, washed with ethanol and dried at room temperature.

Refinement top

H atoms on C atoms are positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso = 1.2Ueq(C). H atoms of water molecules are located in a difference Fourier map. Two H atoms (H5WA and H6WA) were refined as riding atoms, with O—H = 0.82 Å and Uiso = 1.5Ueq(O), and the other two (H5WB and H6WB) were refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Coordination environment of the Ni atom in the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x,-y,-z + 1; (ii) x + 1/2, y, -z + 1/2.]
[Figure 2] Fig. 2. The two-dimensional coordination network of the title compound with a (4,4) topology, viewed along the [0 1 0] direction.
[Figure 3] Fig. 3. The three-dimensional supramolecular structure of the title compound, connected by hydrogen bonds between the coordinated water molecules and the uncoordinated sulfonate O atoms.
Poly[diaqua(µ3-8-oxidoquinoline-5-sulfonato- κ4N,O8:O5:O8)nickel(II)] top
Crystal data top
[Ni(C9H5NO4S)(H2O)2]F(000) = 1296
Mr = 317.94Dx = 1.886 Mg m3
Dm = 1.886 Mg m3
Dm measured by not measured
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2198 reflections
a = 9.2067 (8) Åθ = 2.5–28.1°
b = 15.0504 (13) ŵ = 1.94 mm1
c = 16.1599 (14) ÅT = 293 K
V = 2239.2 (3) Å3Block, green
Z = 80.28 × 0.22 × 0.18 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2198 independent reflections
Radiation source: fine-focus sealed tube1874 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1011
Tmin = 0.601, Tmax = 0.701k = 1817
11973 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0484P)2]
where P = (Fo2 + 2Fc2)/3
2198 reflections(Δ/σ)max = 0.001
171 parametersΔρmax = 0.64 e Å3
4 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Ni(C9H5NO4S)(H2O)2]V = 2239.2 (3) Å3
Mr = 317.94Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.2067 (8) ŵ = 1.94 mm1
b = 15.0504 (13) ÅT = 293 K
c = 16.1599 (14) Å0.28 × 0.22 × 0.18 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2198 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1874 reflections with I > 2σ(I)
Tmin = 0.601, Tmax = 0.701Rint = 0.037
11973 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0314 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.64 e Å3
2198 reflectionsΔρmin = 0.27 e Å3
171 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.10943 (3)0.058524 (19)0.446648 (17)0.02363 (12)
O5W0.0374 (2)0.16474 (12)0.44545 (10)0.0326 (4)
H5WA0.08480.16450.48840.049*
O10.04736 (19)0.03393 (11)0.56593 (9)0.0264 (4)
N10.0998 (2)0.05336 (12)0.31986 (12)0.0250 (5)
C80.0750 (3)0.05668 (14)0.35675 (14)0.0232 (5)
C90.0015 (3)0.00829 (15)0.29298 (13)0.0231 (5)
C40.0248 (3)0.02414 (16)0.20803 (13)0.0251 (5)
C20.1498 (3)0.09088 (18)0.17944 (15)0.0338 (6)
H2A0.20070.12630.14230.041*
C30.0542 (3)0.02903 (17)0.15126 (14)0.0300 (6)
H3B0.04060.02160.09470.036*
C50.1275 (3)0.09119 (16)0.18792 (14)0.0256 (5)
C10.1711 (3)0.10083 (16)0.26430 (15)0.0311 (6)
H1B0.23830.14260.28260.037*
C60.1969 (3)0.13796 (16)0.24900 (15)0.0310 (6)
H6A0.26310.18190.23420.037*
C70.1711 (3)0.12159 (15)0.33312 (15)0.0314 (6)
H7A0.21930.15490.37310.038*
O6W0.2752 (2)0.14637 (13)0.45841 (13)0.0415 (5)
H6WA0.25010.19480.44010.062*
H5WB0.011 (3)0.2155 (12)0.4428 (14)0.029 (7)*
H6WB0.347 (3)0.134 (2)0.4814 (19)0.060 (11)*
S10.16782 (7)0.11580 (4)0.08365 (4)0.02460 (16)
O20.21464 (19)0.03403 (11)0.04239 (9)0.0293 (4)
O40.03579 (19)0.15043 (12)0.04607 (10)0.0352 (4)
O30.28431 (19)0.18166 (11)0.08585 (10)0.0313 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0259 (2)0.0217 (2)0.02325 (19)0.00303 (12)0.00136 (12)0.00040 (11)
O5W0.0340 (11)0.0262 (10)0.0375 (10)0.0004 (8)0.0078 (8)0.0026 (8)
O10.0293 (10)0.0275 (9)0.0225 (8)0.0058 (8)0.0005 (7)0.0008 (7)
N10.0235 (11)0.0235 (11)0.0279 (11)0.0013 (8)0.0027 (8)0.0001 (8)
C80.0250 (13)0.0217 (12)0.0230 (12)0.0009 (9)0.0008 (9)0.0002 (9)
C90.0191 (11)0.0232 (12)0.0270 (12)0.0017 (9)0.0022 (9)0.0010 (9)
C40.0246 (13)0.0263 (12)0.0245 (12)0.0038 (10)0.0011 (10)0.0017 (9)
C20.0348 (15)0.0385 (15)0.0282 (13)0.0071 (12)0.0025 (11)0.0077 (12)
C30.0305 (14)0.0348 (14)0.0246 (12)0.0007 (11)0.0002 (10)0.0009 (10)
C50.0259 (13)0.0259 (12)0.0250 (12)0.0028 (10)0.0012 (10)0.0020 (10)
C10.0317 (14)0.0299 (14)0.0317 (13)0.0106 (11)0.0051 (11)0.0019 (10)
C60.0338 (14)0.0265 (13)0.0327 (13)0.0065 (11)0.0032 (11)0.0038 (11)
C70.0358 (15)0.0308 (14)0.0276 (13)0.0072 (11)0.0013 (11)0.0017 (10)
O6W0.0318 (11)0.0256 (10)0.0670 (13)0.0053 (8)0.0201 (10)0.0100 (9)
S10.0260 (3)0.0232 (3)0.0246 (3)0.0021 (2)0.0014 (2)0.0041 (2)
O20.0330 (10)0.0263 (9)0.0284 (9)0.0054 (8)0.0022 (7)0.0002 (7)
O40.0320 (10)0.0358 (11)0.0377 (10)0.0081 (8)0.0043 (8)0.0047 (8)
O30.0353 (10)0.0276 (9)0.0310 (9)0.0038 (8)0.0036 (7)0.0052 (7)
Geometric parameters (Å, º) top
Ni1—O1i2.0153 (17)C4—C51.421 (3)
Ni1—O6W2.0285 (19)C2—C31.360 (4)
Ni1—O12.0443 (16)C2—C11.393 (3)
Ni1—N12.052 (2)C2—H2A0.9300
Ni1—O5W2.0936 (19)C3—H3B0.9300
Ni1—O2ii2.1437 (17)C5—C61.371 (3)
O5W—H5WA0.8200C5—S11.765 (2)
O5W—H5WB0.804 (17)C1—H1B0.9300
O1—C8i1.320 (3)C6—C71.402 (3)
N1—C11.322 (3)C6—H6A0.9300
N1—C91.367 (3)C7—H7A0.9300
C8—O1i1.320 (3)O6W—H6WA0.8200
C8—C71.372 (3)O6W—H6WB0.784 (17)
C8—C91.445 (3)S1—O41.4553 (18)
C9—C41.414 (3)S1—O31.4608 (17)
C4—C31.418 (3)S1—O21.4645 (17)
O1i—Ni1—O6W176.93 (8)C9—C4—C5117.1 (2)
O1i—Ni1—O176.69 (7)C3—C4—C5126.5 (2)
O6W—Ni1—O1103.89 (8)C3—C2—C1119.6 (2)
O1i—Ni1—N180.92 (7)C3—C2—H2A120.2
O6W—Ni1—N198.67 (8)C1—C2—H2A120.2
O1—Ni1—N1157.28 (7)C2—C3—C4120.1 (2)
O1i—Ni1—O5W93.64 (8)C2—C3—H3B119.9
O6W—Ni1—O5W89.40 (8)C4—C3—H3B119.9
O1—Ni1—O5W88.06 (7)C6—C5—C4120.7 (2)
N1—Ni1—O5W89.54 (7)C6—C5—S1118.81 (19)
O1i—Ni1—O259.09 (4)C4—C5—S1120.49 (18)
O6W—Ni1—O2120.98 (6)N1—C1—C2122.7 (2)
O1—Ni1—O2133.91 (5)N1—C1—H1B118.6
N1—Ni1—O2ii95.19 (7)C2—C1—H1B118.6
O5W—Ni1—O2ii170.00 (7)C5—C6—C7121.9 (2)
Ni1—O5W—H5WA109.5C5—C6—H6A119.0
Ni1—O5W—H5WB122 (2)C7—C6—H6A119.0
H5WA—O5W—H5WB102.2C8—C7—C6120.3 (2)
C8i—O1—Ni1i114.35 (14)C8—C7—H7A119.9
C8i—O1—Ni1142.34 (15)C6—C7—H7A119.9
Ni1i—O1—Ni1103.31 (7)Ni1—O6W—H6WA109.5
C1—N1—C9118.7 (2)Ni1—O6W—H6WB122 (2)
C1—N1—Ni1129.50 (16)H6WA—O6W—H6WB128.7
C9—N1—Ni1111.81 (15)O4—S1—O3112.36 (11)
O1i—C8—C7124.9 (2)O4—S1—O2110.91 (10)
O1i—C8—C9116.8 (2)O3—S1—O2111.42 (10)
C7—C8—C9118.3 (2)O4—S1—C5107.33 (11)
N1—C9—C4122.4 (2)O3—S1—C5105.87 (10)
N1—C9—C8115.98 (19)O2—S1—C5108.68 (10)
C4—C9—C8121.6 (2)S1—O2—Ni1iii136.95 (11)
C9—C4—C3116.4 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y, z+1/2; (iii) x1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5W—H5WA···O3iv0.822.002.812 (2)171
O5W—H5WB···O4v0.80 (2)2.07 (2)2.866 (3)170 (2)
O6W—H6WA···O3v0.821.932.687 (2)153
O6W—H6WB···O4vi0.78 (2)2.04 (2)2.787 (3)159 (3)
Symmetry codes: (iv) x1/2, y, z+1/2; (v) x, y+1/2, z+1/2; (vi) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C9H5NO4S)(H2O)2]
Mr317.94
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)9.2067 (8), 15.0504 (13), 16.1599 (14)
V3)2239.2 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.94
Crystal size (mm)0.28 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.601, 0.701
No. of measured, independent and
observed [I > 2σ(I)] reflections
11973, 2198, 1874
Rint0.037
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.079, 1.02
No. of reflections2198
No. of parameters171
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 0.27

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—O1i2.0153 (17)Ni1—N12.052 (2)
Ni1—O6W2.0285 (19)Ni1—O5W2.0936 (19)
Ni1—O12.0443 (16)Ni1—O2ii2.1437 (17)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5W—H5WA···O3iii0.822.002.812 (2)171
O5W—H5WB···O4iv0.80 (2)2.07 (2)2.866 (3)170 (2)
O6W—H6WA···O3iv0.821.932.687 (2)153
O6W—H6WB···O4v0.78 (2)2.04 (2)2.787 (3)159 (3)
Symmetry codes: (iii) x1/2, y, z+1/2; (iv) x, y+1/2, z+1/2; (v) x+1/2, y, z+1/2.
 

Footnotes

Additional correspondence author.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20571030).

References

First citationAmmor, S., Coquerel, G., Perez, G. & Robert, F. (1992). Eur. J. Solid State Inorg. Chem. 29, 131–139.  CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPetit, S., Ammor, S., Coquerel, G., Mayer, G., Perez, G. & Dance, J.-M. (1993a). Eur. J. Solid State Inorg. Chem. 39, 497–507.  Google Scholar
First citationPetit, S., Coquerel, G., Perez, G., Louer, D. & Louer, M. (1993b). New J. Chem. 17, 187–192.  CAS Google Scholar
First citationRao, H.-Y., Tao, J. & Ng, S. W. (2003). Acta Cryst. E59, m859–m860.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, H., Dong, X. W., Liu, H.-Y., Ma, J.-F., Li, S.-L., Yang, J., Liu, Y.-Y. & Su, Z.-M. (2008). Dalton Trans. pp. 5331–5341.  Web of Science CSD CrossRef Google Scholar
First citationXie, Z. X., Liu, W., Liu, H. F. & Zheng, L. S. (1992). Chin. J. Struct. Chem. 11, 139–142.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds