metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m1007-m1008

Di-μ-perchlorato-bis­­{μ-2-[(2-pyrid­yl)methyl­amino­meth­yl]phenolato)dicopper(II) aceto­nitrile disolvate

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 30 June 2009; accepted 22 July 2009; online 29 July 2009)

In the crystal of the dinuclear title compound, [Cu2(C13H13N2O)2(ClO4)2]·2CH3CN, the two bridging perchlorate ions chelate to the two CuII atoms in a μ-O:O′ fashion on opposite sides of the equatorial plane. The CuII ions display a distorted octa­hedral coordination geometry (in the usual 4 + 2 Jahn–Teller arrangement), each being coordinated by two O atoms from the two perchlorate ligands, and two N and O atoms from the reduced Schiff base ligand. The asymmetric unit contains two acetonitrile solvent mol­ecules. In the crystal structure, in addition to N—H⋯O hydrogen bonds, there are weak C—H⋯O inter­actions between the perchlorate O atoms and the reduced Schiff base ligand. C—H⋯N inter­actions are also present.

Related literature

For related structures containing bridging perchlorate anions, see: Sony et al. (2006[Sony, S. M. M., Kuppayee, M., Ponnuswamy, M. N., Manonmani, J., Kandasamy, M., Sivakumar, K. & Fun, H.-K. (2006). Cryst. Res. Technol. 41, 517-522.]); Sarkar et al. (2004[Sarkar, S., Mondal, A., Ribas, J., Drew, M. G. B., Pramanik, K. & Rajak, K. K. (2004). Eur. J. Inorg. Chem. pp. 4633-4639.]); Neves et al. (2001[Neves, A., Rossi, L. M., Bortoluzzi, A. J., Mangrich, A. S., Haase, W. & Werner, R. (2001). J. Braz. Chem. Soc. 12, 747-754.]); Torelli et al. (2000[Torelli, S., Belle, C., Gautier-Luneau, I., Pierre, J. L., Saint-Aman, E., Latour, J. M., Pape, L. L. & Luneau, D. (2000). Inorg. Chem. 39, 3526-3536.]); O'Connor et al. (1986[O'Connor, C. J., Firmin, D., Pant, A. K., Babu, B. R. & Stevens, E. D. (1986). Inorg. Chem. 25, 2300-2307.]). For the synthesis, see: Yisgedu (2001[Yisgedu, T. (2001). PhD thesis, Howard University, Washington, DC, USA.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C13H13N2O)2(ClO4)2]·2C2H3N

  • Mr = 834.60

  • Monoclinic, P 21 /n

  • a = 16.0285 (4) Å

  • b = 9.4062 (3) Å

  • c = 24.7097 (10) Å

  • β = 102.665 (3)°

  • V = 3634.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.38 mm−1

  • T = 200 K

  • 0.53 × 0.46 × 0.39 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnon, England.]) Tmin = 0.848, Tmax = 1.000 (expected range = 0.495–0.584)

  • 33853 measured reflections

  • 14212 independent reflections

  • 8089 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.199

  • S = 1.19

  • 14212 reflections

  • 453 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.29 e Å−3

  • Δρmin = −2.24 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1B 1.9410 (18)
Cu1—O1A 1.942 (2)
Cu1—N2A 1.972 (3)
Cu1—N1A 1.974 (2)
Cu1—O21 2.494 (2)
Cu1—O11 2.706 (2)
Cu1—Cu2 2.9543 (5)
Cu2—O1A 1.9440 (18)
Cu2—O1B 1.952 (2)
Cu2—N2B 1.971 (3)
Cu2—N1B 1.973 (2)
Cu2—O12 2.489 (2)
Cu2—O22 2.670 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AA⋯O23i 0.93 2.05 2.913 (4) 154
N1B—H1BA⋯O14ii 0.93 2.09 2.943 (4) 152
C7B—H7BA⋯O14iii 0.99 2.53 3.167 (4) 122
C22S—H22H⋯O13iv 0.98 2.47 3.264 (8) 138
C7A—H7AB⋯O23v 0.99 2.48 3.143 (4) 124
C4A—H4AA⋯N1S 0.95 2.69 3.643 (7) 175
C12B—H12B⋯N2S 0.95 2.67 3.616 (9) 171
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) -x, -y+1, -z+1; (v) x, y-1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnon, England.]) ; cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dinucleating metal centers in protein complexes play important roles in biology such as dioxygen transport or activation, electron transfer, hydrolytic chemistry and nitrogen oxide reduction (Torelli et al. 2000). Many of the copper enzymes have oxidase or oxygenase activities. In order to model dinuclear copper enzymes, copper complexes containing binucleating ligands with bridging phenoxo groups have to be synthesized. In biological systems, type 3 copper enzymes tyrosinase and catechol oxidase contain similar dinuclear copper active sites and are responsible for hydroxylation of monophenols and/or oxidation of catechols (Neves et al. 2001).

We report here the synthesis and crystal structure determination of binuclear copper complex C30H32Cl2Cu2N6O10 for which the molecular structure is shown in Fig.1. The geometry around the CuII ions in Fig. 1 of the title compound can be described as that of distorted octahedral (with the usual tetragonal distortion seen in 6-coordinate Cu complexes) with each CuII ion coordinated to one pyridine N atom, a secondary amine N atom, two O atoms from the perchlorate groups and two bridging O atoms from the salicylaldamine groups. The Cu—Npy bond distances are; Cu(1)—N(2 A) 1.973 (3) Å and Cu(2)—N(2B) 1.971 (3) Å. The Cu—Namine bond distances are: Cu(1)—N(1 A) 1.975 (2) Å and Cu(2)—N(1B) 1.974 (2) Å. Having two copper centers bridged by a perchlorate ion has been previously observed (Sony et al., 2006; O'Connor et al., 1986). However, in this instance, the two copper centers are bridged by two perchlorate ions on opposite sides of the equatorial plane. The Cu—Operchlorate distances range from 2.489 (2) to 2.707 (3) Å. The Cu—Cu distance is 2.9542 (5) Å.

The crystals contain two molecules of acetonitrile as solvate. In the crystal structure, in addition to N—H···O hydrogen bonds, there are C—H···O interactions between the perchlorate O atoms and the reduced Schiff base ligand.

Related literature top

For related structures containing bridging perchlorate anions, see: Sony et al. (2006); Sarkar et al. (2004); Neves et al. (2001); Torelli et al. (2000); O'Connor et al. (1986). For the synthesis, see: Yisgedu (2001).

Experimental top

The ligand (2-pyridylmethyl)(2-hydroxybenzyl)amine (L1H) was synthesized as described below (Yisgedu, 2001). To 5.4 g (50 mmol) of 2-(2-aminomethyl)pyridine in 10 ml of ethanol was added 6.1 g (50 mmol) of salicylaldehyde in 15 ml of ethanol which resulted in a deep yellow color. The solution was left to stir for 30 minutes. A sodium borohydride solution (3 g NaBH4, 0.4 g NaOH, and 40.0 ml of H2O) were added dropwise. The solution changed to colorless and was left to stir for one hour after adding all the NaBH4 solution. The volume of the solution was reduced to 20 ml after extracting three times with chloroform (3 x 40 ml). The extracts were combined and dried in anhydrous Na2SO4 overnight. The Na2SO4 was filtered and the filtrate concentrated to give a colorless oil (9.3 g, 87%).

The metal complex was synthesized as described below (Yisgedu, 2001). 1.64 g (7.65 mmol) of L1H was mixed with 2.86 g (7.65 mmol) of Cu(ClO4)2.6H2O in 25 ml MeOH and 1.75 ml NaOCH3. The solution mixture was stirred overnight, filtered, washed with 1:1 mixture of ether and methanol and dried to give 2.3 g (80%). Crystals suitable for X-ray diffraction were obtained by layering a solution of the complex in acetonitrile with diethyl ether.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distance of 0.95 and 0.99 Å Uiso(H) = 1.2Ueq(C). The H atoms attached to N were idealized with an N–H distance of 0.93 Å. The highest peak and lowest peaks in the final difference Fourier were 1.29 and -2.24 e/Å3 [0.71 and 0.70 Å from Cu1].

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the dinuclear complex, C26H26Cl2Cu2N4O10 showing the atom numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing for C26H26Cl2Cu2N4O10, 2(C2H3N) viewed down the b axis showing the intermolecular N—H···O, C—H···O and C–H···N interactions.
Di-µ-perchlorato-bis{µ-2-[(2-pyridyl)methylaminomethyl]phenolato)dicopper(II) acetonitrile disolvate top
Crystal data top
[Cu2(C13H13N2O)2(ClO4)2]·2C2H3NF(000) = 1704
Mr = 834.60Dx = 1.525 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 16.0285 (4) ÅCell parameters from 11642 reflections
b = 9.4062 (3) Åθ = 4.7–34.7°
c = 24.7097 (10) ŵ = 1.38 mm1
β = 102.665 (3)°T = 200 K
V = 3634.8 (2) Å3Chunk, dark green
Z = 40.53 × 0.46 × 0.39 mm
Data collection top
Oxford Diffraction Gemini
diffractometer
14212 independent reflections
Radiation source: fine-focus sealed tube8089 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 10.5081 pixels mm-1θmax = 34.8°, θmin = 4.7°
ω scansh = 2525
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1411
Tmin = 0.848, Tmax = 1.000l = 3938
33853 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0713P)2 + 3.514P]
where P = (Fo2 + 2Fc2)/3
14212 reflections(Δ/σ)max = 0.002
453 parametersΔρmax = 1.29 e Å3
6 restraintsΔρmin = 2.24 e Å3
Crystal data top
[Cu2(C13H13N2O)2(ClO4)2]·2C2H3NV = 3634.8 (2) Å3
Mr = 834.60Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.0285 (4) ŵ = 1.38 mm1
b = 9.4062 (3) ÅT = 200 K
c = 24.7097 (10) Å0.53 × 0.46 × 0.39 mm
β = 102.665 (3)°
Data collection top
Oxford Diffraction Gemini
diffractometer
14212 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
8089 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 1.000Rint = 0.036
33853 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0786 restraints
wR(F2) = 0.199H-atom parameters constrained
S = 1.19Δρmax = 1.29 e Å3
14212 reflectionsΔρmin = 2.24 e Å3
453 parameters
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.15 (release 10-01-2008 CrysAlis171 .NET) (compiled Jan 10 2008,16:37:18) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (Oxford Diffraction, 2008).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.05889 (2)0.91878 (4)0.214778 (15)0.02910 (8)
Cu20.06076 (2)1.04142 (4)0.277641 (15)0.02901 (8)
Cl10.10838 (4)0.68198 (8)0.24709 (4)0.03933 (18)
Cl20.10650 (4)1.27847 (8)0.24782 (4)0.0440 (2)
O110.05145 (14)0.6989 (3)0.20982 (10)0.0450 (6)
O120.14408 (13)0.8171 (2)0.25739 (10)0.0425 (6)
O130.06250 (19)0.6237 (3)0.29860 (13)0.0743 (9)
O140.17758 (15)0.5894 (3)0.22222 (15)0.0730 (10)
O210.14267 (14)1.1426 (2)0.23742 (11)0.0443 (6)
O220.04757 (14)1.2593 (3)0.28331 (11)0.0483 (6)
O230.17503 (16)1.3695 (3)0.27486 (17)0.0819 (11)
O240.0624 (2)1.3376 (4)0.19615 (15)0.0843 (10)
O1A0.04239 (11)0.9262 (2)0.29027 (8)0.0264 (4)
O1B0.04444 (11)1.0330 (2)0.20172 (8)0.0262 (4)
N1A0.15385 (15)0.7811 (3)0.23295 (11)0.0347 (6)
H1AA0.20490.83160.23810.042*
N2A0.08589 (15)0.9092 (3)0.14074 (11)0.0332 (6)
N1B0.15526 (15)1.1796 (3)0.25897 (11)0.0347 (6)
H1BA0.20641.13000.25510.042*
N2B0.08647 (15)1.0555 (3)0.35188 (10)0.0333 (6)
C1A0.11031 (17)0.9121 (3)0.33359 (12)0.0328 (6)
C2A0.1249 (2)1.0062 (4)0.37820 (13)0.0432 (8)
H2AA0.08771.08470.37840.052*
C3A0.1937 (2)0.9851 (5)0.42218 (15)0.0599 (11)
H3AA0.20191.04780.45300.072*
C4A0.2502 (3)0.8764 (6)0.42243 (17)0.0730 (14)
H4AA0.29730.86400.45290.088*
C5A0.2379 (2)0.7856 (5)0.37814 (18)0.0617 (12)
H5AA0.27800.71140.37790.074*
C6A0.16741 (19)0.7989 (4)0.33285 (14)0.0408 (8)
C7A0.15409 (19)0.7000 (3)0.28532 (15)0.0441 (8)
H7AA0.09890.64980.28200.053*
H7AB0.20030.62810.29140.053*
C8A0.1471 (2)0.6924 (3)0.18345 (16)0.0449 (8)
H8AA0.09980.62320.18070.054*
H8AB0.20090.63920.18520.054*
C9A0.1302 (2)0.7899 (4)0.13437 (15)0.0422 (8)
C10A0.1570 (3)0.7668 (5)0.08580 (19)0.0721 (13)
H10A0.18730.68260.08100.087*
C11A0.1395 (3)0.8674 (6)0.0441 (2)0.0800 (14)
H11A0.15680.85170.01020.096*
C12A0.0973 (3)0.9893 (5)0.05174 (16)0.0597 (11)
H12A0.08671.06060.02380.072*
C13A0.0704 (2)1.0075 (4)0.10056 (14)0.0414 (8)
H13A0.04021.09150.10580.050*
C1B0.11278 (17)1.0433 (3)0.15872 (12)0.0329 (6)
C2B0.1271 (2)0.9480 (4)0.11472 (13)0.0404 (8)
H2BA0.08870.87110.11460.048*
C3B0.1972 (2)0.9648 (5)0.07100 (15)0.0583 (11)
H3BA0.20540.90060.04060.070*
C4B0.2548 (3)1.0718 (6)0.07082 (17)0.0659 (13)
H4BA0.30281.08170.04080.079*
C5B0.2424 (2)1.1645 (5)0.11447 (17)0.0593 (11)
H5BA0.28331.23750.11470.071*
C6B0.17098 (19)1.1552 (4)0.15908 (14)0.0417 (8)
C7B0.1574 (2)1.2582 (3)0.20605 (15)0.0413 (8)
H7BA0.20431.32880.19980.050*
H7BB0.10281.30950.20840.050*
C8B0.1461 (2)1.2726 (3)0.30813 (15)0.0430 (8)
H8BA0.19951.32680.30680.052*
H8BB0.09871.34090.30940.052*
C9B0.1276 (2)1.1781 (4)0.35779 (15)0.0433 (8)
C10B0.1509 (3)1.2083 (5)0.40691 (19)0.0734 (13)
H10B0.17961.29460.41120.088*
C11B0.1321 (4)1.1125 (6)0.4497 (2)0.0852 (16)
H11B0.14581.13420.48420.102*
C12B0.0936 (3)0.9851 (6)0.44275 (17)0.0684 (13)
H12B0.08290.91620.47150.082*
C13B0.0707 (2)0.9600 (4)0.39270 (14)0.0473 (9)
H13B0.04330.87320.38740.057*
N1S0.4394 (4)0.8308 (7)0.5336 (2)0.129 (2)
C11S0.4318 (6)0.9186 (8)0.5605 (3)0.124 (3)
C12S0.4157 (9)1.0326 (9)0.5941 (3)0.191 (5)
H12C0.45181.11380.58950.287*
H12D0.42871.00280.63310.287*
H12E0.35541.06020.58310.287*
N2S0.0703 (6)0.6977 (8)0.5421 (3)0.175 (3)
C21S0.0794 (5)0.6218 (9)0.5687 (2)0.125 (3)
C22S0.0856 (7)0.5063 (9)0.6015 (3)0.159 (4)
H22F0.07000.42010.58370.238*
H22G0.14440.49760.60630.238*
H22H0.04680.51850.63780.238*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02109 (14)0.02713 (17)0.03988 (18)0.00594 (13)0.00843 (13)0.00543 (14)
Cu20.02246 (15)0.02678 (17)0.03891 (18)0.00478 (13)0.00915 (13)0.00460 (14)
Cl10.0237 (3)0.0266 (3)0.0693 (5)0.0011 (3)0.0136 (3)0.0037 (3)
Cl20.0232 (3)0.0261 (3)0.0851 (6)0.0005 (3)0.0166 (3)0.0049 (4)
O110.0344 (11)0.0397 (12)0.0651 (15)0.0012 (10)0.0203 (11)0.0048 (11)
O120.0290 (10)0.0281 (11)0.0729 (15)0.0041 (9)0.0165 (10)0.0073 (10)
O130.0604 (17)0.079 (2)0.0856 (19)0.0134 (15)0.0201 (15)0.0459 (16)
O140.0306 (11)0.0388 (14)0.153 (3)0.0105 (10)0.0276 (15)0.0308 (16)
O210.0327 (10)0.0316 (11)0.0726 (15)0.0027 (9)0.0198 (11)0.0094 (11)
O220.0330 (11)0.0421 (13)0.0728 (16)0.0001 (10)0.0181 (11)0.0070 (12)
O230.0329 (12)0.0408 (14)0.174 (3)0.0134 (11)0.0275 (16)0.0393 (17)
O240.0676 (19)0.081 (2)0.110 (2)0.0226 (16)0.0311 (17)0.0583 (18)
O1A0.0194 (8)0.0242 (9)0.0333 (9)0.0033 (7)0.0009 (7)0.0083 (7)
O1B0.0179 (8)0.0263 (9)0.0325 (9)0.0049 (7)0.0016 (7)0.0068 (7)
N1A0.0231 (10)0.0268 (12)0.0568 (15)0.0031 (9)0.0141 (11)0.0034 (11)
N2A0.0239 (10)0.0333 (13)0.0444 (13)0.0014 (10)0.0117 (10)0.0027 (11)
N1B0.0215 (10)0.0281 (12)0.0563 (15)0.0017 (9)0.0124 (10)0.0035 (11)
N2B0.0287 (11)0.0344 (13)0.0374 (12)0.0059 (10)0.0084 (10)0.0017 (10)
C1A0.0208 (11)0.0384 (15)0.0387 (14)0.0040 (11)0.0054 (11)0.0161 (12)
C2A0.0340 (15)0.055 (2)0.0394 (16)0.0127 (15)0.0065 (13)0.0070 (14)
C3A0.0455 (19)0.091 (3)0.0385 (18)0.022 (2)0.0004 (16)0.0096 (19)
C4A0.042 (2)0.116 (4)0.050 (2)0.011 (2)0.0129 (18)0.028 (2)
C5A0.0308 (16)0.078 (3)0.071 (2)0.0094 (18)0.0007 (17)0.036 (2)
C6A0.0263 (13)0.0437 (17)0.0500 (17)0.0037 (13)0.0034 (13)0.0219 (14)
C7A0.0256 (13)0.0325 (15)0.074 (2)0.0097 (12)0.0116 (14)0.0224 (15)
C8A0.0322 (15)0.0291 (15)0.076 (2)0.0055 (13)0.0183 (16)0.0042 (15)
C9A0.0342 (14)0.0363 (17)0.061 (2)0.0026 (13)0.0206 (14)0.0079 (15)
C10A0.083 (3)0.063 (3)0.086 (3)0.007 (2)0.052 (2)0.017 (2)
C11A0.100 (3)0.085 (3)0.069 (3)0.006 (3)0.051 (2)0.016 (2)
C12A0.062 (2)0.072 (3)0.049 (2)0.016 (2)0.0207 (18)0.0019 (19)
C13A0.0349 (15)0.0461 (18)0.0434 (17)0.0056 (14)0.0093 (13)0.0036 (14)
C1B0.0227 (12)0.0354 (15)0.0401 (14)0.0012 (11)0.0056 (11)0.0160 (12)
C2B0.0304 (14)0.0536 (19)0.0375 (15)0.0065 (14)0.0081 (12)0.0085 (14)
C3B0.0408 (18)0.094 (3)0.0380 (17)0.014 (2)0.0050 (15)0.0084 (19)
C4B0.0387 (19)0.104 (3)0.048 (2)0.001 (2)0.0067 (16)0.023 (2)
C5B0.0313 (16)0.076 (3)0.067 (2)0.0151 (17)0.0027 (16)0.035 (2)
C6B0.0260 (13)0.0445 (18)0.0539 (18)0.0072 (13)0.0074 (13)0.0220 (15)
C7B0.0300 (14)0.0312 (15)0.064 (2)0.0091 (12)0.0140 (14)0.0167 (14)
C8B0.0357 (15)0.0305 (16)0.067 (2)0.0030 (13)0.0192 (15)0.0096 (14)
C9B0.0326 (14)0.0417 (18)0.060 (2)0.0050 (13)0.0195 (14)0.0122 (15)
C10B0.085 (3)0.068 (3)0.081 (3)0.000 (2)0.047 (2)0.021 (2)
C11B0.113 (4)0.089 (4)0.068 (3)0.009 (3)0.052 (3)0.021 (3)
C12B0.076 (3)0.087 (3)0.046 (2)0.026 (3)0.022 (2)0.003 (2)
C13B0.0449 (18)0.053 (2)0.0460 (18)0.0111 (16)0.0133 (15)0.0022 (16)
N1S0.159 (6)0.107 (4)0.106 (4)0.031 (4)0.002 (4)0.003 (3)
C11S0.171 (7)0.097 (5)0.077 (4)0.021 (5)0.034 (4)0.004 (3)
C12S0.354 (15)0.108 (6)0.093 (5)0.047 (8)0.011 (7)0.014 (5)
N2S0.225 (8)0.136 (6)0.135 (6)0.078 (6)0.022 (5)0.019 (5)
C21S0.160 (6)0.125 (5)0.063 (3)0.062 (5)0.035 (4)0.025 (3)
C22S0.221 (10)0.130 (6)0.099 (5)0.043 (6)0.022 (6)0.044 (5)
Geometric parameters (Å, º) top
Cu1—O1B1.9410 (18)C8A—C9A1.497 (5)
Cu1—O1A1.942 (2)C8A—H8AA0.9900
Cu1—N2A1.972 (3)C8A—H8AB0.9900
Cu1—N1A1.974 (2)C9A—C10A1.378 (6)
Cu1—O212.494 (2)C10A—C11A1.381 (7)
Cu1—O112.706 (2)C10A—H10A0.9500
Cu1—Cu22.9543 (5)C11A—C12A1.365 (7)
Cu2—O1A1.9440 (18)C11A—H11A0.9500
Cu2—O1B1.952 (2)C12A—C13A1.378 (5)
Cu2—N2B1.971 (3)C12A—H12A0.9500
Cu2—N1B1.973 (2)C13A—H13A0.9500
Cu2—O122.489 (2)C1B—C2B1.389 (5)
Cu2—O222.670 (2)C1B—C6B1.408 (4)
Cl1—O131.432 (3)C2B—C3B1.387 (4)
Cl1—O141.438 (3)C2B—H2BA0.9500
Cl1—O121.439 (2)C3B—C4B1.365 (6)
Cl1—O111.440 (3)C3B—H3BA0.9500
Cl2—O241.429 (3)C4B—C5B1.367 (6)
Cl2—O221.434 (3)C4B—H4BA0.9500
Cl2—O231.437 (3)C5B—C6B1.407 (5)
Cl2—O211.449 (2)C5B—H5BA0.9500
O1A—C1A1.356 (3)C6B—C7B1.490 (5)
O1B—C1B1.352 (3)C7B—H7BA0.9900
N1A—C8A1.465 (4)C7B—H7BB0.9900
N1A—C7A1.502 (4)C8B—C9B1.492 (5)
N1A—H1AA0.9300C8B—H8BA0.9900
N2A—C13A1.339 (4)C8B—H8BB0.9900
N2A—C9A1.355 (4)C9B—C10B1.375 (6)
N1B—C8B1.478 (4)C10B—C11B1.371 (7)
N1B—C7B1.496 (4)C10B—H10B0.9500
N1B—H1BA0.9300C11B—C12B1.376 (7)
N2B—C13B1.333 (4)C11B—H11B0.9500
N2B—C9B1.352 (4)C12B—C13B1.385 (6)
C1A—C2A1.393 (5)C12B—H12B0.9500
C1A—C6A1.407 (4)C13B—H13B0.9500
C2A—C3A1.383 (5)N1S—C11S1.083 (8)
C2A—H2AA0.9500C11S—C12S1.416 (11)
C3A—C4A1.364 (7)C12S—H12C0.9800
C3A—H3AA0.9500C12S—H12D0.9800
C4A—C5A1.368 (7)C12S—H12E0.9800
C4A—H4AA0.9500N2S—C21S1.003 (9)
C5A—C6A1.410 (5)C21S—C22S1.371 (10)
C5A—H5AA0.9500C22S—H22F0.9800
C6A—C7A1.476 (5)C22S—H22G0.9800
C7A—H7AA0.9900C22S—H22H0.9800
C7A—H7AB0.9900
O1B—Cu1—O1A81.30 (8)C5A—C4A—H4AA120.5
O1B—Cu1—N2A102.94 (9)C4A—C5A—C6A122.0 (4)
O1A—Cu1—N2A175.24 (8)C4A—C5A—H5AA119.0
O1B—Cu1—N1A171.26 (9)C6A—C5A—H5AA119.0
O1A—Cu1—N1A93.77 (10)C1A—C6A—C5A117.8 (3)
N2A—Cu1—N1A82.30 (11)C1A—C6A—C7A120.4 (3)
O1B—Cu1—O2188.16 (7)C5A—C6A—C7A121.8 (3)
O1A—Cu1—O2186.22 (8)C6A—C7A—N1A109.7 (3)
N2A—Cu1—O2191.71 (9)C6A—C7A—H7AA109.7
N1A—Cu1—O2198.77 (9)N1A—C7A—H7AA109.7
O1B—Cu1—O1183.69 (7)C6A—C7A—H7AB109.7
O1A—Cu1—O1181.12 (8)N1A—C7A—H7AB109.7
N2A—Cu1—O11101.38 (9)H7AA—C7A—H7AB108.2
N1A—Cu1—O1188.43 (9)N1A—C8A—C9A107.1 (3)
O21—Cu1—O11165.84 (8)N1A—C8A—H8AA110.3
O1B—Cu1—Cu240.76 (6)C9A—C8A—H8AA110.3
O1A—Cu1—Cu240.54 (5)N1A—C8A—H8AB110.3
N2A—Cu1—Cu2143.65 (7)C9A—C8A—H8AB110.3
N1A—Cu1—Cu2133.92 (8)H8AA—C8A—H8AB108.5
O21—Cu1—Cu286.10 (6)N2A—C9A—C10A120.2 (4)
O11—Cu1—Cu280.16 (5)N2A—C9A—C8A114.8 (3)
O1A—Cu2—O1B80.98 (8)C10A—C9A—C8A125.0 (3)
O1A—Cu2—N2B103.41 (9)C9A—C10A—C11A119.4 (4)
O1B—Cu2—N2B175.47 (9)C9A—C10A—H10A120.3
O1A—Cu2—N1B170.89 (10)C11A—C10A—H10A120.3
O1B—Cu2—N1B93.43 (10)C12A—C11A—C10A119.9 (4)
N2B—Cu2—N1B82.36 (11)C12A—C11A—H11A120.0
O1A—Cu2—O1287.68 (7)C10A—C11A—H11A120.0
O1B—Cu2—O1287.22 (8)C11A—C12A—C13A119.0 (4)
N2B—Cu2—O1291.81 (9)C11A—C12A—H12A120.5
N1B—Cu2—O1299.28 (9)C13A—C12A—H12A120.5
O1A—Cu2—O2284.20 (7)N2A—C13A—C12A121.4 (4)
O1B—Cu2—O2281.88 (8)N2A—C13A—H13A119.3
N2B—Cu2—O2299.55 (9)C12A—C13A—H13A119.3
N1B—Cu2—O2287.91 (9)O1B—C1B—C2B122.4 (3)
O12—Cu2—O22167.30 (8)O1B—C1B—C6B118.2 (3)
O1A—Cu2—Cu140.49 (6)C2B—C1B—C6B119.5 (3)
O1B—Cu2—Cu140.49 (5)C3B—C2B—C1B120.2 (4)
N2B—Cu2—Cu1143.89 (7)C3B—C2B—H2BA119.9
N1B—Cu2—Cu1133.48 (8)C1B—C2B—H2BA119.9
O12—Cu2—Cu186.83 (6)C4B—C3B—C2B121.2 (4)
O22—Cu2—Cu180.65 (5)C4B—C3B—H3BA119.4
O13—Cl1—O14110.2 (2)C2B—C3B—H3BA119.4
O13—Cl1—O12109.12 (18)C3B—C4B—C5B119.1 (3)
O14—Cl1—O12108.11 (14)C3B—C4B—H4BA120.4
O13—Cl1—O11109.68 (16)C5B—C4B—H4BA120.4
O14—Cl1—O11109.34 (18)C4B—C5B—C6B122.1 (4)
O12—Cl1—O11110.34 (14)C4B—C5B—H5BA119.0
O24—Cl2—O22109.42 (17)C6B—C5B—H5BA119.0
O24—Cl2—O23111.2 (2)C5B—C6B—C1B117.9 (3)
O22—Cl2—O23109.24 (19)C5B—C6B—C7B121.6 (3)
O24—Cl2—O21108.87 (19)C1B—C6B—C7B120.5 (3)
O22—Cl2—O21109.87 (15)C6B—C7B—N1B109.4 (3)
O23—Cl2—O21108.26 (14)C6B—C7B—H7BA109.8
Cl1—O11—Cu1123.70 (13)N1B—C7B—H7BA109.8
Cl1—O12—Cu2124.58 (12)C6B—C7B—H7BB109.8
Cl2—O21—Cu1124.58 (12)N1B—C7B—H7BB109.8
Cl2—O22—Cu2124.93 (14)H7BA—C7B—H7BB108.3
C1A—O1A—Cu1120.01 (18)N1B—C8B—C9B106.8 (3)
C1A—O1A—Cu2133.53 (19)N1B—C8B—H8BA110.4
Cu1—O1A—Cu298.98 (8)C9B—C8B—H8BA110.4
C1B—O1B—Cu1133.25 (19)N1B—C8B—H8BB110.4
C1B—O1B—Cu2119.75 (17)C9B—C8B—H8BB110.4
Cu1—O1B—Cu298.74 (8)H8BA—C8B—H8BB108.6
C8A—N1A—C7A114.6 (3)N2B—C9B—C10B120.3 (4)
C8A—N1A—Cu1105.76 (18)N2B—C9B—C8B115.7 (3)
C7A—N1A—Cu1112.68 (19)C10B—C9B—C8B124.0 (3)
C8A—N1A—H1AA107.9C11B—C10B—C9B119.2 (4)
C7A—N1A—H1AA107.9C11B—C10B—H10B120.4
Cu1—N1A—H1AA107.9C9B—C10B—H10B120.4
C13A—N2A—C9A120.2 (3)C10B—C11B—C12B120.4 (4)
C13A—N2A—Cu1127.8 (2)C10B—C11B—H11B119.8
C9A—N2A—Cu1111.9 (2)C12B—C11B—H11B119.8
C8B—N1B—C7B113.9 (3)C11B—C12B—C13B118.2 (4)
C8B—N1B—Cu2105.36 (18)C11B—C12B—H12B120.9
C7B—N1B—Cu2113.53 (19)C13B—C12B—H12B120.9
C8B—N1B—H1BA107.9N2B—C13B—C12B121.2 (4)
C7B—N1B—H1BA107.9N2B—C13B—H13B119.4
Cu2—N1B—H1BA107.9C12B—C13B—H13B119.4
C13B—N2B—C9B120.6 (3)N1S—C11S—C12S176.0 (11)
C13B—N2B—Cu2128.0 (2)C11S—C12S—H12C109.5
C9B—N2B—Cu2111.4 (2)C11S—C12S—H12D109.5
O1A—C1A—C2A122.0 (3)H12C—C12S—H12D109.5
O1A—C1A—C6A118.4 (3)C11S—C12S—H12E109.5
C2A—C1A—C6A119.7 (3)H12C—C12S—H12E109.5
C3A—C2A—C1A119.8 (4)H12D—C12S—H12E109.5
C3A—C2A—H2AA120.1N2S—C21S—C22S172.2 (12)
C1A—C2A—H2AA120.1C21S—C22S—H22F109.5
C4A—C3A—C2A121.7 (4)C21S—C22S—H22G109.5
C4A—C3A—H3AA119.1H22F—C22S—H22G109.5
C2A—C3A—H3AA119.1C21S—C22S—H22H109.5
C3A—C4A—C5A119.0 (3)H22F—C22S—H22H109.5
C3A—C4A—H4AA120.5H22G—C22S—H22H109.5
O1B—Cu1—Cu2—O1A179.56 (12)O1A—Cu1—N1A—C8A146.8 (2)
N2A—Cu1—Cu2—O1A176.33 (15)N2A—Cu1—N1A—C8A35.8 (2)
N1A—Cu1—Cu2—O1A9.69 (13)O21—Cu1—N1A—C8A126.4 (2)
O21—Cu1—Cu2—O1A88.74 (10)O11—Cu1—N1A—C8A65.9 (2)
O11—Cu1—Cu2—O1A87.82 (10)Cu2—Cu1—N1A—C8A140.56 (17)
O1A—Cu1—Cu2—O1B179.56 (12)O1B—Cu1—N1A—C7A34.4 (7)
N2A—Cu1—Cu2—O1B4.11 (15)O1A—Cu1—N1A—C7A21.0 (2)
N1A—Cu1—Cu2—O1B169.88 (13)N2A—Cu1—N1A—C7A161.7 (2)
O21—Cu1—Cu2—O1B91.70 (10)O21—Cu1—N1A—C7A107.7 (2)
O11—Cu1—Cu2—O1B91.74 (10)O11—Cu1—N1A—C7A60.0 (2)
O1B—Cu1—Cu2—N2B178.15 (15)Cu2—Cu1—N1A—C7A14.7 (2)
O1A—Cu1—Cu2—N2B1.41 (15)O1B—Cu1—N2A—C13A31.6 (3)
N2A—Cu1—Cu2—N2B177.74 (17)O1A—Cu1—N2A—C13A121.0 (11)
N1A—Cu1—Cu2—N2B8.28 (16)N1A—Cu1—N2A—C13A155.5 (3)
O21—Cu1—Cu2—N2B90.15 (14)O21—Cu1—N2A—C13A56.9 (3)
O11—Cu1—Cu2—N2B86.41 (13)O11—Cu1—N2A—C13A117.7 (2)
O1B—Cu1—Cu2—N1B10.37 (13)Cu2—Cu1—N2A—C13A28.9 (3)
O1A—Cu1—Cu2—N1B170.07 (13)O1B—Cu1—N2A—C9A152.9 (2)
N2A—Cu1—Cu2—N1B6.26 (16)O1A—Cu1—N2A—C9A54.4 (12)
N1A—Cu1—Cu2—N1B179.75 (14)N1A—Cu1—N2A—C9A20.0 (2)
O21—Cu1—Cu2—N1B81.33 (12)O21—Cu1—N2A—C9A118.6 (2)
O11—Cu1—Cu2—N1B102.11 (11)O11—Cu1—N2A—C9A66.8 (2)
O1B—Cu1—Cu2—O1289.42 (10)Cu2—Cu1—N2A—C9A155.63 (16)
O1A—Cu1—Cu2—O1290.14 (10)O1A—Cu2—N1B—C8B93.2 (6)
N2A—Cu1—Cu2—O1293.53 (13)O1B—Cu2—N1B—C8B144.97 (19)
N1A—Cu1—Cu2—O1280.45 (11)N2B—Cu2—N1B—C8B36.7 (2)
O21—Cu1—Cu2—O12178.88 (8)O12—Cu2—N1B—C8B127.29 (19)
O11—Cu1—Cu2—O122.32 (8)O22—Cu2—N1B—C8B63.2 (2)
O1B—Cu1—Cu2—O2288.43 (10)Cu1—Cu2—N1B—C8B138.24 (17)
O1A—Cu1—Cu2—O2292.01 (10)O1A—Cu2—N1B—C7B32.1 (7)
N2A—Cu1—Cu2—O2284.31 (13)O1B—Cu2—N1B—C7B19.6 (2)
N1A—Cu1—Cu2—O22101.70 (12)N2B—Cu2—N1B—C7B162.0 (2)
O21—Cu1—Cu2—O223.27 (8)O12—Cu2—N1B—C7B107.4 (2)
O11—Cu1—Cu2—O22179.83 (7)O22—Cu2—N1B—C7B62.1 (2)
O13—Cl1—O11—Cu179.9 (2)Cu1—Cu2—N1B—C7B12.9 (2)
O14—Cl1—O11—Cu1159.15 (15)O1A—Cu2—N2B—C13B31.5 (3)
O12—Cl1—O11—Cu140.37 (19)O1B—Cu2—N2B—C13B134.0 (11)
O1B—Cu1—O11—Cl160.39 (16)N1B—Cu2—N2B—C13B155.6 (3)
O1A—Cu1—O11—Cl121.75 (15)O12—Cu2—N2B—C13B56.5 (3)
N2A—Cu1—O11—Cl1162.37 (16)O22—Cu2—N2B—C13B117.8 (3)
N1A—Cu1—O11—Cl1115.81 (17)Cu1—Cu2—N2B—C13B30.6 (3)
O21—Cu1—O11—Cl15.2 (4)O1A—Cu2—N2B—C9B150.9 (2)
Cu2—Cu1—O11—Cl119.35 (14)O1B—Cu2—N2B—C9B43.5 (13)
O13—Cl1—O12—Cu276.0 (2)N1B—Cu2—N2B—C9B21.9 (2)
O14—Cl1—O12—Cu2164.11 (19)O12—Cu2—N2B—C9B121.1 (2)
O11—Cl1—O12—Cu244.6 (2)O22—Cu2—N2B—C9B64.6 (2)
O1A—Cu2—O12—Cl114.02 (18)Cu1—Cu2—N2B—C9B151.84 (17)
O1B—Cu2—O12—Cl167.05 (18)Cu1—O1A—C1A—C2A131.2 (3)
N2B—Cu2—O12—Cl1117.38 (18)Cu2—O1A—C1A—C2A11.7 (4)
N1B—Cu2—O12—Cl1160.07 (18)Cu1—O1A—C1A—C6A48.6 (3)
O22—Cu2—O12—Cl136.2 (5)Cu2—O1A—C1A—C6A168.5 (2)
Cu1—Cu2—O12—Cl126.51 (17)O1A—C1A—C2A—C3A178.1 (3)
O24—Cl2—O21—Cu175.8 (2)C6A—C1A—C2A—C3A2.1 (5)
O22—Cl2—O21—Cu144.1 (2)C1A—C2A—C3A—C4A2.3 (6)
O23—Cl2—O21—Cu1163.3 (2)C2A—C3A—C4A—C5A0.5 (7)
O1B—Cu1—O21—Cl213.46 (18)C3A—C4A—C5A—C6A1.6 (7)
O1A—Cu1—O21—Cl267.94 (18)O1A—C1A—C6A—C5A179.9 (3)
N2A—Cu1—O21—Cl2116.36 (18)C2A—C1A—C6A—C5A0.1 (5)
N1A—Cu1—O21—Cl2161.18 (18)O1A—C1A—C6A—C7A1.2 (4)
O11—Cu1—O21—Cl241.3 (4)C2A—C1A—C6A—C7A178.6 (3)
Cu2—Cu1—O21—Cl227.31 (17)C4A—C5A—C6A—C1A1.7 (6)
O24—Cl2—O22—Cu280.6 (2)C4A—C5A—C6A—C7A179.6 (4)
O23—Cl2—O22—Cu2157.54 (17)C1A—C6A—C7A—N1A58.6 (4)
O21—Cl2—O22—Cu238.9 (2)C5A—C6A—C7A—N1A120.1 (3)
O1A—Cu2—O22—Cl258.62 (17)C8A—N1A—C7A—C6A175.9 (2)
O1B—Cu2—O22—Cl223.06 (16)Cu1—N1A—C7A—C6A63.1 (3)
N2B—Cu2—O22—Cl2161.29 (17)C7A—N1A—C8A—C9A168.9 (2)
N1B—Cu2—O22—Cl2116.82 (18)Cu1—N1A—C8A—C9A44.1 (3)
O12—Cu2—O22—Cl28.1 (5)C13A—N2A—C9A—C10A2.1 (5)
Cu1—Cu2—O22—Cl217.91 (15)Cu1—N2A—C9A—C10A178.0 (3)
O1B—Cu1—O1A—C1A154.0 (2)C13A—N2A—C9A—C8A176.9 (3)
N2A—Cu1—O1A—C1A0.9 (12)Cu1—N2A—C9A—C8A1.0 (3)
N1A—Cu1—O1A—C1A33.3 (2)N1A—C8A—C9A—N2A30.5 (4)
O21—Cu1—O1A—C1A65.3 (2)N1A—C8A—C9A—C10A148.5 (4)
O11—Cu1—O1A—C1A121.1 (2)N2A—C9A—C10A—C11A1.0 (6)
Cu2—Cu1—O1A—C1A153.7 (2)C8A—C9A—C10A—C11A178.0 (4)
O1B—Cu1—O1A—Cu20.29 (8)C9A—C10A—C11A—C12A1.2 (7)
N2A—Cu1—O1A—Cu2152.8 (11)C10A—C11A—C12A—C13A2.1 (7)
N1A—Cu1—O1A—Cu2173.02 (9)C9A—N2A—C13A—C12A1.2 (5)
O21—Cu1—O1A—Cu288.42 (8)Cu1—N2A—C13A—C12A176.3 (3)
O11—Cu1—O1A—Cu285.20 (8)C11A—C12A—C13A—N2A1.0 (6)
O1B—Cu2—O1A—C1A148.3 (2)Cu1—O1B—C1B—C2B10.3 (4)
N2B—Cu2—O1A—C1A32.8 (3)Cu2—O1B—C1B—C2B130.8 (3)
N1B—Cu2—O1A—C1A95.8 (6)Cu1—O1B—C1B—C6B169.7 (2)
O12—Cu2—O1A—C1A124.1 (2)Cu2—O1B—C1B—C6B49.2 (3)
O22—Cu2—O1A—C1A65.7 (2)O1B—C1B—C2B—C3B178.7 (3)
Cu1—Cu2—O1A—C1A148.0 (3)C6B—C1B—C2B—C3B1.3 (5)
O1B—Cu2—O1A—Cu10.29 (8)C1B—C2B—C3B—C4B1.9 (6)
N2B—Cu2—O1A—Cu1179.15 (9)C2B—C3B—C4B—C5B0.5 (6)
N1B—Cu2—O1A—Cu152.3 (6)C3B—C4B—C5B—C6B1.5 (7)
O12—Cu2—O1A—Cu187.84 (9)C4B—C5B—C6B—C1B2.1 (6)
O22—Cu2—O1A—Cu182.38 (9)C4B—C5B—C6B—C7B179.1 (4)
O1A—Cu1—O1B—C1B146.2 (2)O1B—C1B—C6B—C5B179.4 (3)
N2A—Cu1—O1B—C1B36.0 (3)C2B—C1B—C6B—C5B0.6 (5)
N1A—Cu1—O1B—C1B90.1 (7)O1B—C1B—C6B—C7B0.5 (4)
O21—Cu1—O1B—C1B127.3 (2)C2B—C1B—C6B—C7B179.5 (3)
O11—Cu1—O1B—C1B64.3 (2)C5B—C6B—C7B—N1B119.9 (3)
Cu2—Cu1—O1B—C1B146.5 (3)C1B—C6B—C7B—N1B58.9 (4)
O1A—Cu1—O1B—Cu20.29 (8)C8B—N1B—C7B—C6B177.3 (2)
N2A—Cu1—O1B—Cu2177.50 (9)Cu2—N1B—C7B—C6B62.1 (3)
N1A—Cu1—O1B—Cu256.4 (7)C7B—N1B—C8B—C9B168.9 (2)
O21—Cu1—O1B—Cu286.17 (9)Cu2—N1B—C8B—C9B43.9 (3)
O11—Cu1—O1B—Cu282.23 (8)C13B—N2B—C9B—C10B2.6 (5)
O1A—Cu2—O1B—C1B152.1 (2)Cu2—N2B—C9B—C10B179.7 (3)
N2B—Cu2—O1B—C1B13.7 (13)C13B—N2B—C9B—C8B176.6 (3)
N1B—Cu2—O1B—C1B35.1 (2)Cu2—N2B—C9B—C8B1.2 (3)
O12—Cu2—O1B—C1B64.0 (2)N1B—C8B—C9B—N2B28.9 (4)
O22—Cu2—O1B—C1B122.5 (2)N1B—C8B—C9B—C10B150.3 (4)
Cu1—Cu2—O1B—C1B152.4 (2)N2B—C9B—C10B—C11B0.3 (6)
O1A—Cu2—O1B—Cu10.29 (8)C8B—C9B—C10B—C11B178.8 (4)
N2B—Cu2—O1B—Cu1166.1 (11)C9B—C10B—C11B—C12B2.6 (8)
N1B—Cu2—O1B—Cu1172.48 (9)C10B—C11B—C12B—C13B3.1 (8)
O12—Cu2—O1B—Cu188.38 (8)C9B—N2B—C13B—C12B2.0 (5)
O22—Cu2—O1B—Cu185.08 (8)Cu2—N2B—C13B—C12B179.4 (3)
O1B—Cu1—N1A—C8A91.5 (7)C11B—C12B—C13B—N2B0.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AA···O23i0.932.052.913 (4)154
N1B—H1BA···O14ii0.932.092.943 (4)152
C7B—H7BA···O14iii0.992.533.167 (4)122
C22S—H22H···O13iv0.982.473.264 (8)138
C7A—H7AB···O23v0.992.483.143 (4)124
C4A—H4AA···N1S0.952.693.643 (7)175
C12B—H12B···N2S0.952.673.616 (9)171
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+1, z+1; (v) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu2(C13H13N2O)2(ClO4)2]·2C2H3N
Mr834.60
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)16.0285 (4), 9.4062 (3), 24.7097 (10)
β (°) 102.665 (3)
V3)3634.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.38
Crystal size (mm)0.53 × 0.46 × 0.39
Data collection
DiffractometerOxford Diffraction Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.848, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
33853, 14212, 8089
Rint0.036
(sin θ/λ)max1)0.802
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.199, 1.19
No. of reflections14212
No. of parameters453
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.29, 2.24

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O1B1.9410 (18)Cu2—O1A1.9440 (18)
Cu1—O1A1.942 (2)Cu2—O1B1.952 (2)
Cu1—N2A1.972 (3)Cu2—N2B1.971 (3)
Cu1—N1A1.974 (2)Cu2—N1B1.973 (2)
Cu1—O212.494 (2)Cu2—O122.489 (2)
Cu1—O112.706 (2)Cu2—O222.670 (2)
Cu1—Cu22.9543 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AA···O23i0.932.052.913 (4)153.5
N1B—H1BA···O14ii0.932.092.943 (4)151.6
C7B—H7BA···O14iii0.992.533.167 (4)122.0
C22S—H22H···O13iv0.982.473.264 (8)137.5
C7A—H7AB···O23v0.992.483.143 (4)123.6
C4A—H4AA···N1S0.952.693.643 (7)175.4
C12B—H12B···N2S0.952.673.616 (9)171.3
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+1, z+1; (v) x, y1, z.
 

Acknowledgements

RJB wishes to acknowledge the NSF-MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

References

First citationNeves, A., Rossi, L. M., Bortoluzzi, A. J., Mangrich, A. S., Haase, W. & Werner, R. (2001). J. Braz. Chem. Soc. 12, 747–754.  CSD CrossRef CAS Google Scholar
First citationO'Connor, C. J., Firmin, D., Pant, A. K., Babu, B. R. & Stevens, E. D. (1986). Inorg. Chem. 25, 2300–2307.  CSD CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnon, England.  Google Scholar
First citationSarkar, S., Mondal, A., Ribas, J., Drew, M. G. B., Pramanik, K. & Rajak, K. K. (2004). Eur. J. Inorg. Chem. pp. 4633–4639.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSony, S. M. M., Kuppayee, M., Ponnuswamy, M. N., Manonmani, J., Kandasamy, M., Sivakumar, K. & Fun, H.-K. (2006). Cryst. Res. Technol. 41, 517–522.  CAS Google Scholar
First citationTorelli, S., Belle, C., Gautier-Luneau, I., Pierre, J. L., Saint-Aman, E., Latour, J. M., Pape, L. L. & Luneau, D. (2000). Inorg. Chem. 39, 3526–3536.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYisgedu, T. (2001). PhD thesis, Howard University, Washington, DC, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m1007-m1008
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds