organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o2018-o2019

2,2′-Di­hydroxybi­phenyl-3,3′-di­carb­aldehyde dioxime

aKiev National Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kiev, Ukraine, bKyiv National University of Construction and Architecture, Department of Chemistry, Povitroflotsky Ave., 31, 03680 Kiev, Ukraine, cKarakalpakian University, Department of Chemistry, Universitet Keshesi 1, 742012 Nukus, Uzbekistan, and dDepartment of Chemistry, University of Joensuu, PO Box 111, 80101 Joensuu, Finland
*Correspondence e-mail: eprisyazhnaya@ukr.net

(Received 20 July 2009; accepted 23 July 2009; online 29 July 2009)

The mol­ecule of the title compound, C14H12N2O4, lies across a crystallographic inversion centre situated at the mid-point of the C—C intra-annular bond. The mol­ecule is not planar, the dihedral angle between the aromatic rings being 50.1 (1)°. The oxime group is in an E position with respect to the –OH group and forms an intra­molecular O—H⋯N hydrogen bond. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link mol­ecules into chains propagating along [001]. The crystal structure is further stabilized by inter­molecular stacking inter­actions between the rings [centroid-to-centroid distance = 3.93 (1) Å], resulting in layers parallel to the bc plane.

Related literature

For the use of oximes as chelating ligands in coordination and analytical chemistry and extraction metallurgy, see: Kukushkin et al. (1996[Kukushkin, V. Yu., Tudela, D. & Pombeiro, A. J. L. (1996). Coord. Chem. Rev. 156, 333-362.]); Chaudhuri (2003[Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143-168.]). For the use of oxime ligands to obtain polynuclear compounds in the fields of mol­ecular magnetism and supra­molecular chemistry, see: Cervera et al. (1997[Cervera, B., Ruiz, R., Lloret, F., Julve, M., Cano, J., Faus, J., Bois, C. & Mrozinski, J. (1997). J. Chem. Soc. Dalton Trans. pp. 395-401.]); Costes et al. (1998[Costes, J.-P., Dahan, F., Dupuis, A. & Laurent, J.-P. (1998). J. Chem. Soc. Dalton Trans. pp. 1307-1314.]). Oxime-containing ligands have been found to efficiently stabilize high oxidation states of metal ions such as Cu(III) and Ni(III), see: Fritsky et al. (2006[Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Swiatek-Kozlowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125-4127.]); Kanderal et al. (2005[Kanderal, O. M., Kozłowski, H., Dobosz, A., Swiatek-Kozlowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428-1437.]). For C=N and N—O bond lengths in oximes, see: Mokhir et al. (2002[Mokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113-121.]); Onindo et al. (1995[Onindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911-3915.]); Sliva et al. (1997[Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287-294.]). For the synthesis of 2,2′-dihydroxy­biphenyl-3,3′-dicarbaldehyde, see: Wünnemann et al. (2008[Wünnemann, S., Fröhlich, R. & Hoppe, D. (2008). Eur. J. Org. Chem. pp. 684-692.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2O4

  • Mr = 272.26

  • Monoclinic, C 2/c

  • a = 24.2780 (14) Å

  • b = 3.9279 (4) Å

  • c = 16.6466 (12) Å

  • β = 129.652 (6)°

  • V = 1222.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 120 K

  • 0.19 × 0.09 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.993

  • 4331 measured reflections

  • 1388 independent reflections

  • 812 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.146

  • S = 1.02

  • 1388 reflections

  • 99 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.91 (3) 1.79 (3) 2.609 (2) 148 (2)
O2—H2⋯O1i 1.00 (3) 1.96 (3) 2.871 (2) 151 (3)
Symmetry code: (i) -x+1, -y, -z.

Data collection: COLLECT (Bruker–Nonius, 2004[Bruker-Nonius (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Oximes are a traditional class of chelating ligands widely used in coordination and analytical chemistry and extraction metallurgy (Kukushkin et al., 1996; Chaudhuri, 2003). Due to marked ability to from bridges between metal ions oxime ligands may be used for obtaining polynuclear compounds in the field of molecular magnetism and supramolecular chemistry (Cervera et al., 1997; Costes et al., 1998). Also, the oxime ligands are strong donors and therefore the oxime-containing ligands were found to efficiently stabilize high oxidation states of metal ions like Cu(III) and Ni(III) (Kanderal et al., 2005; Fritsky et al., 2006). The presence of additional donor groups together with the oxime group in the ligand molecule may result in significant increase of chelating efficiency and ability to form polynuclear complexes. The present investigation is dedicated to the study of the molecular structure of the title compound (I) which is a new polynuclear ligand containing both oxime and phenolic functions.

Molecules of I lie across a crystallographic inversion centre situated in the midpoint of the C—C intra-annular bond (Fig. 1). The molecule is not planar, the dihedral angle between the phenyl rings is 50.1 (1)°. The oxime group is in the E-position with respect to the OH group and forms an intramolecular O—H···N hydrogen bond. The C=N and N—O bond lengths are normal for oximes (Onindo et al., 1995; Sliva et al., 1997; Mokhir et al., 2002).

In the crystal structure, intermolecular O—H···O hydrogen bonds between the phenolic groups of the translational molecules link the molecules into chains propagating along [001]. The crystal structure is further stabilized by the intermolecular stacking interactions between the phenyl rings with centroid-to-centroid distances equal to 3.93 Å resulting in layers parallel to the yz plane (Fig. 2).

Related literature top

For the use of oximes as chelating ligands in coordination and analytical chemistry and extraction metallurgy, see: Kukushkin et al. (1996); Chaudhuri (2003). For the use of oxime ligands to obtain polynuclear compounds in the fields of molecular magnetism and supramolecular chemistry, see: Cervera et al. (1997); Costes et al. (1998). Oxime-containing ligands have been found to efficiently stabilize high oxidation states of metal ions such as Cu(III) and Ni(III), see: Fritsky et al. (2006); Kanderal et al. (2005). For CN and N—O bond lengths in oximes, see: Mokhir et al. (2002); Onindo et al. (1995); Sliva et al. (1997). for the synthesis of 2,2'-dihydroxybiphenyl-3,3'-dicarbaldehyde, see: Wünnemann et al. (2008).

Experimental top

2,2'-Dihydroxybiphenyl-3,3'-dicarbaldehyde (2.57 g, 10 mmol) dissolved in 20 ml of methanol was added to a solution obtained by dissolving sodium (0.51 g, 22 mmol) in 10 ml of methanol with addition of hydroxylamine hydrochloride (1.52 g, 22 mmol). The mixture was stirred for 30 min and filtered. In 2–3 h the filtrate produced white crystalline precipitate which was filtered off and dried. Yield 85%. Single crystals suitable for X-ray analysis were obtained as a result of recrystallization from aqueous (40%) ethanol. 2,2'-Dihydroxybiphenyl-3,3'-dicarbaldehyde was synthesized according to the reported method (Wünnemann et al., 2008).

Refinement top

The O—H hydrogen atoms were located from the difference Fourier map and refined isotropically. The C—H hydrogen atoms of the phenyl rings were positioned geometrically and were constrained to ride on their parent atoms, with C—H = 0.95 Å, and Uiso = 1.2 Ueq(parent atom).

Computing details top

Data collection: COLLECT (Bruker–Nonius, 2004); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of compound (I), with displacement ellipsoids shown at the 50% probability level. H atoms are drawn as spheres of an arbitrary radius.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
2,2'-Dihydroxy-1,1'-biphenyl-3,3'-dicarbaldehyde dioxime top
Crystal data top
C14H12N2O4F(000) = 568
Mr = 272.26Dx = 1.480 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 516 reflections
a = 24.2780 (14) Åθ = 4.5–27.0°
b = 3.9279 (4) ŵ = 0.11 mm1
c = 16.6466 (12) ÅT = 120 K
β = 129.652 (6)°Block, pale-yellow
V = 1222.2 (2) Å30.19 × 0.09 × 0.06 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1388 independent reflections
Radiation source: fine-focus sealed tube812 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.073
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 4.4°
ϕ scans and ω scans with κ offseth = 3030
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
k = 54
Tmin = 0.976, Tmax = 0.993l = 1821
4331 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0673P)2]
where P = (Fo2 + 2Fc2)/3
1388 reflections(Δ/σ)max < 0.001
99 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C14H12N2O4V = 1222.2 (2) Å3
Mr = 272.26Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.2780 (14) ŵ = 0.11 mm1
b = 3.9279 (4) ÅT = 120 K
c = 16.6466 (12) Å0.19 × 0.09 × 0.06 mm
β = 129.652 (6)°
Data collection top
Nonius KappaCCD
diffractometer
1388 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
812 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.993Rint = 0.073
4331 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.27 e Å3
1388 reflectionsΔρmin = 0.29 e Å3
99 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50535 (8)0.1656 (4)0.11701 (11)0.0286 (5)
O20.64023 (9)0.1055 (4)0.07166 (13)0.0350 (5)
N10.60748 (10)0.0232 (5)0.11062 (14)0.0279 (5)
C10.55751 (12)0.2918 (5)0.21487 (16)0.0236 (6)
C20.53803 (11)0.4208 (6)0.27199 (16)0.0235 (6)
C30.59205 (12)0.5499 (6)0.37151 (16)0.0265 (6)
H30.57950.64390.41050.032*
C40.66275 (12)0.5455 (6)0.41490 (17)0.0269 (6)
H40.69830.63290.48320.032*
C50.68185 (12)0.4140 (6)0.35911 (16)0.0272 (6)
H50.73080.41020.38930.033*
C60.62978 (11)0.2855 (6)0.25813 (16)0.0237 (6)
C70.65242 (12)0.1435 (6)0.20269 (17)0.0265 (6)
H70.70190.14020.23580.032*
H10.5270 (14)0.081 (7)0.0923 (19)0.042 (8)*
H20.5979 (18)0.165 (8)0.002 (3)0.067 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0229 (9)0.0387 (10)0.0217 (9)0.0034 (7)0.0132 (8)0.0059 (7)
O20.0324 (10)0.0468 (11)0.0296 (10)0.0008 (8)0.0217 (9)0.0042 (8)
N10.0299 (11)0.0321 (11)0.0277 (11)0.0015 (9)0.0212 (10)0.0001 (8)
C10.0244 (13)0.0233 (12)0.0192 (12)0.0006 (9)0.0121 (11)0.0013 (9)
C20.0235 (12)0.0218 (12)0.0213 (11)0.0002 (9)0.0124 (11)0.0017 (9)
C30.0306 (14)0.0266 (13)0.0231 (12)0.0015 (10)0.0176 (11)0.0000 (10)
C40.0253 (13)0.0301 (13)0.0178 (11)0.0044 (10)0.0103 (10)0.0024 (9)
C50.0211 (12)0.0290 (14)0.0257 (12)0.0018 (10)0.0123 (11)0.0011 (10)
C60.0237 (13)0.0246 (12)0.0204 (12)0.0012 (9)0.0130 (11)0.0020 (9)
C70.0207 (12)0.0311 (13)0.0252 (12)0.0008 (10)0.0136 (11)0.0008 (10)
Geometric parameters (Å, º) top
O1—C11.368 (3)C3—C41.373 (3)
O1—H10.91 (3)C3—H30.9500
O2—N11.402 (2)C4—C51.376 (3)
O2—H21.00 (3)C4—H40.9500
N1—C71.276 (3)C5—C61.402 (3)
C1—C21.399 (3)C5—H50.9500
C1—C61.409 (3)C6—C71.453 (3)
C2—C31.396 (3)C7—H70.9500
C2—C2i1.490 (4)
C1—O1—H1107.9 (16)C3—C4—C5119.7 (2)
N1—O2—H2101.8 (18)C3—C4—H4120.1
C7—N1—O2112.73 (17)C5—C4—H4120.1
O1—C1—C2118.89 (19)C4—C5—C6120.7 (2)
O1—C1—C6120.46 (19)C4—C5—H5119.7
C2—C1—C6120.6 (2)C6—C5—H5119.7
C3—C2—C1118.0 (2)C5—C6—C1118.83 (19)
C3—C2—C2i120.9 (2)C5—C6—C7118.8 (2)
C1—C2—C2i121.1 (2)C1—C6—C7122.31 (19)
C4—C3—C2122.1 (2)N1—C7—C6121.6 (2)
C4—C3—H3118.9N1—C7—H7119.2
C2—C3—H3118.9C6—C7—H7119.2
O1—C1—C2—C3179.69 (18)C4—C5—C6—C7178.9 (2)
C6—C1—C2—C31.6 (3)O1—C1—C6—C5179.3 (2)
O1—C1—C2—C2i0.3 (3)C2—C1—C6—C50.6 (3)
C6—C1—C2—C2i178.47 (16)O1—C1—C6—C70.8 (3)
C1—C2—C3—C41.7 (3)C2—C1—C6—C7177.9 (2)
C2i—C2—C3—C4178.39 (17)O2—N1—C7—C6179.16 (18)
C2—C3—C4—C50.8 (3)C5—C6—C7—N1179.9 (2)
C3—C4—C5—C60.3 (3)C1—C6—C7—N11.5 (3)
C4—C5—C6—C10.3 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.91 (3)1.79 (3)2.609 (2)148 (2)
O2—H2···O1ii1.00 (3)1.96 (3)2.871 (2)151 (3)
Symmetry code: (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H12N2O4
Mr272.26
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)24.2780 (14), 3.9279 (4), 16.6466 (12)
β (°) 129.652 (6)
V3)1222.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.19 × 0.09 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.976, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
4331, 1388, 812
Rint0.073
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.146, 1.02
No. of reflections1388
No. of parameters99
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.29

Computer programs: COLLECT (Bruker–Nonius, 2004), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.91 (3)1.79 (3)2.609 (2)148 (2)
O2—H2···O1i1.00 (3)1.96 (3)2.871 (2)151 (3)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. M/42–2008).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker–Nonius (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationCervera, B., Ruiz, R., Lloret, F., Julve, M., Cano, J., Faus, J., Bois, C. & Mrozinski, J. (1997). J. Chem. Soc. Dalton Trans. pp. 395–401.  CSD CrossRef Web of Science Google Scholar
First citationChaudhuri, P. (2003). Coord. Chem. Rev. 243, 143–168.  Web of Science CrossRef CAS Google Scholar
First citationCostes, J.-P., Dahan, F., Dupuis, A. & Laurent, J.-P. (1998). J. Chem. Soc. Dalton Trans. pp. 1307–1314.  Web of Science CSD CrossRef Google Scholar
First citationFritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Swiatek-Kozlowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127.  Web of Science CSD CrossRef Google Scholar
First citationKanderal, O. M., Kozłowski, H., Dobosz, A., Swiatek-Kozlowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437.  Web of Science CrossRef Google Scholar
First citationKukushkin, V. Yu., Tudela, D. & Pombeiro, A. J. L. (1996). Coord. Chem. Rev. 156, 333–362.  CrossRef CAS Web of Science Google Scholar
First citationMokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationOnindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911–3915.  CrossRef Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294.  CSD CrossRef CAS Web of Science Google Scholar
First citationWünnemann, S., Fröhlich, R. & Hoppe, D. (2008). Eur. J. Org. Chem. pp. 684–692.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o2018-o2019
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds