organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,7-Di­chloro-4-(chloro­acet­yl)fluorene

aDepartment of Pharmacy, Zhejiang Medical College, Hangzhou 310053, People's Republic of China, bCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou,310032, People's Republic of China, and cCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China
*Correspondence e-mail: rgw@zjut.edu.cn

(Received 30 June 2009; accepted 11 July 2009; online 29 July 2009)

There are two mol­ecules in the asymmetric unit of the title compound, C15H9Cl3O. The fluorene rings of the two mol­ecules are both coplanar within 066 (3) Å. In the crystal, C—H⋯O and C—H⋯Cl hydrogen bonds link the mol­ecules into sheets running parallel to (100).

Related literature

The title compound is an important inter­mediate in the synthesis of benflumetol, see: Deng et al. (2000[Deng, R. X., Zhong, J. X., Zhao, D. C. & Wang, J. (2000). Yaoxue Xuebao, 35, 22-25.]). Benflumetol conforms structurally and in mode of action to the structure and mode of action of the aryl amino alcohol group of anti­malarial drugs, including quinine, mefloquine, and halofantrine, see: Pradines et al. (1999[Pradines, B., Tall, A., Fusai, T., Spiegel, A., Hienne, R., Rogier, C., Trape, J. F., Le Bras, J. & Parzy, D. (1999). Antimicrob. Agents Chemother. 43, 418-420.]). For our ongoing work on structure–activity relationships, see: Rao & Hu (2005[Rao, G. W. & Hu, W. X. (2005). Bioorg. Med. Chem. Lett. 15, 3174-3176.], 2006[Rao, G. W. & Hu, W. X. (2006). Bioorg. Med. Chem. Lett. 16, 3702-3705.]); Hu et al. (2004[Hu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1177-1181.]).

[Scheme 1]

Experimental

Crystal data
  • C15H9Cl3O

  • Mr = 311.57

  • Triclinic, [P \overline 1]

  • a = 7.607 (6) Å

  • b = 13.227 (10) Å

  • c = 14.957 (11) Å

  • α = 64.942 (9)°

  • β = 81.653 (10)°

  • γ = 76.433 (10)°

  • V = 1323.5 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 298 K

  • 0.25 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD area detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.849, Tmax = 0.935

  • 6098 measured reflections

  • 5096 independent reflections

  • 3419 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.174

  • S = 0.96

  • 5096 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1 0.93 2.37 2.998 (4) 124
C15—H15B⋯Cl6 0.97 2.80 3.678 (5) 151
C21—H21⋯O2 0.93 2.45 3.086 (5) 126
C35—H35A⋯O1i 0.97 2.45 3.261 (5) 140
Symmetry code: (i) x-1, y, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Benflumetol is a racemic fluorene derivative. It conforms to the structure and reactivity of the aryl amino alcohol group of antimalarial drugs, including quinine, mefloquine, and halofantrine (Pradines et al., 1999). 2,7-Dichloro-4-chloroacetyl fluorene, (I), is an important intermediate in the synthesis of benflumetol (Deng et al., 2000). In a continuation of our work on the structure-activity relationships (Rao et al., 2004, 2005, 2006) we have obtained a colourless crystalline compound as the product of the reaction of 2-chloroacetyl chloride and 2,7-dichloro-9H-fluorene. The structural characterization of our product, (I), was performed by single-crystal X-ray diffraction.

The two essentially identical molecules form the asymmetric unit of (I) (Fig. 1). The two independent molecules are roughly parallel to each other, with a head-to-head orientation. The molecular structure is built up from three fused ring, two of which are six-membered and one five-membered. In both molecules, the three rings in the fluorene are coplanar with the largest deviation from the planes being 0.0664 (27) Å for atom C9 and 0.0656 (28)Å for atom C29, respectively. In both molecules, the dihedral angle between the two planes of the fluorene ring is 35.59 (6)°. The torsion angles for substituted COCH2Cl (O1/C14/C15/Cl3 and O2/C34/C35/Cl6) are -8.4 (5) and 31.8 (5)o, respectively.

The crystal packing of (I) is defined by C—H···O and C—H···Cl hydrogen bonds that link the molecules into sheets running parallel to the (100) plane (Table 1, Fig. 2).

Related literature top

The title compound is an important intermediate in the

synthesis of benflumetol, see: Deng et al. (2000). Benflumetol conforms structurally and in mode of action to the structure and mode of action of the aryl amino alcohol group of antimalarial drugs, including quinine, mefloquine, and halofantrine, see: Pradines et al. (1999). For our ongoing work on structure–activity relationships, see: Rao & Hu (2005, 2006). For related literature on what subject?, see: Hu et al. (2004).

Experimental top

The title compound was prepared from 2-chloroacetyl chloride and 2,7-dichloro-9H-fluorene according to the procedure of Deng et al. (2000). A solution of the compound in ethanol was concentrated gradually at room temperature to afford colourless prisms (m.p. 398–399 K).

Refinement top

H atoms were included in calculated positions and refined using a riding model. H atoms were given isotropic displacement parameters equal to 1.2 times the equivalent isotropic displacement parameters of their parent atoms and C—H distances were restrained to 0.97 Å for methylene H atoms, 0.93 Å for aromatic H atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of (I) showing the C—H···O and C—H···Cl hydrogen bonds.
2,7-Dichloro-4-(chloroacetyl)fluorene top
Crystal data top
C15H9Cl3OZ = 4
Mr = 311.57F(000) = 632
Triclinic, P1Dx = 1.564 Mg m3
Hall symbol: -P 1Melting point = 398–399 K
a = 7.607 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.227 (10) ÅCell parameters from 868 reflections
c = 14.957 (11) Åθ = 2.7–23.5°
α = 64.942 (9)°µ = 0.68 mm1
β = 81.653 (10)°T = 298 K
γ = 76.433 (10)°Prismatic, colorless
V = 1323.5 (17) Å30.25 × 0.15 × 0.10 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
5096 independent reflections
Radiation source: fine-focus sealed tube3419 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.849, Tmax = 0.935k = 1614
6098 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.1131P)2]
where P = (Fo2 + 2Fc2)/3
5096 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C15H9Cl3Oγ = 76.433 (10)°
Mr = 311.57V = 1323.5 (17) Å3
Triclinic, P1Z = 4
a = 7.607 (6) ÅMo Kα radiation
b = 13.227 (10) ŵ = 0.68 mm1
c = 14.957 (11) ÅT = 298 K
α = 64.942 (9)°0.25 × 0.15 × 0.10 mm
β = 81.653 (10)°
Data collection top
Bruker SMART CCD area detector
diffractometer
5096 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3419 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.935Rint = 0.035
6098 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 0.96Δρmax = 0.53 e Å3
5096 reflectionsΔρmin = 0.44 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.38813 (15)1.35826 (8)0.52879 (8)0.0682 (3)
Cl21.12004 (16)0.64244 (10)0.44936 (9)0.0768 (4)
Cl30.74877 (16)0.60526 (8)0.91826 (7)0.0685 (3)
O10.8430 (4)0.81774 (19)0.77151 (16)0.0514 (6)
C10.5934 (5)1.0272 (3)0.6453 (2)0.0436 (8)
H10.59190.96730.70720.052*
C20.5018 (5)1.1346 (3)0.6318 (2)0.0462 (8)
H20.43821.14740.68530.055*
C30.5023 (5)1.2242 (3)0.5401 (2)0.0469 (8)
C40.5926 (5)1.2073 (3)0.4590 (2)0.0468 (8)
H40.59191.26750.39710.056*
C50.7849 (5)1.0590 (3)0.3956 (2)0.0462 (8)
H5A0.70581.07060.34530.055*
H5B0.88511.09780.36410.055*
C60.9522 (5)0.8548 (3)0.4220 (3)0.0503 (9)
H60.98990.87490.35570.060*
C70.9956 (5)0.7454 (3)0.4890 (3)0.0530 (9)
C80.9454 (5)0.7127 (3)0.5885 (3)0.0489 (8)
H80.97590.63700.63220.059*
C90.8482 (4)0.7941 (3)0.6235 (2)0.0408 (7)
C100.6833 (4)1.0998 (3)0.4718 (2)0.0403 (7)
C110.6891 (4)1.0092 (3)0.5647 (2)0.0381 (7)
C120.8510 (4)0.9354 (3)0.4544 (2)0.0436 (8)
C130.7963 (4)0.9061 (3)0.5552 (2)0.0384 (7)
C140.8187 (4)0.7600 (3)0.7319 (2)0.0419 (7)
C150.7535 (6)0.6491 (3)0.7895 (3)0.0588 (10)
H15A0.83230.59030.77190.071*
H15B0.63270.65740.77040.071*
Cl40.11626 (18)1.38515 (8)0.82118 (10)0.0877 (4)
Cl50.41632 (16)0.54224 (8)1.28292 (6)0.0645 (3)
Cl60.26609 (15)0.64588 (9)0.81998 (8)0.0681 (3)
O20.3758 (4)0.8383 (2)0.84044 (17)0.0593 (7)
C210.1871 (5)1.0602 (3)0.8631 (3)0.0507 (8)
H210.18061.01960.82630.061*
C220.1468 (5)1.1780 (3)0.8212 (3)0.0566 (9)
H220.11131.21700.75640.068*
C230.1596 (5)1.2369 (3)0.8761 (3)0.0534 (9)
C240.2074 (5)1.1838 (3)0.9724 (3)0.0553 (9)
H240.21571.22551.00790.066*
C250.2907 (5)0.9899 (3)1.1187 (3)0.0512 (9)
H25A0.19471.00191.16560.061*
H25B0.40231.00131.13390.061*
C260.3527 (5)0.7703 (3)1.1986 (2)0.0467 (8)
H260.36860.76661.26050.056*
C270.3686 (5)0.6728 (3)1.1837 (2)0.0466 (8)
C280.3466 (5)0.6773 (3)1.0921 (2)0.0448 (8)
H280.35860.61011.08380.054*
C290.3065 (4)0.7813 (3)1.0120 (2)0.0404 (7)
C300.2427 (5)1.0668 (3)1.0149 (3)0.0461 (8)
C310.2373 (4)1.0032 (3)0.9603 (2)0.0417 (7)
C320.3128 (4)0.8733 (3)1.1198 (2)0.0431 (8)
C330.2860 (4)0.8817 (3)1.0262 (2)0.0400 (7)
C340.3009 (5)0.7782 (3)0.9140 (2)0.0432 (8)
C350.1889 (5)0.6998 (3)0.9112 (2)0.0503 (9)
H35A0.06480.74050.89940.060*
H35B0.18900.63640.97540.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0712 (7)0.0497 (5)0.0737 (7)0.0006 (5)0.0030 (5)0.0222 (5)
Cl20.0728 (8)0.0785 (7)0.0839 (8)0.0045 (6)0.0218 (6)0.0507 (6)
Cl30.0938 (9)0.0535 (5)0.0483 (5)0.0204 (5)0.0077 (5)0.0116 (4)
O10.0671 (18)0.0449 (13)0.0426 (13)0.0150 (12)0.0028 (11)0.0162 (11)
C10.045 (2)0.0457 (18)0.0358 (17)0.0127 (15)0.0024 (14)0.0115 (14)
C20.043 (2)0.051 (2)0.0451 (19)0.0108 (15)0.0053 (15)0.0218 (16)
C30.044 (2)0.0435 (18)0.054 (2)0.0081 (15)0.0047 (16)0.0193 (16)
C40.050 (2)0.0472 (19)0.0362 (17)0.0163 (16)0.0021 (15)0.0066 (14)
C50.043 (2)0.060 (2)0.0384 (17)0.0213 (16)0.0038 (14)0.0190 (15)
C60.047 (2)0.068 (2)0.0434 (19)0.0190 (17)0.0103 (15)0.0300 (18)
C70.039 (2)0.069 (2)0.062 (2)0.0100 (17)0.0099 (16)0.041 (2)
C80.044 (2)0.0499 (19)0.055 (2)0.0104 (16)0.0046 (16)0.0243 (16)
C90.0338 (18)0.0481 (18)0.0427 (17)0.0126 (14)0.0025 (13)0.0194 (14)
C100.0360 (18)0.0502 (18)0.0377 (17)0.0173 (15)0.0014 (13)0.0171 (14)
C110.0341 (18)0.0473 (17)0.0363 (16)0.0149 (14)0.0004 (13)0.0171 (14)
C120.0333 (19)0.060 (2)0.0445 (18)0.0183 (15)0.0038 (14)0.0246 (16)
C130.0339 (18)0.0483 (18)0.0381 (16)0.0161 (14)0.0034 (13)0.0198 (14)
C140.0335 (18)0.0433 (17)0.0435 (18)0.0041 (14)0.0001 (14)0.0148 (15)
C150.074 (3)0.058 (2)0.048 (2)0.026 (2)0.0118 (18)0.0220 (17)
Cl40.0814 (9)0.0455 (6)0.1137 (10)0.0057 (5)0.0130 (7)0.0201 (6)
Cl50.0920 (8)0.0550 (5)0.0389 (5)0.0111 (5)0.0018 (5)0.0140 (4)
Cl60.0670 (7)0.0870 (7)0.0757 (7)0.0203 (5)0.0155 (5)0.0601 (6)
O20.081 (2)0.0623 (15)0.0380 (13)0.0298 (14)0.0168 (12)0.0212 (12)
C210.045 (2)0.055 (2)0.049 (2)0.0091 (16)0.0083 (15)0.0218 (17)
C220.046 (2)0.054 (2)0.058 (2)0.0065 (17)0.0090 (17)0.0156 (18)
C230.035 (2)0.0398 (18)0.075 (3)0.0065 (14)0.0175 (17)0.0202 (18)
C240.045 (2)0.054 (2)0.070 (3)0.0129 (17)0.0195 (18)0.0344 (19)
C250.051 (2)0.060 (2)0.053 (2)0.0159 (17)0.0136 (16)0.0355 (17)
C260.046 (2)0.063 (2)0.0339 (17)0.0135 (17)0.0067 (14)0.0238 (16)
C270.049 (2)0.0513 (19)0.0378 (18)0.0147 (16)0.0075 (14)0.0167 (15)
C280.049 (2)0.0480 (18)0.0399 (18)0.0103 (15)0.0048 (14)0.0222 (15)
C290.0381 (19)0.0473 (17)0.0365 (16)0.0106 (14)0.0091 (13)0.0198 (14)
C300.0359 (19)0.0514 (19)0.055 (2)0.0129 (15)0.0160 (15)0.0285 (16)
C310.0313 (18)0.0479 (18)0.0475 (19)0.0103 (14)0.0116 (14)0.0239 (15)
C320.0358 (19)0.0544 (19)0.0451 (18)0.0145 (15)0.0143 (14)0.0279 (16)
C330.0318 (18)0.0523 (18)0.0374 (17)0.0116 (14)0.0113 (13)0.0220 (14)
C340.044 (2)0.0453 (17)0.0377 (17)0.0058 (15)0.0055 (14)0.0181 (14)
C350.057 (2)0.061 (2)0.0386 (18)0.0169 (18)0.0086 (15)0.0269 (16)
Geometric parameters (Å, º) top
Cl1—C31.730 (4)Cl4—C231.744 (4)
Cl2—C71.737 (4)Cl5—C271.735 (3)
Cl3—C151.758 (4)Cl6—C351.764 (3)
O1—C141.203 (4)O2—C341.207 (4)
C1—C21.371 (5)C21—C221.385 (5)
C1—C111.395 (5)C21—C311.388 (5)
C1—H10.9300C21—H210.9300
C2—C31.382 (4)C22—C231.375 (5)
C2—H20.9300C22—H220.9300
C3—C41.383 (5)C23—C241.369 (5)
C4—C101.372 (5)C24—C301.375 (5)
C4—H40.9300C24—H240.9300
C5—C121.491 (5)C25—C301.494 (5)
C5—C101.503 (5)C25—C321.504 (5)
C5—H5A0.9700C25—H25A0.9700
C5—H5B0.9700C25—H25B0.9700
C6—C71.361 (5)C26—C271.374 (5)
C6—C121.382 (5)C26—C321.375 (5)
C6—H60.9300C26—H260.9300
C7—C81.384 (5)C27—C281.379 (5)
C8—C91.403 (5)C28—C291.391 (4)
C8—H80.9300C28—H280.9300
C9—C131.397 (4)C29—C331.401 (4)
C9—C141.486 (5)C29—C341.491 (4)
C10—C111.396 (4)C30—C311.409 (4)
C11—C131.468 (5)C31—C331.475 (5)
C12—C131.412 (4)C32—C331.398 (5)
C14—C151.512 (5)C34—C351.505 (5)
C15—H15A0.9700C35—H35A0.9700
C15—H15B0.9700C35—H35B0.9700
C2—C1—C11118.9 (3)C22—C21—C31119.6 (3)
C2—C1—H1120.5C22—C21—H21120.2
C11—C1—H1120.5C31—C21—H21120.2
C1—C2—C3121.0 (3)C23—C22—C21119.5 (4)
C1—C2—H2119.5C23—C22—H22120.3
C3—C2—H2119.5C21—C22—H22120.3
C2—C3—C4120.8 (3)C24—C23—C22122.7 (3)
C2—C3—Cl1118.7 (3)C24—C23—Cl4118.3 (3)
C4—C3—Cl1120.5 (3)C22—C23—Cl4119.1 (3)
C10—C4—C3118.4 (3)C23—C24—C30117.9 (3)
C10—C4—H4120.8C23—C24—H24121.0
C3—C4—H4120.8C30—C24—H24121.0
C12—C5—C10103.2 (3)C30—C25—C32102.9 (3)
C12—C5—H5A111.1C30—C25—H25A111.2
C10—C5—H5A111.1C32—C25—H25A111.2
C12—C5—H5B111.1C30—C25—H25B111.2
C10—C5—H5B111.1C32—C25—H25B111.2
H5A—C5—H5B109.1H25A—C25—H25B109.1
C7—C6—C12118.6 (3)C27—C26—C32118.3 (3)
C7—C6—H6120.7C27—C26—H26120.9
C12—C6—H6120.7C32—C26—H26120.9
C6—C7—C8122.3 (3)C26—C27—C28121.3 (3)
C6—C7—Cl2119.3 (3)C26—C27—Cl5118.8 (3)
C8—C7—Cl2118.4 (3)C28—C27—Cl5119.9 (3)
C7—C8—C9119.9 (3)C27—C28—C29120.6 (3)
C7—C8—H8120.0C27—C28—H28119.7
C9—C8—H8120.0C29—C28—H28119.7
C13—C9—C8118.6 (3)C28—C29—C33118.9 (3)
C13—C9—C14122.6 (3)C28—C29—C34117.0 (3)
C8—C9—C14118.6 (3)C33—C29—C34124.0 (3)
C4—C10—C11121.4 (3)C24—C30—C31121.3 (3)
C4—C10—C5128.6 (3)C24—C30—C25128.1 (3)
C11—C10—C5110.0 (3)C31—C30—C25110.6 (3)
C1—C11—C10119.3 (3)C21—C31—C30118.9 (3)
C1—C11—C13131.7 (3)C21—C31—C33133.4 (3)
C10—C11—C13108.9 (3)C30—C31—C33107.7 (3)
C6—C12—C13121.1 (3)C26—C32—C33122.2 (3)
C6—C12—C5128.5 (3)C26—C32—C25127.4 (3)
C13—C12—C5110.4 (3)C33—C32—C25110.4 (3)
C9—C13—C12119.4 (3)C32—C33—C29118.6 (3)
C9—C13—C11133.0 (3)C32—C33—C31108.4 (3)
C12—C13—C11107.5 (3)C29—C33—C31133.0 (3)
O1—C14—C9122.1 (3)O2—C34—C29122.0 (3)
O1—C14—C15122.0 (3)O2—C34—C35121.9 (3)
C9—C14—C15115.9 (3)C29—C34—C35116.1 (3)
C14—C15—Cl3113.4 (2)C34—C35—Cl6113.8 (2)
C14—C15—H15A108.9C34—C35—H35A108.8
Cl3—C15—H15A108.9Cl6—C35—H35A108.8
C14—C15—H15B108.9C34—C35—H35B108.8
Cl3—C15—H15B108.9Cl6—C35—H35B108.8
H15A—C15—H15B107.7H35A—C35—H35B107.7
C11—C1—C2—C30.3 (5)C31—C21—C22—C230.9 (5)
C1—C2—C3—C41.3 (5)C21—C22—C23—C241.5 (6)
C1—C2—C3—Cl1178.6 (3)C21—C22—C23—Cl4177.8 (3)
C2—C3—C4—C100.7 (5)C22—C23—C24—C300.3 (5)
Cl1—C3—C4—C10179.1 (2)Cl4—C23—C24—C30179.5 (3)
C12—C6—C7—C81.4 (5)C32—C26—C27—C280.5 (5)
C12—C6—C7—Cl2179.1 (3)C32—C26—C27—Cl5179.3 (3)
C6—C7—C8—C90.9 (5)C26—C27—C28—C290.3 (5)
Cl2—C7—C8—C9178.6 (3)Cl5—C27—C28—C29179.4 (3)
C7—C8—C9—C133.3 (5)C27—C28—C29—C331.0 (5)
C7—C8—C9—C14171.5 (3)C27—C28—C29—C34174.8 (3)
C3—C4—C10—C111.5 (5)C23—C24—C30—C312.5 (5)
C3—C4—C10—C5177.6 (3)C23—C24—C30—C25177.7 (3)
C12—C5—C10—C4179.6 (3)C32—C25—C30—C24179.9 (3)
C12—C5—C10—C110.4 (3)C32—C25—C30—C310.1 (4)
C2—C1—C11—C102.5 (5)C22—C21—C31—C301.2 (5)
C2—C1—C11—C13179.1 (3)C22—C21—C31—C33179.2 (3)
C4—C10—C11—C13.1 (5)C24—C30—C31—C213.0 (5)
C5—C10—C11—C1176.1 (3)C25—C30—C31—C21177.2 (3)
C4—C10—C11—C13179.6 (3)C24—C30—C31—C33178.5 (3)
C5—C10—C11—C131.2 (3)C25—C30—C31—C331.3 (4)
C7—C6—C12—C131.2 (5)C27—C26—C32—C330.8 (5)
C7—C6—C12—C5179.0 (3)C27—C26—C32—C25179.5 (3)
C10—C5—C12—C6179.6 (3)C30—C25—C32—C26178.2 (3)
C10—C5—C12—C130.6 (3)C30—C25—C32—C331.6 (4)
C8—C9—C13—C123.4 (4)C26—C32—C33—C292.2 (5)
C14—C9—C13—C12171.2 (3)C25—C32—C33—C29178.1 (3)
C8—C9—C13—C11176.7 (3)C26—C32—C33—C31177.3 (3)
C14—C9—C13—C118.8 (5)C25—C32—C33—C312.4 (4)
C6—C12—C13—C91.2 (5)C28—C29—C33—C322.2 (5)
C5—C12—C13—C9178.6 (3)C34—C29—C33—C32173.4 (3)
C6—C12—C13—C11178.9 (3)C28—C29—C33—C31177.1 (3)
C5—C12—C13—C111.3 (3)C34—C29—C33—C317.3 (6)
C1—C11—C13—C94.8 (6)C21—C31—C33—C32175.9 (4)
C10—C11—C13—C9178.4 (3)C30—C31—C33—C322.3 (4)
C1—C11—C13—C12175.3 (3)C21—C31—C33—C293.5 (6)
C10—C11—C13—C121.6 (3)C30—C31—C33—C29178.3 (3)
C13—C9—C14—O140.8 (5)C28—C29—C34—O2133.1 (4)
C8—C9—C14—O1133.8 (4)C33—C29—C34—O242.6 (5)
C13—C9—C14—C15138.3 (3)C28—C29—C34—C3549.7 (4)
C8—C9—C14—C1547.1 (4)C33—C29—C34—C35134.6 (3)
O1—C14—C15—Cl38.4 (5)O2—C34—C35—Cl631.8 (5)
C9—C14—C15—Cl3172.5 (3)C29—C34—C35—Cl6151.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.932.372.998 (4)124
C15—H15B···Cl60.972.803.678 (5)151
C21—H21···O20.932.453.086 (5)126
C35—H35A···O1i0.972.453.261 (5)140
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H9Cl3O
Mr311.57
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.607 (6), 13.227 (10), 14.957 (11)
α, β, γ (°)64.942 (9), 81.653 (10), 76.433 (10)
V3)1323.5 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.25 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD area detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.849, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
6098, 5096, 3419
Rint0.035
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.174, 0.96
No. of reflections5096
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.44

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.932.372.998 (4)124.3
C15—H15B···Cl60.972.803.678 (5)150.5
C21—H21···O20.932.453.086 (5)125.8
C35—H35A···O1i0.972.453.261 (5)140.4
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work is supported by the Open Foundation of Zhejiang Provincial Top Key Pharmaceutical Discipline (No. 20060611) and the Department of Education of Zhejiang Province of China (No. 20060806).

References

First citationDeng, R. X., Zhong, J. X., Zhao, D. C. & Wang, J. (2000). Yaoxue Xuebao, 35, 22–25.  CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1177–1181.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPradines, B., Tall, A., Fusai, T., Spiegel, A., Hienne, R., Rogier, C., Trape, J. F., Le Bras, J. & Parzy, D. (1999). Antimicrob. Agents Chemother. 43, 418–420.  Web of Science CAS PubMed Google Scholar
First citationRao, G. W. & Hu, W. X. (2005). Bioorg. Med. Chem. Lett. 15, 3174–3176.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRao, G. W. & Hu, W. X. (2006). Bioorg. Med. Chem. Lett. 16, 3702–3705.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds