organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bi­phenyl-4,4′-diyl bis­­(2,2,5,5-tetra­methyl-1-oxyl-3-pyrroline-3-carboxyl­ate)

aInstitut für Physikalische und Theoretische Chemie, Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany, and bInstitut für Organische Chemie, Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
*Correspondence e-mail: bats@chemie.uni-frankfurt.de

(Received 18 June 2009; accepted 26 June 2009; online 4 July 2009)

In the title compound, C30H34N2O6, the complete molecule is generated by a crystallographic 2/m symmetry operation. The 1-oxyl-3-pyrroline-3-carboxyl­ate group lies on a mirror plane. The dihedral angle between the ring planes of the biphenyl fragment is constrained by symmetry to be zero, resulting in rather short intramolecular H⋯H contact distances of 2.02 Å. In the crystal, molecules are connected along the a-axis direction by very weak intermolecular methyl–phenyl C—H⋯π interactions. The C—H bond is not directed to the center of the benzene ring, but mainly to one C atom [C—H⋯C(x − 1, y, z): H⋯C = 2.91 Å and C—H⋯C = 143°].

Related literature

For the preparation of the title compound see: Weber et al. (2002[Weber, A., Schiemann, O., Bode, B. & Prisner, T. F. (2002). J. Magn. Reson. 157, 277-285.]). For the crystal structures of related compounds see: Boeyens & Kruger (1970[Boeyens, J. C. A. & Kruger, G. J. (1970). Acta Cryst. B26, 668-672.]); Bolte (2006[Bolte, M. (2006). Acta Cryst. E62, m1609-m1610.]); Duskova et al. (2001[Duskova, J., Labsky, J., Hasek, J. & Cisarova, I. (2001). Acta Cryst. E57, o85-o86.]); Godt et al., 2000[Godt, A., Franzen, C., Veit, S., Enkelmann, V., Pannier, M. & Jeschke, G. (2000). J. Org. Chem. 65, 7575-7582.]; Papoutsakis et al. (1999[Papoutsakis, D., Kirby, J. P., Jackson, J. E. & Nocera, D. G. (1999). Chem. Eur. J. 5, 1474-1480.]); Wiley et al., 1989[Wiley, D. W., Calabrese, J. C. & Miller, J. S. (1989). Chem. Commun. pp. 1523-1526.] and Wiley et al., 1991[Wiley, D. W., Calabrese, J. C., Harlow, R. L. & Miller, J. S. (1991). Angew. Chem. Int. Ed. 30, 450-452.].

[Scheme 1]

Experimental

Crystal data
  • C30H34N2O6

  • Mr = 518.59

  • Monoclinic, C 2/m

  • a = 6.931 (2) Å

  • b = 9.461 (3) Å

  • c = 20.805 (4) Å

  • β = 96.059 (14)°

  • V = 1356.6 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 169 K

  • 0.44 × 0.30 × 0.10 mm

Data collection
  • Siemens SMART 1K CCD diffractometer

  • Absorption correction: none

  • 11267 measured reflections

  • 2074 independent reflections

  • 1552 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.126

  • S = 1.03

  • 2074 reflections

  • 105 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11C⋯C3i 0.98 2.91 3.745 (2) 143
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound was prepared as a reference compound for pulsed electron-electron double resonance measurements (Weber et al., 2002).

The molecular structure is shown in Fig. 1. The molecule has 2/m symmetry: atoms C1, C4, O1, C5, O2, C6, C7, C8, C9, N1 and O3 lie on a mirror plane. There is a twofold axis perpendicular to this mirror plane and passing through the center of the central C—C single bond. There also is an inversion center at the midpoint of the central C—C single bond. The two six-membered rings of the biphenyl group are coplanar by symmetry, resulting in rather short intramolecular H···H contact distances of 2.02 A. The 1-oxyl-3-pyrroline-3-carboxylate group is planar. Approximate planarity of this group also has been observed in a number of related crystal structures (Papoutsakis et al., 1999; Boeyens & Kruger, 1970; Bolte, 2006; Duskova et al., 2001; Godt et al., 2000; Wiley et al., 1989 and Wiley et al., 1991)

The crystal packing is shown in Fig 2. The molecules are connected along the a-direction by four symmetry-equivalent very weak intermolecular Cmethyl—H···π(phenyl) interactions (Table 1). The Cmethyl—H bond is not directed to the center of the phenyl ring, but mainly to one C atom. There are no other short intermolecular contacts.

Related literature top

For the preparation of the title compound see: Weber et al. (2002). For the crystal structures of related compounds see: Boeyens & Kruger (1970); Bolte (2006); Duskova et al. (2001); Godt et al., 2000; Papoutsakis et al. (1999); Wiley et al., 1989 and Wiley et al., 1991.

Experimental top

The title compound was prepared similar to the procedure described by Weber et al. (2002). Single crystals were obtained by recrystallization of the compound from a mixture of toluene and n-hexane (3:1).

Refinement top

The H atoms were positioned geometrically and treated as riding: Cmethyl—H=0.98 Å, Cplanar—H=0.95 Å, Uiso(H)=1.2Ueq(Cnon-methyl) and Uiso(H)=1.5Ueq(Cmethyl). The torsion angles about the C—Cmethyl bonds were refined for the methyl groups.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound shown with 50% probability displacement ellipsoids. The H atoms are drawn as small spheres of arbitrary radius. Symmetry equivalent atoms are related by i: x, -y, z, ii: 2 - x, -y, 1 - z and iii: 2 - x, y, 1 - z.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis.
Biphenyl-4,4'-diyl bis(2,2,5,5-tetramethyl-1-oxyl-3-pyrroline-3-carboxylate) top
Crystal data top
C30H34N2O6F(000) = 552
Mr = 518.59Dx = 1.270 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 77 reflections
a = 6.931 (2) Åθ = 3–23°
b = 9.461 (3) ŵ = 0.09 mm1
c = 20.805 (4) ÅT = 169 K
β = 96.059 (14)°Plate, yellow
V = 1356.6 (6) Å30.44 × 0.30 × 0.10 mm
Z = 2
Data collection top
Siemens SMART 1K CCD
diffractometer
1552 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 30.5°, θmin = 2.0°
ω scansh = 99
11267 measured reflectionsk = 1312
2074 independent reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.06P)2 + 0.9P]
where P = (Fo2 + 2Fc2)/3
2074 reflections(Δ/σ)max = 0.001
105 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C30H34N2O6V = 1356.6 (6) Å3
Mr = 518.59Z = 2
Monoclinic, C2/mMo Kα radiation
a = 6.931 (2) ŵ = 0.09 mm1
b = 9.461 (3) ÅT = 169 K
c = 20.805 (4) Å0.44 × 0.30 × 0.10 mm
β = 96.059 (14)°
Data collection top
Siemens SMART 1K CCD
diffractometer
1552 reflections with I > 2σ(I)
11267 measured reflectionsRint = 0.056
2074 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.03Δρmax = 0.39 e Å3
2074 reflectionsΔρmin = 0.21 e Å3
105 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58234 (19)0.00000.29187 (6)0.0310 (3)
O20.2989 (2)0.00000.33551 (6)0.0396 (4)
O30.0951 (2)0.00000.09831 (7)0.0323 (3)
N10.0672 (2)0.00000.13356 (7)0.0231 (3)
C10.9329 (3)0.00000.46943 (8)0.0231 (4)
C20.8678 (2)0.12604 (16)0.43958 (6)0.0317 (3)
H2A0.90760.21350.45920.038*
C30.7462 (2)0.12691 (16)0.38187 (7)0.0321 (3)
H3A0.70360.21370.36220.039*
C40.6887 (3)0.00000.35376 (8)0.0261 (4)
C50.3862 (3)0.00000.28870 (8)0.0211 (4)
C60.2971 (2)0.00000.22093 (8)0.0179 (3)
C70.3911 (3)0.00000.16826 (8)0.0190 (3)
H7A0.52850.00000.16960.023*
C80.2570 (3)0.00000.10658 (8)0.0205 (3)
C90.0794 (2)0.00000.20539 (8)0.0185 (3)
C100.2784 (2)0.13302 (16)0.06612 (7)0.0324 (3)
H10A0.17990.13250.02870.049*
H10B0.40790.13480.05120.049*
H10C0.26110.21690.09250.049*
C110.01778 (19)0.13337 (14)0.22809 (7)0.0261 (3)
H11A0.15350.13600.20930.039*
H11B0.05030.21700.21420.039*
H11C0.01250.13270.27530.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0170 (6)0.0590 (9)0.0159 (6)0.0000.0032 (5)0.000
O20.0240 (7)0.0753 (12)0.0194 (6)0.0000.0022 (5)0.000
O30.0215 (7)0.0429 (8)0.0295 (7)0.0000.0116 (5)0.000
N10.0176 (7)0.0302 (8)0.0200 (7)0.0000.0050 (5)0.000
C10.0194 (8)0.0309 (9)0.0182 (8)0.0000.0018 (6)0.000
C20.0363 (8)0.0306 (7)0.0256 (7)0.0027 (6)0.0087 (6)0.0022 (5)
C30.0340 (8)0.0360 (8)0.0244 (6)0.0067 (6)0.0066 (5)0.0026 (6)
C40.0166 (8)0.0452 (11)0.0157 (8)0.0000.0023 (6)0.000
C50.0183 (8)0.0246 (8)0.0195 (8)0.0000.0017 (6)0.000
C60.0164 (7)0.0172 (7)0.0192 (8)0.0000.0020 (6)0.000
C70.0179 (8)0.0188 (8)0.0193 (8)0.0000.0021 (6)0.000
C80.0211 (8)0.0226 (8)0.0169 (7)0.0000.0015 (6)0.000
C90.0159 (7)0.0193 (8)0.0199 (8)0.0000.0006 (6)0.000
C100.0376 (8)0.0321 (7)0.0262 (7)0.0044 (6)0.0032 (6)0.0093 (6)
C110.0200 (6)0.0234 (6)0.0346 (7)0.0024 (5)0.0012 (5)0.0035 (5)
Geometric parameters (Å, º) top
O1—C51.354 (2)C6—C71.332 (2)
O1—C41.414 (2)C6—C91.509 (2)
O2—C51.199 (2)C7—C81.503 (2)
O3—N11.2766 (19)C7—H7A0.9500
N1—C81.484 (2)C8—C10i1.5299 (17)
N1—C91.488 (2)C8—C101.5299 (17)
C1—C2i1.3970 (17)C9—C111.5285 (16)
C1—C21.3971 (17)C9—C11i1.5285 (16)
C1—C1ii1.495 (3)C10—H10A0.9800
C2—C31.3922 (19)C10—H10B0.9800
C2—H2A0.9500C10—H10C0.9800
C3—C41.3760 (17)C11—H11A0.9800
C3—H3A0.9500C11—H11B0.9800
C4—C3i1.3761 (17)C11—H11C0.9800
C5—C61.478 (2)
C5—O1—C4117.92 (14)N1—C8—C799.78 (13)
O3—N1—C8123.07 (14)N1—C8—C10i110.45 (10)
O3—N1—C9122.02 (15)C7—C8—C10i112.51 (9)
C8—N1—C9114.91 (13)N1—C8—C10110.45 (10)
C2i—C1—C2117.19 (16)C7—C8—C10112.51 (9)
C2i—C1—C1ii121.40 (8)C10i—C8—C10110.69 (15)
C2—C1—C1ii121.40 (8)N1—C9—C699.50 (13)
C3—C2—C1121.74 (13)N1—C9—C11109.27 (9)
C3—C2—H2A119.1C6—C9—C11113.40 (9)
C1—C2—H2A119.1N1—C9—C11i109.28 (9)
C4—C3—C2118.90 (13)C6—C9—C11i113.40 (9)
C4—C3—H3A120.6C11—C9—C11i111.28 (15)
C2—C3—H3A120.6C8—C10—H10A109.5
C3—C4—C3i121.52 (17)C8—C10—H10B109.5
C3—C4—O1119.12 (8)H10A—C10—H10B109.5
C3i—C4—O1119.12 (8)C8—C10—H10C109.5
O2—C5—O1123.36 (16)H10A—C10—H10C109.5
O2—C5—C6125.39 (17)H10B—C10—H10C109.5
O1—C5—C6111.25 (14)C9—C11—H11A109.5
C7—C6—C5126.39 (16)C9—C11—H11B109.5
C7—C6—C9112.83 (14)H11A—C11—H11B109.5
C5—C6—C9120.78 (14)C9—C11—H11C109.5
C6—C7—C8112.99 (16)H11A—C11—H11C109.5
C6—C7—H7A123.5H11B—C11—H11C109.5
C8—C7—H7A123.5
C2i—C1—C2—C31.2 (3)C9—N1—C8—C10i118.61 (10)
C1ii—C1—C2—C3178.55 (19)O3—N1—C8—C1061.39 (10)
C1—C2—C3—C40.1 (2)C9—N1—C8—C10118.61 (10)
C2—C3—C4—C3i1.0 (3)C6—C7—C8—N10.0
C2—C3—C4—O1173.34 (14)C6—C7—C8—C10i117.08 (11)
C5—O1—C4—C392.77 (15)C6—C7—C8—C10117.08 (11)
C5—O1—C4—C3i92.77 (15)O3—N1—C9—C6180.0
C4—O1—C5—O20.0C8—N1—C9—C60.0
C4—O1—C5—C6180.0O3—N1—C9—C1160.99 (10)
O2—C5—C6—C7180.0C8—N1—C9—C11119.01 (10)
O1—C5—C6—C70.0O3—N1—C9—C11i60.99 (10)
O2—C5—C6—C90.0C8—N1—C9—C11i119.01 (10)
O1—C5—C6—C9180.0C7—C6—C9—N10.0
C5—C6—C7—C8180.0C5—C6—C9—N1180.0
C9—C6—C7—C80.0C7—C6—C9—C11115.91 (11)
O3—N1—C8—C7180.0C5—C6—C9—C1164.09 (11)
C9—N1—C8—C70.0C7—C6—C9—C11i115.92 (11)
O3—N1—C8—C10i61.39 (10)C5—C6—C9—C11i64.08 (11)
Symmetry codes: (i) x, y, z; (ii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11C···C3iii0.982.913.745 (2)143
Symmetry code: (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC30H34N2O6
Mr518.59
Crystal system, space groupMonoclinic, C2/m
Temperature (K)169
a, b, c (Å)6.931 (2), 9.461 (3), 20.805 (4)
β (°) 96.059 (14)
V3)1356.6 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.44 × 0.30 × 0.10
Data collection
DiffractometerSiemens SMART 1K CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11267, 2074, 1552
Rint0.056
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.126, 1.03
No. of reflections2074
No. of parameters105
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.21

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11C···C3i0.982.913.745 (2)143
Symmetry code: (i) x1, y, z.
 

References

First citationBoeyens, J. C. A. & Kruger, G. J. (1970). Acta Cryst. B26, 668–672.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBolte, M. (2006). Acta Cryst. E62, m1609–m1610.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDuskova, J., Labsky, J., Hasek, J. & Cisarova, I. (2001). Acta Cryst. E57, o85–o86.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGodt, A., Franzen, C., Veit, S., Enkelmann, V., Pannier, M. & Jeschke, G. (2000). J. Org. Chem. 65, 7575–7582.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPapoutsakis, D., Kirby, J. P., Jackson, J. E. & Nocera, D. G. (1999). Chem. Eur. J. 5, 1474–1480.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWeber, A., Schiemann, O., Bode, B. & Prisner, T. F. (2002). J. Magn. Reson. 157, 277–285.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWiley, D. W., Calabrese, J. C., Harlow, R. L. & Miller, J. S. (1991). Angew. Chem. Int. Ed. 30, 450–452.  CSD CrossRef Google Scholar
First citationWiley, D. W., Calabrese, J. C. & Miller, J. S. (1989). Chem. Commun. pp. 1523–1526.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds