organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Pyridinium 4-(tri­fluoro­meth­yl)benzene­sulfonate

aCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and bCollege of Biological & Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: fzt713@163.com

(Received 4 June 2009; accepted 3 July 2009; online 8 July 2009)

The title salt, C5H6N+·C7H4F3O3S, is an ion pair in which the pyridium cation is linked to the 4-(trifluoro­meth­yl)benzene­sulfonate anion by an N—H⋯O hydrogen bond. The F atoms of the trifluoro­methyl group are disordered over two sites in a 0.584 (9):0.416 (9) ratio.

Related literature

For the use of 4-(trifluoro­meth­yl)benzene­sulfonate anion as a rust inhibitor, see: Otomo (1993[Otomo, S. (1993). Eur. Patent No. 0569884B1.]). For comparative bond dimensions for the anion, see: Bats et al. (1999[Bats, J. W., Heinrich, T. & Reggelin, M. (1999). Acta Cryst. C55, IUC9900121.]); Bernhard et al. (1982[Bernhard, P., Bürgi, H. B., Hauser, J., Lehmann, H. & Ludi, A. (1982). Inorg. Chem. 21, 3936-3941.]); Kozioł & Podkowińska (1983[Kozioł, A. E. & Podlowińska, H. (1983). Acta Cryst. C39, 1373-1374.]), and for the cation, see: Djinović & Golič (1992[Djinović, K. & Golič, L. (1992). Acta Cryst. C48, 1046-1048.]) (1992); Ziemer & Rabis (2000[Ziemer, B. & Rabis, A. (2000). Acta Cryst. C56, e94.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6N+·C7H4F3O3S

  • Mr = 305.27

  • Monoclinic, P 21 /c

  • a = 5.7905 (5) Å

  • b = 9.0294 (7) Å

  • c = 24.988 (2) Å

  • β = 90.8220 (10)°

  • V = 1306.35 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 273 K

  • 0.49 × 0.35 × 0.25 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.871, Tmax = 0.931

  • 6394 measured reflections

  • 2291 independent reflections

  • 1880 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.088

  • wR(F2) = 0.242

  • S = 1.07

  • 2291 reflections

  • 179 parameters

  • 15 restraints

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3 0.86 1.99 2.781 (6) 153

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

4-(Trifluoromethyl)benzenesulfonate was considered as excellent organic rust inhibitors which can effectively prevent corrosion of metals such as steel, copper, manganese and nickel (Otomo et al., 1993). In our laboratory, a new compound containing 4-(trifluoromethyl)benzenesulfonate, (I), has been synthesized, its structure is studied hereafter.

Fig. 1 presents a view of the asymmetric unit: one pyridium cation and one 4-(trifluoromethyl)benzenesulfonate anion. In the anion the average C—C bond distance in the ring, 1.372 Å, is consistent with the value usually accepted. The internal angle (C4—C5—C6) is decreased to 118.0 (5)°, and endocyclic angle of C3—C2—C7 to 118.3 (5)°. The S—C distance of 1.795 (5)Å is close to the experimental values of 1.77 (Bats et al., 1999), 1.766 (Bernhard et al., 1982) and 1.782 (Kozioł & Podlowińska, 1983). The phenyl ring and the S atom are almost planar, which is displaced from the mean plane of the phenyl ring by 0.010 (6) Å. Three F atom in the trifluoromethyl group is disorder.

In the cation, distances in the pyridinium ring are in the range 1.319 (7)–1.372 (8)Å and angles 118.6 (5)–122.0 (5)°, which are similar to those found in research of Djinović & Golič (1992) and Ziemer et al. (2000).

The ion pairs are formed via a N1—H1···O3 hydrogen bond (Fig. 2). In addition, week C—H···O hydrogen bonds stabilize the crystal (Fig. 2 & Table 2).

Related literature top

For the use of 4-(trifluoromethyl)benzenesulfonate anion as a rust inhibitor, see: Otomo (1993). For comparison bond dimensions for the anion, see: Bats et al. (1999); Bernhard et al. (1982); Kozioł & Podkowińska (1983). For comparison bond dimensions for the cation, see: Djinović & Golič (1992) (1992); Ziemer & Rabis (2000).

Experimental top

4-(Trifluoromethyl)benzenesulfonic acid and pyridine in a molar ratio of 1:1 were mixed and dissolved in sufficient ethanol by heating to 365 K, when a clear solution resulted. Crystals of (I) were formed by gradual evaporation of excess ethanol over a period of one week at 293 K.

Refinement top

All of the H atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.86 (N—H), 0.93Å (aromatic), with Uiso(H) = 1.2–1.5 Ueq(C, N). Three disordered F atoms were split into approximately halves, with occupancies of 0.584 (9) and 0.416 (9). All the C—F distances are restrained to be identical with deviation of 0.01 Å.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The cell unit of (I) with atom labels, showing 30% probability displacement ellipsoids. Parts of disorder F atoms was deleted for clarity.
[Figure 2] Fig. 2. A packing diagram viewed down along the a axis. Hydrogen bonds are illustrated as thin lines. Parts of disorder F atoms was deleted for clarity.
Pyridinium 4-(trifluoromethyl)benzenesulfonate top
Crystal data top
C5H6N+·C7H4F3O3SF(000) = 624
Mr = 305.27Dx = 1.552 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2733 reflections
a = 5.7905 (5) Åθ = 2.4–25.0°
b = 9.0294 (7) ŵ = 0.29 mm1
c = 24.988 (2) ÅT = 273 K
β = 90.822 (1)°Prism, colorless
V = 1306.35 (18) Å30.49 × 0.35 × 0.25 mm
Z = 4
Data collection top
Bruker APEX area-detector
diffractometer
2291 independent reflections
Radiation source: fine-focus sealed tube1880 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 66
Tmin = 0.871, Tmax = 0.931k = 1010
6394 measured reflectionsl = 2229
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.088Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.242H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1117P)2 + 3.3401P]
where P = (Fo2 + 2Fc2)/3
2291 reflections(Δ/σ)max = 0.001
179 parametersΔρmax = 0.70 e Å3
15 restraintsΔρmin = 0.53 e Å3
Crystal data top
C5H6N+·C7H4F3O3SV = 1306.35 (18) Å3
Mr = 305.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.7905 (5) ŵ = 0.29 mm1
b = 9.0294 (7) ÅT = 273 K
c = 24.988 (2) Å0.49 × 0.35 × 0.25 mm
β = 90.822 (1)°
Data collection top
Bruker APEX area-detector
diffractometer
2291 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1880 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 0.931Rint = 0.031
6394 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.08815 restraints
wR(F2) = 0.242H-atom parameters constrained
S = 1.07Δρmax = 0.70 e Å3
2291 reflectionsΔρmin = 0.53 e Å3
179 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S11.1078 (2)0.88952 (12)0.32068 (5)0.0451 (4)
O11.3546 (6)0.8891 (4)0.32268 (15)0.0603 (10)
O21.0094 (6)1.0326 (4)0.30758 (14)0.0595 (10)
O31.0162 (7)0.7709 (4)0.28780 (15)0.0629 (10)
C10.7591 (12)0.7361 (7)0.5413 (3)0.086 (2)
C20.8504 (10)0.7742 (7)0.4880 (2)0.0598 (14)
C30.7200 (11)0.8601 (8)0.4550 (3)0.0756 (18)
H30.57800.89540.46640.091*
C40.7974 (10)0.8958 (7)0.4043 (2)0.0679 (16)
H40.70500.95350.38180.082*
C51.0090 (8)0.8472 (5)0.38668 (19)0.0444 (11)
C61.1354 (10)0.7576 (8)0.4195 (2)0.0730 (18)
H61.27610.72030.40800.088*
C71.0565 (12)0.7217 (8)0.4696 (3)0.081 (2)
H71.14550.66020.49150.098*
F1'0.9025 (16)0.6547 (13)0.5717 (3)0.1146 (16)0.584 (9)
F2'0.5792 (17)0.6419 (11)0.5388 (4)0.1146 (16)0.584 (9)
F3'0.700 (2)0.8521 (9)0.5715 (3)0.1146 (16)0.584 (9)
F10.921 (2)0.7454 (19)0.5793 (4)0.1146 (16)0.416 (9)
F20.672 (3)0.5995 (12)0.5458 (5)0.1146 (16)0.416 (9)
F30.577 (2)0.8166 (15)0.5579 (5)0.1146 (16)0.416 (9)
N10.6745 (8)0.8321 (6)0.21165 (18)0.0650 (13)
H10.79230.79230.22730.078*
C80.6591 (10)0.9796 (7)0.2096 (2)0.0610 (15)
H80.77541.03760.22480.073*
C90.4777 (10)1.0437 (6)0.1859 (2)0.0613 (14)
H90.46661.14640.18400.074*
C100.3107 (10)0.9570 (7)0.1649 (2)0.0628 (14)
H100.18211.00010.14850.075*
C110.3284 (10)0.8056 (6)0.1673 (2)0.0619 (14)
H110.21200.74590.15310.074*
C120.5144 (10)0.7456 (6)0.1903 (2)0.0581 (14)
H120.53140.64320.19140.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0535 (8)0.0315 (6)0.0502 (7)0.0055 (5)0.0052 (5)0.0001 (5)
O10.057 (2)0.053 (2)0.071 (2)0.0031 (17)0.0003 (17)0.0060 (17)
O20.074 (3)0.039 (2)0.065 (2)0.0168 (17)0.0059 (18)0.0063 (16)
O30.086 (3)0.044 (2)0.058 (2)0.0024 (18)0.0059 (18)0.0113 (16)
C10.108 (6)0.083 (5)0.068 (4)0.014 (4)0.002 (4)0.004 (4)
C20.064 (3)0.061 (3)0.055 (3)0.000 (3)0.003 (2)0.003 (3)
C30.067 (4)0.086 (5)0.074 (4)0.025 (3)0.014 (3)0.013 (3)
C40.061 (3)0.077 (4)0.066 (3)0.023 (3)0.006 (3)0.015 (3)
C50.048 (3)0.030 (2)0.054 (3)0.004 (2)0.009 (2)0.0026 (19)
C60.058 (3)0.093 (5)0.068 (4)0.031 (3)0.001 (3)0.018 (3)
C70.079 (4)0.096 (5)0.068 (4)0.031 (4)0.008 (3)0.029 (4)
F1'0.145 (4)0.125 (4)0.074 (2)0.006 (3)0.011 (2)0.022 (2)
F2'0.145 (4)0.125 (4)0.074 (2)0.006 (3)0.011 (2)0.022 (2)
F3'0.145 (4)0.125 (4)0.074 (2)0.006 (3)0.011 (2)0.022 (2)
F10.145 (4)0.125 (4)0.074 (2)0.006 (3)0.011 (2)0.022 (2)
F20.145 (4)0.125 (4)0.074 (2)0.006 (3)0.011 (2)0.022 (2)
F30.145 (4)0.125 (4)0.074 (2)0.006 (3)0.011 (2)0.022 (2)
N10.061 (3)0.078 (3)0.057 (3)0.011 (3)0.002 (2)0.013 (2)
C80.058 (3)0.063 (4)0.062 (3)0.025 (3)0.001 (2)0.008 (3)
C90.079 (4)0.032 (3)0.073 (4)0.006 (3)0.012 (3)0.000 (2)
C100.055 (3)0.059 (3)0.074 (4)0.006 (3)0.002 (3)0.010 (3)
C110.066 (4)0.053 (3)0.066 (3)0.018 (3)0.004 (3)0.003 (3)
C120.079 (4)0.032 (3)0.064 (3)0.001 (2)0.007 (3)0.001 (2)
Geometric parameters (Å, º) top
S1—O11.429 (4)C5—C61.358 (7)
S1—O31.446 (4)C6—C71.378 (9)
S1—O21.447 (3)C6—H60.9300
S1—C51.795 (5)C7—H70.9300
C1—F11.330 (8)N1—C121.319 (7)
C1—F21.337 (8)N1—C81.336 (8)
C1—F1'1.338 (7)N1—H10.8600
C1—F3'1.339 (7)C8—C91.331 (8)
C1—F2'1.345 (7)C8—H80.9300
C1—F31.353 (8)C9—C101.346 (8)
C1—C21.479 (9)C9—H90.9300
C2—C31.354 (8)C10—C111.372 (8)
C2—C71.370 (9)C10—H100.9300
C3—C41.388 (8)C11—C121.329 (8)
C3—H30.9300C11—H110.9300
C4—C51.379 (7)C12—H120.9300
C4—H40.9300
O1—S1—O3112.1 (2)C6—C5—C4118.0 (5)
O1—S1—O2113.6 (2)C6—C5—S1120.3 (4)
O3—S1—O2113.1 (2)C4—C5—S1121.5 (4)
O1—S1—C5107.4 (2)C5—C6—C7120.4 (5)
O3—S1—C5104.2 (2)C5—C6—H6119.8
O2—S1—C5105.6 (2)C7—C6—H6119.8
F1—C1—F2105.1 (9)C2—C7—C6121.7 (5)
F1'—C1—F3'105.7 (7)C2—C7—H7119.1
F1—C1—F2'127.7 (9)C6—C7—H7119.1
F1'—C1—F2'98.8 (7)C12—N1—C8122.0 (5)
F3'—C1—F2'108.6 (8)C12—N1—H1119.0
F1—C1—F3107.1 (9)C8—N1—H1119.0
F2—C1—F3100.0 (10)C9—C8—N1120.2 (5)
F1—C1—C2111.7 (8)C9—C8—H8119.9
F2—C1—C2115.5 (8)N1—C8—H8119.9
F1'—C1—C2114.3 (6)C8—C9—C10118.6 (5)
F3'—C1—C2115.0 (6)C8—C9—H9120.7
F2'—C1—C2113.1 (6)C10—C9—H9120.7
F3—C1—C2116.2 (7)C9—C10—C11120.6 (6)
C3—C2—C7118.3 (5)C9—C10—H10119.7
C3—C2—C1118.5 (5)C11—C10—H10119.7
C7—C2—C1123.1 (5)C12—C11—C10119.0 (5)
C2—C3—C4120.3 (5)C12—C11—H11120.5
C2—C3—H3119.9C10—C11—H11120.5
C4—C3—H3119.9N1—C12—C11119.6 (5)
C5—C4—C3121.2 (5)N1—C12—H12120.2
C5—C4—H4119.4C11—C12—H12120.2
C3—C4—H4119.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.861.992.781 (6)153
C4—H4···O1i0.932.563.255 (7)132
C8—H8···O20.932.473.192 (7)136
C8—H8···O3ii0.932.453.233 (8)142
C9—H9···O1ii0.932.433.274 (6)151
C11—H11···O2iii0.932.523.214 (8)132
C12—H12···O1iv0.932.423.324 (7)166
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H6N+·C7H4F3O3S
Mr305.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)5.7905 (5), 9.0294 (7), 24.988 (2)
β (°) 90.822 (1)
V3)1306.35 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.49 × 0.35 × 0.25
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.871, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
6394, 2291, 1880
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.088, 0.242, 1.07
No. of reflections2291
No. of parameters179
No. of restraints15
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.53

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.861.992.781 (6)153
 

References

First citationBats, J. W., Heinrich, T. & Reggelin, M. (1999). Acta Cryst. C55, IUC9900121.  CrossRef IUCr Journals Google Scholar
First citationBernhard, P., Bürgi, H. B., Hauser, J., Lehmann, H. & Ludi, A. (1982). Inorg. Chem. 21, 3936–3941.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDjinović, K. & Golič, L. (1992). Acta Cryst. C48, 1046–1048.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKozioł, A. E. & Podlowińska, H. (1983). Acta Cryst. C39, 1373–1374.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationOtomo, S. (1993). Eur. Patent No. 0569884B1.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZiemer, B. & Rabis, A. (2000). Acta Cryst. C56, e94.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds