organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-7-methyl-2-phenyl-3-phenyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 26 June 2009; accepted 27 June 2009; online 4 July 2009)

In the title compound, C21H15ClO2S, the O atom and the phenyl group of the phenyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment; the phenyl ring is almost perpendicular to this plane [82.24 (7)°]. The phenyl ring in the 2-position is rotated out of the benzofuran plane, making a dihedral angle of 11.50 (9)°. The crystal structure is stabilized by inter­molecular C—H⋯O and C—H⋯Cl inter­actions. In addition, the stacked mol­ecules exhibit an inter­molecular S⋯O inter­action [3.327 (2) Å] involving the sulfinyl groups.

Related literature

For the crystal structures of similar 5-chloro-1-benzofuran derivatives, see: Choi et al. (2007[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o1291-o1292.], 2008a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o1190.]). For details of sulfin­yl–sulfinyl inter­actions, see: Choi et al. (2008b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o1061.]). For a review of carbon­yl–carbonyl inter­actions, see: Allen et al. (1998[Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320-329.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15ClO2S

  • Mr = 366.84

  • Triclinic, [P \overline 1]

  • a = 8.224 (1) Å

  • b = 10.169 (1) Å

  • c = 11.083 (2) Å

  • α = 68.771 (2)°

  • β = 78.050 (2)°

  • γ = 81.483 (2)°

  • V = 842.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 273 K

  • 0.35 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.910, Tmax = 0.932

  • 6585 measured reflections

  • 3270 independent reflections

  • 2650 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.107

  • S = 1.06

  • 3270 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯Cli 0.93 2.78 3.653 (3) 157
C20—H20⋯O2ii 0.93 2.47 3.261 (3) 144
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

This work is related to our communications on the synthesis and structures of 5-chloro-1-benzofuran analogues, viz. 5-chloro-3-methylsulfinyl-2-phenyl-1-benzofuran (Choi et al., 2007) and 5-chloro-2-methyl-3-phenylsulfonyl-1-benzofuran (Choi et al., 2008a). Here we report the crystal structure of the title compound (I), 5-chloro-7-methyl-2-phenyl-3-phenylsulfinyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.011 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle in (I) formed by the planes of the benzofuran and the 2-phenyl rings is 11.90 (9)°, and the phenyl ring (C16-C21) with 82.24 (7)° lies toward the benzofuran plane. The crystal packing (Fig. 2) is stabilized by intermolecular C–H···O and C–H···Cl interactions; the first between the phenyl H atom of the phenylsulfinyl substituent and the oxygen of the SO unit, with a C20–H20···O2ii, the second between the phenyl H atom of the phenylsulfinyl substituent and the chlorine of the benzofuran ring, with a C19–H19···Cli, respectively (Table 1 and Fig. 2). In addition, the crystal packing (Fig. 2) exhibits a sulfinyl-sulfinyl interaction (Choi et al., 2008b) interpreted as similar to a type-II carbonyl-carbonyl interaction (Allen et al., 1998), with S···O2iii and O2···Siii distance of 3.327 (2) Å.

Related literature top

For the crystal structures of similar 5-chloro-1-benzofuran derivatives, see: Choi et al. (2007, 2008a). For details of sulfinyl–sulfinyl interactions, see: Choi et al. (2008b). For a review of carbonyl–carbonyl interactions, see: Allen et al. (1998).

Experimental top

The 77% 3-chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of 5-chloro-7-methyl-2-phenyl-3-phenylsulfanyl-1-benzofuran (351 mg, 1.0 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 3h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 76%, m.p. 462-463 K; Rf = 0.7 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å for aromatic H atoms and 0.96 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5 Ueq(C) for methyl H atoms, respectively.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. C–H···O, C–H···Cl, and S···O interactions (dotted lines) in the title compound. [Symmetry code: (i) -x + 1, -y + 1, -z; (ii) x + 1, y, z; (iii) -x, -y + 1, -z + 1; (iv) -1 +x, y, z.]
5-Chloro-7-methyl-2-phenyl-3-phenylsulfinyl-1-benzofuran top
Crystal data top
C21H15ClO2SZ = 2
Mr = 366.84F(000) = 380
Triclinic, P1Dx = 1.446 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.224 (1) ÅCell parameters from 3597 reflections
b = 10.169 (1) Åθ = 2.4–27.4°
c = 11.083 (2) ŵ = 0.36 mm1
α = 68.771 (2)°T = 273 K
β = 78.050 (2)°Block, colourless
γ = 81.483 (2)°0.35 × 0.20 × 0.20 mm
V = 842.5 (2) Å3
Data collection top
Bruker SMART CCD
diffractometer
3270 independent reflections
Radiation source: fine-focus sealed tube2650 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 10.0 pixels mm-1θmax = 26.0°, θmin = 2.0°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
k = 1212
Tmin = 0.910, Tmax = 0.932l = 1313
6585 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: difference Fourier map
wR(F2) = 0.107H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.2839P]
where P = (Fo2 + 2Fc2)/3
3270 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C21H15ClO2Sγ = 81.483 (2)°
Mr = 366.84V = 842.5 (2) Å3
Triclinic, P1Z = 2
a = 8.224 (1) ÅMo Kα radiation
b = 10.169 (1) ŵ = 0.36 mm1
c = 11.083 (2) ÅT = 273 K
α = 68.771 (2)°0.35 × 0.20 × 0.20 mm
β = 78.050 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3270 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
2650 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.932Rint = 0.018
6585 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.06Δρmax = 0.49 e Å3
3270 reflectionsΔρmin = 0.45 e Å3
227 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.03805 (7)0.27602 (6)0.01980 (6)0.04107 (17)
S0.16845 (6)0.39221 (5)0.42629 (5)0.02979 (16)
O10.23043 (17)0.01506 (14)0.46155 (13)0.0285 (3)
O20.04121 (18)0.47817 (16)0.34509 (18)0.0435 (4)
C10.1811 (2)0.2199 (2)0.4171 (2)0.0264 (4)
C20.1373 (2)0.1876 (2)0.3117 (2)0.0267 (4)
C30.0730 (2)0.2646 (2)0.1967 (2)0.0305 (5)
H30.04870.36210.17120.037*
C40.0477 (2)0.1874 (2)0.1228 (2)0.0306 (5)
C50.0854 (2)0.0415 (2)0.1569 (2)0.0310 (5)
H50.06730.00430.10240.037*
C60.1494 (2)0.0362 (2)0.2703 (2)0.0288 (4)
C70.1711 (2)0.0418 (2)0.3446 (2)0.0274 (4)
C80.2345 (2)0.0952 (2)0.5053 (2)0.0276 (4)
C90.2953 (2)0.0527 (2)0.6299 (2)0.0279 (4)
C100.2804 (3)0.1420 (2)0.7028 (2)0.0359 (5)
H100.23250.23410.67110.043*
C110.3366 (3)0.0941 (3)0.8220 (2)0.0405 (5)
H110.32660.15440.86970.049*
C120.4074 (3)0.0426 (3)0.8707 (2)0.0428 (6)
H120.44400.07460.95130.051*
C130.4234 (3)0.1312 (3)0.7991 (2)0.0434 (6)
H130.47210.22290.83100.052*
C140.3674 (3)0.0846 (2)0.6801 (2)0.0359 (5)
H140.37790.14570.63310.043*
C150.1942 (3)0.1933 (2)0.3103 (2)0.0375 (5)
H15A0.13560.23320.26700.056*
H15B0.16350.23600.40360.056*
H15C0.31210.21100.28570.056*
C160.3687 (2)0.44102 (19)0.3307 (2)0.0255 (4)
C170.3857 (3)0.5151 (2)0.1978 (2)0.0384 (5)
H170.29410.53820.15490.046*
C180.5425 (4)0.5546 (3)0.1292 (3)0.0523 (7)
H180.55640.60430.03940.063*
C190.6776 (3)0.5206 (3)0.1937 (3)0.0537 (7)
H190.78240.54670.14690.064*
C200.6586 (3)0.4486 (3)0.3261 (3)0.0479 (6)
H200.75010.42680.36910.058*
C210.5045 (3)0.4088 (2)0.3955 (2)0.0349 (5)
H210.49120.36040.48550.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0383 (3)0.0419 (3)0.0439 (3)0.0030 (2)0.0165 (2)0.0105 (3)
S0.0222 (3)0.0257 (3)0.0467 (3)0.00223 (19)0.0041 (2)0.0209 (2)
O10.0335 (7)0.0224 (7)0.0312 (8)0.0028 (6)0.0043 (6)0.0114 (6)
O20.0248 (7)0.0356 (9)0.0799 (12)0.0119 (6)0.0211 (8)0.0301 (9)
C10.0217 (9)0.0231 (10)0.0367 (11)0.0007 (8)0.0024 (8)0.0147 (9)
C20.0215 (9)0.0251 (10)0.0358 (11)0.0021 (8)0.0024 (8)0.0146 (9)
C30.0241 (10)0.0258 (10)0.0424 (12)0.0010 (8)0.0056 (9)0.0131 (9)
C40.0238 (10)0.0329 (11)0.0340 (11)0.0039 (8)0.0052 (8)0.0095 (9)
C50.0286 (10)0.0333 (11)0.0350 (11)0.0070 (9)0.0019 (9)0.0162 (9)
C60.0273 (10)0.0271 (10)0.0346 (11)0.0046 (8)0.0017 (8)0.0144 (9)
C70.0242 (10)0.0282 (10)0.0306 (11)0.0041 (8)0.0006 (8)0.0123 (8)
C80.0242 (10)0.0257 (10)0.0359 (11)0.0038 (8)0.0006 (8)0.0164 (9)
C90.0235 (10)0.0294 (10)0.0308 (11)0.0051 (8)0.0020 (8)0.0127 (9)
C100.0424 (12)0.0294 (11)0.0377 (12)0.0033 (9)0.0037 (10)0.0150 (10)
C110.0482 (14)0.0449 (13)0.0358 (13)0.0084 (11)0.0051 (10)0.0220 (11)
C120.0461 (14)0.0468 (14)0.0372 (13)0.0050 (11)0.0118 (11)0.0133 (11)
C130.0469 (14)0.0369 (13)0.0453 (14)0.0067 (11)0.0148 (11)0.0129 (11)
C140.0379 (12)0.0332 (12)0.0401 (13)0.0020 (9)0.0064 (10)0.0187 (10)
C150.0466 (13)0.0268 (11)0.0440 (13)0.0032 (10)0.0076 (10)0.0176 (10)
C160.0221 (9)0.0182 (9)0.0390 (11)0.0017 (7)0.0069 (8)0.0135 (8)
C170.0424 (13)0.0303 (11)0.0418 (13)0.0059 (10)0.0148 (10)0.0109 (10)
C180.0673 (18)0.0342 (13)0.0413 (15)0.0070 (12)0.0066 (13)0.0036 (11)
C190.0351 (13)0.0378 (14)0.080 (2)0.0092 (11)0.0102 (13)0.0188 (14)
C200.0264 (11)0.0413 (13)0.080 (2)0.0023 (10)0.0134 (12)0.0232 (13)
C210.0321 (11)0.0317 (11)0.0438 (13)0.0012 (9)0.0144 (10)0.0126 (10)
Geometric parameters (Å, º) top
Cl—C41.747 (2)C10—H100.9300
S—O21.489 (2)C11—C121.382 (3)
S—O2i3.327 (2)C11—H110.9300
S—C11.778 (2)C12—C131.378 (3)
S—C161.794 (2)C12—H120.9300
O1—C71.374 (2)C13—C141.382 (3)
O1—C81.381 (2)C13—H130.9300
C1—C81.368 (3)C14—H140.9300
C1—C21.446 (3)C15—H15A0.9600
C2—C71.391 (3)C15—H15B0.9600
C2—C31.397 (3)C15—H15C0.9600
C3—C41.384 (3)C16—C171.378 (3)
C3—H30.9300C16—C211.387 (3)
C4—C51.396 (3)C17—C181.388 (3)
C5—C61.383 (3)C17—H170.9300
C5—H50.9300C18—C191.378 (4)
C6—C71.384 (3)C18—H180.9300
C6—C151.505 (3)C19—C201.370 (4)
C8—C91.460 (3)C19—H190.9300
C9—C141.392 (3)C20—C211.372 (3)
C9—C101.397 (3)C20—H200.9300
C10—C111.384 (3)C21—H210.9300
O2—S—C1105.84 (9)C12—C11—H11119.7
O2—S—C16106.83 (10)C10—C11—H11119.7
C1—S—C1697.45 (9)C13—C12—C11119.5 (2)
C7—O1—C8107.09 (15)C13—C12—H12120.3
C8—C1—C2107.53 (17)C11—C12—H12120.3
C8—C1—S127.27 (16)C12—C13—C14120.4 (2)
C2—C1—S125.20 (15)C12—C13—H13119.8
C7—C2—C3119.26 (18)C14—C13—H13119.8
C7—C2—C1104.90 (18)C13—C14—C9120.8 (2)
C3—C2—C1135.84 (18)C13—C14—H14119.6
C4—C3—C2116.10 (19)C9—C14—H14119.6
C4—C3—H3122.0C6—C15—H15A109.5
C2—C3—H3122.0C6—C15—H15B109.5
C3—C4—C5123.5 (2)H15A—C15—H15B109.5
C3—C4—Cl118.61 (16)C6—C15—H15C109.5
C5—C4—Cl117.89 (16)H15A—C15—H15C109.5
C6—C5—C4121.07 (19)H15B—C15—H15C109.5
C6—C5—H5119.5C17—C16—C21120.8 (2)
C4—C5—H5119.5C17—C16—S120.98 (16)
C5—C6—C7114.86 (18)C21—C16—S118.11 (17)
C5—C6—C15123.06 (18)C16—C17—C18118.7 (2)
C7—C6—C15122.08 (19)C16—C17—H17120.7
O1—C7—C6124.18 (18)C18—C17—H17120.7
O1—C7—C2110.62 (17)C19—C18—C17120.3 (2)
C6—C7—C2125.2 (2)C19—C18—H18119.8
C1—C8—O1109.86 (17)C17—C18—H18119.8
C1—C8—C9135.94 (18)C20—C19—C18120.5 (2)
O1—C8—C9114.20 (17)C20—C19—H19119.8
C14—C9—C10118.4 (2)C18—C19—H19119.8
C14—C9—C8118.49 (18)C19—C20—C21120.0 (2)
C10—C9—C8123.04 (19)C19—C20—H20120.0
C11—C10—C9120.3 (2)C21—C20—H20120.0
C11—C10—H10119.9C20—C21—C16119.7 (2)
C9—C10—H10119.9C20—C21—H21120.1
C12—C11—C10120.6 (2)C16—C21—H21120.1
O2—S—C1—C8156.31 (18)C2—C1—C8—C9179.9 (2)
C16—S—C1—C893.77 (19)S—C1—C8—C90.6 (4)
O2—S—C1—C224.43 (19)C7—O1—C8—C10.8 (2)
C16—S—C1—C285.48 (18)C7—O1—C8—C9179.96 (15)
C8—C1—C2—C70.9 (2)C1—C8—C9—C14168.4 (2)
S—C1—C2—C7178.49 (14)O1—C8—C9—C1410.4 (3)
C8—C1—C2—C3178.3 (2)C1—C8—C9—C1013.4 (4)
S—C1—C2—C32.3 (3)O1—C8—C9—C10167.76 (18)
C7—C2—C3—C40.0 (3)C14—C9—C10—C110.1 (3)
C1—C2—C3—C4179.1 (2)C8—C9—C10—C11178.25 (19)
C2—C3—C4—C51.1 (3)C9—C10—C11—C120.3 (3)
C2—C3—C4—Cl178.18 (14)C10—C11—C12—C130.6 (4)
C3—C4—C5—C61.1 (3)C11—C12—C13—C140.8 (4)
Cl—C4—C5—C6178.25 (15)C12—C13—C14—C90.6 (4)
C4—C5—C6—C70.2 (3)C10—C9—C14—C130.2 (3)
C4—C5—C6—C15179.2 (2)C8—C9—C14—C13178.5 (2)
C8—O1—C7—C6179.90 (18)O2—S—C16—C1715.11 (19)
C8—O1—C7—C20.3 (2)C1—S—C16—C1793.99 (18)
C5—C6—C7—O1178.93 (17)O2—S—C16—C21161.49 (15)
C15—C6—C7—O11.7 (3)C1—S—C16—C2189.42 (17)
C5—C6—C7—C21.5 (3)C21—C16—C17—C181.2 (3)
C15—C6—C7—C2177.9 (2)S—C16—C17—C18177.74 (17)
C3—C2—C7—O1178.94 (16)C16—C17—C18—C190.3 (4)
C1—C2—C7—O10.4 (2)C17—C18—C19—C200.6 (4)
C3—C2—C7—C61.4 (3)C18—C19—C20—C210.6 (4)
C1—C2—C7—C6179.25 (19)C19—C20—C21—C160.4 (3)
C2—C1—C8—O11.1 (2)C17—C16—C21—C201.3 (3)
S—C1—C8—O1178.27 (13)S—C16—C21—C20177.88 (17)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···Clii0.932.783.653 (3)157
C20—H20···O2iii0.932.473.261 (3)144
Symmetry codes: (ii) x+1, y+1, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC21H15ClO2S
Mr366.84
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)8.224 (1), 10.169 (1), 11.083 (2)
α, β, γ (°)68.771 (2), 78.050 (2), 81.483 (2)
V3)842.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.35 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.910, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
6585, 3270, 2650
Rint0.018
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.107, 1.06
No. of reflections3270
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.45

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···Cli0.932.783.653 (3)157.3
C20—H20···O2ii0.932.473.261 (3)143.5
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.
 

References

First citationAllen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o1291–o1292.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o1190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o1061.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds