metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[bis­­[μ-1,4-bis­­(3-pyridylmeth­yl)piperazine-κ2N:N′]di­chlorido­cadmium(II)] tetra­hydrate]

aLyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

(Received 10 July 2009; accepted 14 July 2009; online 18 July 2009)

In the title compound, {[CdCl2(C16H20N4)2]·4H2O}n, octa­hedrally coordinated CdII ions, situated on crystallographic inversion centres, bearing trans-disposed chloride ligands, are linked into (4,4)-grid coordination polymer layers by tethering 1,4-bis­(3-pyridylmeth­yl)piperazine ligands. The layers are aligned parallel to the ([\overline{1}]01) crystal planes and aggregate by means of O—H⋯N, O—H⋯O and O—H⋯Cl hydrogen-bonding mechanisms imparted by cyclic water mol­ecule tetra­mers.

Related literature

For a cadmium succinate coordination polymer containing N,N′-bis­(4-pyridylmeth­yl)piperazine, see: Martin et al. (2009[Martin, D., Supkowski, R. M. & LaDuca, R. L. (2009). Dalton Trans. pp. 514-520.]). For the preparation of N,N′-bis­(3-pyridylmeth­yl)piperazine, see: Pocic et al. (2005[Pocic, D., Planeix, J.-M., Kyritsakas, N., Jouaiti, A., Abdelaziz, H. & Wais, M. (2005). CrystEngComm, 7, 624-628.]).

[Scheme 1]

Experimental

Crystal data
  • [CdCl2(C16H20N4)2]·4H2O

  • Mr = 792.08

  • Monoclinic, P 21 /n

  • a = 10.3481 (2) Å

  • b = 13.9791 (2) Å

  • c = 12.7789 (2) Å

  • β = 92.4730 (10)°

  • V = 1846.84 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 173 K

  • 0.38 × 0.35 × 0.19 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.753, Tmax = 0.868

  • 16443 measured reflections

  • 3391 independent reflections

  • 3060 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.055

  • S = 1.07

  • 3391 reflections

  • 226 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯N2 0.874 (16) 2.084 (17) 2.950 (2) 171 (2)
O1W—H1WB⋯O2Wi 0.884 (16) 2.007 (18) 2.838 (3) 156 (2)
O2W—H2WA⋯O1W 0.921 (17) 1.958 (19) 2.844 (3) 161 (3)
O2W—H2WB⋯Cl1ii 0.912 (17) 2.272 (18) 3.1607 (17) 165 (3)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound was prepared during an attempt to prepare a divalent cadmium coordination polymer containing both succinate and N,N'-di(3-pyridylmethyl)piperazine (3-bpmp) ligands. A cadmium succinate coordination polymer containing the isomeric N,N'-di(4-pyridylmethyl)piperazine (4-bpmp) ligand manifested the unique example of a 658 layered topology (Martin et al., 2009).

The asymmetric unit of the title compound (Fig. 1) contains a CdII ion on the crystallographic inversion centre, one chloro ligand, one 3-bpmp ligand, and two water molecules of crystallization. Operation of the crystallographic symmetry generates an octahedral {CdCl2N4} coordination environment, with trans disposed chloro ligands and four N atom donors from pyridyl groups of four different 3-bpmp ligands.

Each CdII ion is linked to four others through the tethering 3-bpmp ligands to construct (4,4)-grid [CdCl2(3-bpmp)2]n coordination polymer layers (Fig. 2) that are oriented parallel to the (1 0 1) crystal planes. The through-ligand Cd···Cd distances measure 10.658 (3) Å. The layers stack in an AAA pattern along the a crystal direction via hydrogen-bonding mechanisms provided by tetrameric water molecule aggregations (Fig. 3). Within a single coordination polymer layer, a water molecule (O1W) engages in O—H···N hydrogen-bonding with a piperazinyl N atom, and in turn with another water molecule of crystallization (O2W). Then, this second water molecule of crystallization provides O—H···Cl hydrogen-bonding to a chloro ligand. The water molecules of crystallization engage in mutual O—H···O hydrogen-bonding across the interlamellar regions to construct the cyclic water molecule tetramers.

Related literature top

For a cadmium succinate coordination polymer containing N,N'-bis(4-pyridylmethyl)piperazine, see: Martin et al. (2009). For the preparation of N,N'-bis(3-pyridylmethyl)piperazine, see: Pocic et al. (2005).

Experimental top

Cadmium chloride dihydrate and succinic acid were obtained commercially. N,N'-bis(3-pyridylmethyl)piperazine was prepared via a published procedure (Pocic, et al., 2005). A mixture of cadmium chloride dihydrate (81 mg, 0.37 mmol), succinic acid (44 mg, 0.37 mmol), N,N'-bis(3-pyridylmethyl)piperazine (99 mg, 0.37 mmol) and 10.0 g water (550 mmol) was placed into a 23 ml Teflon-lined Parr Acid Digestion bomb, which was then heated under autogenous pressure at 393 K for 48 h. The resulting yellowish solution was allowed to stand undisturbed at 293 K for 3 d. Large straw-colored crystals of the title compound were deposited.

Refinement top

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å and refined in riding mode with Uiso = 1.2Ueq(C). The H atoms bound to water molecule O atoms were found in a difference Fourier map, restrained with O—H = 0.89 Å, and refined with Uiso = 1.2Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The expanded asymmetric unit of the title compound, showing 50% probability ellipsoids and atom numbering scheme. Hydrogen atom positions are shown as grey sticks. Color codes: violet Cd, green Cl, N blue, orange O, black C. Symmetry codes: (i) x+1/2, -y+3/2, z+1/2 (ii) -x-1/2, y-1/2, -z+1/2 (iii) -x, -y+1, -z+1.
[Figure 2] Fig. 2. A view of the (4,4)-grid coordination polymer layer in the title compound.
[Figure 3] Fig. 3. Stacking diagram of the title compound, viewed along the b crystal direction. Water molecule tetramers can be seen in the interlamellar regions.
Poly[[bis[µ-1,4-bis(3-pyridylmethyl)piperazine- κ2N:N']dichloridocadmium(II)] tetrahydrate] top
Crystal data top
[CdCl2(C16H20N4)2]·4H2OF(000) = 820
Mr = 792.08Dx = 1.424 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 16643 reflections
a = 10.3481 (2) Åθ = 2.2–25.4°
b = 13.9791 (2) ŵ = 0.78 mm1
c = 12.7789 (2) ÅT = 173 K
β = 92.473 (1)°Fragment, colourless
V = 1846.84 (5) Å30.38 × 0.35 × 0.19 mm
Z = 2
Data collection top
Bruker APEXII
diffractometer
3391 independent reflections
Radiation source: fine-focus sealed tube3060 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 25.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.753, Tmax = 0.868k = 1516
16443 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0261P)2 + 0.7641P]
where P = (Fo2 + 2Fc2)/3
3391 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.42 e Å3
6 restraintsΔρmin = 0.23 e Å3
Crystal data top
[CdCl2(C16H20N4)2]·4H2OV = 1846.84 (5) Å3
Mr = 792.08Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.3481 (2) ŵ = 0.78 mm1
b = 13.9791 (2) ÅT = 173 K
c = 12.7789 (2) Å0.38 × 0.35 × 0.19 mm
β = 92.473 (1)°
Data collection top
Bruker APEXII
diffractometer
3391 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3060 reflections with I > 2σ(I)
Tmin = 0.753, Tmax = 0.868Rint = 0.027
16443 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0216 restraints
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.42 e Å3
3391 reflectionsΔρmin = 0.23 e Å3
226 parameters
Special details top

Experimental. The fragment used in the single-crystal diffraction experiment was cleaved from a very large prismatic crystal using a scalpel.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.50000.50000.01972 (7)
Cl10.00576 (4)0.56521 (3)0.69090 (3)0.02753 (11)
O1W0.31111 (17)1.01315 (12)0.44201 (15)0.0498 (4)
H1WA0.267 (2)0.9840 (17)0.3915 (18)0.060*
H1WB0.375 (2)1.0362 (19)0.4063 (19)0.060*
O2W0.4410 (2)0.92673 (13)0.61847 (14)0.0623 (5)
H2WA0.385 (3)0.958 (2)0.5722 (19)0.075*
H2WB0.443 (3)0.9689 (18)0.6730 (17)0.075*
N10.16425 (14)0.61714 (10)0.46966 (11)0.0256 (3)
N20.14429 (14)0.90557 (10)0.29043 (11)0.0242 (3)
N30.05153 (14)1.05084 (11)0.26799 (11)0.0267 (3)
N40.35028 (14)1.12026 (10)0.05522 (11)0.0235 (3)
C10.14831 (17)0.67064 (12)0.38328 (14)0.0254 (4)
H10.08280.65260.33280.031*
C20.22184 (17)0.75090 (12)0.36317 (14)0.0246 (4)
C30.31970 (18)0.77468 (13)0.43639 (15)0.0301 (4)
H30.37380.82830.42510.036*
C40.33772 (19)0.71988 (13)0.52574 (16)0.0336 (4)
H40.40410.73540.57660.040*
C50.25809 (18)0.64246 (13)0.53994 (15)0.0308 (4)
H50.27010.60550.60200.037*
C60.19428 (18)0.80989 (13)0.26599 (14)0.0281 (4)
H6A0.27480.81680.22760.034*
H6B0.13010.77600.21970.034*
C70.02170 (18)0.90049 (13)0.34449 (15)0.0290 (4)
H7A0.03560.86570.41150.035*
H7B0.04300.86470.30060.035*
C80.0291 (2)0.99965 (13)0.36577 (16)0.0309 (4)
H8A0.11090.99500.40280.037*
H8B0.03441.03500.41120.037*
C90.06858 (18)1.05772 (13)0.21285 (15)0.0307 (4)
H9A0.13261.09530.25550.037*
H9B0.05211.09160.14560.037*
C100.12320 (18)0.95935 (14)0.19196 (14)0.0297 (4)
H10A0.06240.92370.14440.036*
H10B0.20620.96590.15690.036*
C110.11128 (18)1.14457 (13)0.28181 (15)0.0312 (4)
H11A0.04341.19300.29760.037*
H11B0.16911.14230.34150.037*
C120.27629 (17)1.10601 (12)0.14168 (14)0.0247 (4)
H120.28431.04680.17720.030*
C130.18808 (16)1.17228 (12)0.18317 (14)0.0243 (4)
C140.17827 (18)1.25856 (13)0.13158 (15)0.0298 (4)
H140.12031.30640.15780.036*
C150.25411 (18)1.27477 (13)0.04085 (15)0.0311 (4)
H150.24821.33350.00400.037*
C160.33791 (17)1.20436 (12)0.00536 (14)0.0261 (4)
H160.38921.21560.05690.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02129 (11)0.01716 (10)0.02035 (10)0.00052 (6)0.00332 (7)0.00085 (6)
Cl10.0316 (2)0.0285 (2)0.0221 (2)0.00443 (18)0.00335 (17)0.00290 (17)
O1W0.0434 (10)0.0459 (10)0.0592 (11)0.0018 (7)0.0069 (8)0.0213 (8)
O2W0.0815 (14)0.0578 (11)0.0473 (10)0.0181 (10)0.0018 (9)0.0145 (8)
N10.0276 (8)0.0227 (8)0.0264 (8)0.0006 (6)0.0017 (6)0.0003 (6)
N20.0242 (7)0.0247 (8)0.0240 (7)0.0006 (6)0.0033 (6)0.0054 (6)
N30.0272 (8)0.0269 (8)0.0258 (8)0.0029 (6)0.0011 (6)0.0039 (6)
N40.0234 (7)0.0221 (8)0.0247 (7)0.0007 (6)0.0030 (6)0.0004 (6)
C10.0250 (9)0.0246 (9)0.0266 (9)0.0002 (7)0.0008 (7)0.0025 (7)
C20.0247 (9)0.0209 (9)0.0288 (9)0.0033 (7)0.0070 (7)0.0010 (7)
C30.0267 (9)0.0208 (9)0.0426 (11)0.0027 (7)0.0014 (8)0.0005 (8)
C40.0301 (10)0.0288 (10)0.0410 (11)0.0017 (8)0.0089 (9)0.0015 (8)
C50.0326 (10)0.0276 (10)0.0317 (10)0.0009 (8)0.0044 (8)0.0027 (8)
C60.0310 (10)0.0261 (10)0.0275 (9)0.0018 (8)0.0059 (8)0.0015 (7)
C70.0278 (9)0.0306 (10)0.0291 (10)0.0011 (8)0.0055 (8)0.0082 (8)
C80.0288 (10)0.0368 (11)0.0274 (10)0.0037 (8)0.0052 (8)0.0048 (8)
C90.0308 (10)0.0305 (10)0.0308 (10)0.0018 (8)0.0000 (8)0.0093 (8)
C100.0300 (10)0.0325 (10)0.0269 (9)0.0008 (8)0.0046 (8)0.0074 (8)
C110.0312 (10)0.0292 (10)0.0324 (10)0.0011 (8)0.0085 (8)0.0051 (8)
C120.0267 (9)0.0190 (9)0.0283 (9)0.0002 (7)0.0011 (7)0.0015 (7)
C130.0215 (9)0.0230 (9)0.0282 (9)0.0011 (7)0.0016 (7)0.0033 (7)
C140.0272 (9)0.0223 (9)0.0396 (11)0.0049 (7)0.0021 (8)0.0041 (8)
C150.0370 (11)0.0212 (9)0.0349 (10)0.0023 (8)0.0002 (8)0.0047 (8)
C160.0293 (9)0.0239 (9)0.0251 (9)0.0016 (7)0.0010 (7)0.0021 (7)
Geometric parameters (Å, º) top
Cd1—N4i2.3728 (14)C4—C51.377 (3)
Cd1—N4ii2.3728 (14)C4—H40.9500
Cd1—N12.4036 (15)C5—H50.9500
Cd1—N1iii2.4036 (15)C6—H6A0.9900
Cd1—Cl12.6074 (4)C6—H6B0.9900
Cd1—Cl1iii2.6074 (4)C7—C81.511 (3)
O1W—H1WA0.874 (16)C7—H7A0.9900
O1W—H1WB0.884 (16)C7—H7B0.9900
O2W—H2WA0.921 (17)C8—H8A0.9900
O2W—H2WB0.912 (17)C8—H8B0.9900
N1—C11.338 (2)C9—C101.515 (3)
N1—C51.342 (2)C9—H9A0.9900
N2—C71.472 (2)C9—H9B0.9900
N2—C61.472 (2)C10—H10A0.9900
N2—C101.474 (2)C10—H10B0.9900
N3—C81.450 (2)C11—C131.511 (2)
N3—C91.458 (2)C11—H11A0.9900
N3—C111.463 (2)C11—H11B0.9900
N4—C121.332 (2)C12—C131.390 (2)
N4—C161.346 (2)C12—H120.9500
N4—Cd1iv2.3728 (14)C13—C141.380 (3)
C1—C21.386 (2)C14—C151.390 (3)
C1—H10.9500C14—H140.9500
C2—C31.389 (3)C15—C161.376 (3)
C2—C61.508 (2)C15—H150.9500
C3—C41.381 (3)C16—H160.9500
C3—H30.9500
N4i—Cd1—N4ii180.0C2—C6—H6B109.2
N4i—Cd1—N194.21 (5)H6A—C6—H6B107.9
N4ii—Cd1—N185.79 (5)N2—C7—C8110.71 (15)
N4i—Cd1—N1iii85.79 (5)N2—C7—H7A109.5
N4ii—Cd1—N1iii94.21 (5)C8—C7—H7A109.5
N1—Cd1—N1iii180.00 (5)N2—C7—H7B109.5
N4i—Cd1—Cl190.60 (4)C8—C7—H7B109.5
N4ii—Cd1—Cl189.40 (4)H7A—C7—H7B108.1
N1—Cd1—Cl187.57 (4)N3—C8—C7109.98 (16)
N1iii—Cd1—Cl192.43 (4)N3—C8—H8A109.7
N4i—Cd1—Cl1iii89.40 (4)C7—C8—H8A109.7
N4ii—Cd1—Cl1iii90.60 (4)N3—C8—H8B109.7
N1—Cd1—Cl1iii92.43 (4)C7—C8—H8B109.7
N1iii—Cd1—Cl1iii87.57 (4)H8A—C8—H8B108.2
Cl1—Cd1—Cl1iii180.0N3—C9—C10110.96 (15)
H1WA—O1W—H1WB100 (2)N3—C9—H9A109.4
H2WA—O2W—H2WB100 (2)C10—C9—H9A109.4
C1—N1—C5117.70 (16)N3—C9—H9B109.4
C1—N1—Cd1116.82 (11)C10—C9—H9B109.4
C5—N1—Cd1124.63 (12)H9A—C9—H9B108.0
C7—N2—C6111.94 (14)N2—C10—C9110.80 (15)
C7—N2—C10109.05 (14)N2—C10—H10A109.5
C6—N2—C10108.82 (14)C9—C10—H10A109.5
C8—N3—C9109.92 (14)N2—C10—H10B109.5
C8—N3—C11113.01 (15)C9—C10—H10B109.5
C9—N3—C11111.90 (15)H10A—C10—H10B108.1
C12—N4—C16117.41 (15)N3—C11—C13109.80 (14)
C12—N4—Cd1iv119.03 (11)N3—C11—H11A109.7
C16—N4—Cd1iv123.53 (11)C13—C11—H11A109.7
N1—C1—C2123.82 (16)N3—C11—H11B109.7
N1—C1—H1118.1C13—C11—H11B109.7
C2—C1—H1118.1H11A—C11—H11B108.2
C1—C2—C3117.32 (16)N4—C12—C13124.16 (16)
C1—C2—C6120.65 (16)N4—C12—H12117.9
C3—C2—C6122.03 (16)C13—C12—H12117.9
C4—C3—C2119.52 (17)C14—C13—C12117.45 (16)
C4—C3—H3120.2C14—C13—C11125.13 (16)
C2—C3—H3120.2C12—C13—C11117.42 (16)
C5—C4—C3118.99 (18)C13—C14—C15119.35 (16)
C5—C4—H4120.5C13—C14—H14120.3
C3—C4—H4120.5C15—C14—H14120.3
N1—C5—C4122.63 (18)C16—C15—C14118.91 (17)
N1—C5—H5118.7C16—C15—H15120.5
C4—C5—H5118.7C14—C15—H15120.5
N2—C6—C2112.20 (14)N4—C16—C15122.71 (16)
N2—C6—H6A109.2N4—C16—H16118.6
C2—C6—H6A109.2C15—C16—H16118.6
N2—C6—H6B109.2
N4i—Cd1—N1—C1138.25 (13)C10—N2—C7—C857.93 (19)
N4ii—Cd1—N1—C141.75 (13)C9—N3—C8—C759.1 (2)
Cl1—Cd1—N1—C1131.32 (12)C11—N3—C8—C7175.07 (15)
Cl1iii—Cd1—N1—C148.68 (12)N2—C7—C8—N360.0 (2)
N4i—Cd1—N1—C552.61 (14)C8—N3—C9—C1058.00 (19)
N4ii—Cd1—N1—C5127.39 (14)C11—N3—C9—C10175.57 (14)
Cl1—Cd1—N1—C537.82 (14)C7—N2—C10—C956.28 (19)
Cl1iii—Cd1—N1—C5142.18 (14)C6—N2—C10—C9178.64 (15)
C5—N1—C1—C20.8 (3)N3—C9—C10—N257.0 (2)
Cd1—N1—C1—C2169.09 (13)C8—N3—C11—C13153.02 (16)
N1—C1—C2—C31.8 (3)C9—N3—C11—C1382.25 (18)
N1—C1—C2—C6177.44 (16)C16—N4—C12—C130.1 (3)
C1—C2—C3—C41.5 (3)Cd1iv—N4—C12—C13178.06 (13)
C6—C2—C3—C4177.80 (17)N4—C12—C13—C140.7 (3)
C2—C3—C4—C50.2 (3)N4—C12—C13—C11179.79 (16)
C1—N1—C5—C40.6 (3)N3—C11—C13—C14129.54 (18)
Cd1—N1—C5—C4169.62 (14)N3—C11—C13—C1251.0 (2)
C3—C4—C5—N10.9 (3)C12—C13—C14—C151.0 (3)
C7—N2—C6—C260.88 (19)C11—C13—C14—C15179.54 (18)
C10—N2—C6—C2178.52 (15)C13—C14—C15—C160.5 (3)
C1—C2—C6—N2112.33 (18)C12—N4—C16—C150.7 (3)
C3—C2—C6—N266.9 (2)Cd1iv—N4—C16—C15177.39 (14)
C6—N2—C7—C8178.39 (15)C14—C15—C16—N40.4 (3)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x1/2, y1/2, z+1/2; (iii) x, y+1, z+1; (iv) x1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N20.87 (2)2.08 (2)2.950 (2)171 (2)
O1W—H1WB···O2Wv0.88 (2)2.01 (2)2.838 (3)156 (2)
O2W—H2WA···O1W0.92 (2)1.96 (2)2.844 (3)161 (3)
O2W—H2WB···Cl1vi0.91 (2)2.27 (2)3.1607 (17)165 (3)
Symmetry codes: (v) x+1, y+2, z+1; (vi) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[CdCl2(C16H20N4)2]·4H2O
Mr792.08
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)10.3481 (2), 13.9791 (2), 12.7789 (2)
β (°) 92.473 (1)
V3)1846.84 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.38 × 0.35 × 0.19
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.753, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
16443, 3391, 3060
Rint0.027
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.055, 1.07
No. of reflections3391
No. of parameters226
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.23

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N20.874 (16)2.084 (17)2.950 (2)171 (2)
O1W—H1WB···O2Wi0.884 (16)2.007 (18)2.838 (3)156 (2)
O2W—H2WA···O1W0.921 (17)1.958 (19)2.844 (3)161 (3)
O2W—H2WB···Cl1ii0.912 (17)2.272 (18)3.1607 (17)165 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

We gratefully acknowledge the American Chemical Society Petroleum Research Fund for funding this work.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMartin, D., Supkowski, R. M. & LaDuca, R. L. (2009). Dalton Trans. pp. 514–520.  Web of Science CSD CrossRef PubMed Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England.  Google Scholar
First citationPocic, D., Planeix, J.-M., Kyritsakas, N., Jouaiti, A., Abdelaziz, H. & Wais, M. (2005). CrystEngComm, 7, 624–628.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds