organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-(5-Bromo-2-hy­droxy­phen­yl)(phen­yl)methyl­­idene]-4-chloro­benzo­hydrazide

aCollege of Environment and Chemical Engineering, Xi'an Polytechnic University, 710048 Xi'an, Shaanxi, People's Republic of China, and bDepartment of Material Science and Chemical Engineering, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan, People's Republic of China
*Correspondence e-mail: jichangyou789456@126.com

(Received 13 July 2009; accepted 16 July 2009; online 22 July 2009)

The Schiff base, C20H14BrClN2O2, displays a trans conformation with respect to the C=N double bond. The aromatic rings at either end of the –C(=O)–NH–N=C– fragment are nearly parallel [dihedral angle = 3.4 (5)°]. The hydr­oxy group forms an intra­molecular hydrogen bond to the imino N atom.

Related literature

The chemistry of aroylhydrazones continues to attract much attention due to their ability to coordinate to metal ions (Singh et al., 1982[Singh, R. B., Jain, P. & Singh, R. P. (1982). Talanta, 29, 77-84.]; Salem, 1998[Salem, A. A. (1998). Microchem. J. 60, 51-66.]) and their biological activity (Singh et al., 1982[Singh, R. B., Jain, P. & Singh, R. P. (1982). Talanta, 29, 77-84.]; Carcelli et al., 1995[Carcelli, M., Mazza, P., Pelizzi, G. & Zani, F. (1995). J. Inorg. Biochem. 57, 43-62.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14BrClN2O2

  • Mr = 429.69

  • Triclinic, [P \overline 1]

  • a = 7.3664 (8) Å

  • b = 10.6894 (11) Å

  • c = 12.3029 (14) Å

  • α = 71.976 (2)°

  • β = 82.228 (2)°

  • γ = 85.466 (2)°

  • V = 912.05 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.42 mm−1

  • T = 273 K

  • 0.20 × 0.16 × 0.13 mm

Data collection
  • Bruker SMART area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.644, Tmax = 0.744

  • 4841 measured reflections

  • 3189 independent reflections

  • 2467 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.085

  • S = 1.04

  • 3189 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.84 2.554 (3) 145

Data collection: SMART (Bruker, 1996[Bruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1996[Bruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of aroylhydrazones continues to attract much attention due to their coordination ability to metal ions (Singh et al., 1982; Salem, 1998) and their biological activity (Singh et al., 1982; Carcelli et al., 1995). As an extension of work on the structural characterization of aroylhydrazone derivatives,the title compound, (I),was synthesized and its crystal structure is reported here.

The title molecule displays a trans conformation with respect to the C7=N1 double bond (Fig. 1). The crystal structure is stabilized by intramolecular O—H···N hydrogen bonds (Table).

Related literature top

The chemistry of aroylhydrazones continues to attract much attention due to their coordination ability to metal ions (Singh et al., 1982; Salem, 1998) and their biological activity (Singh et al., 1982; Carcelli et al., 1995).

Experimental top

4-chlorobenzohydrazide(0.02 mol,3.42 g) was dissolved in anhydrous ethanol (50 ml), and 1-(5-bromo-2-hydroxyphenyl)ethanone (0.02 mol, 4.30 g) was added. The reaction mixture was refluxed for 6 h with stirring, then the resulting precipitate was collected by filtration, washed several times with ethanol and dried in vacuo (yield 85%). The compound (2.0 mmol,0.68 g) was dissolved in dimethylformamide (30 ml) and kept at room temperature for 30 d to obtain yellow single crystals suitable for X-ray diffraction.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms,with C—H(aromatic) = 0.93 Å, O—H = 0.82 Å, and N—H = 0.86 Å and with Uiso(H) =1.2Ueq(Caromatic,N).

Computing details top

Data collection: SMART (Bruker, 1996); cell refinement: SAINT (Bruker, 1996); data reduction: SAINT (Bruker, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
N'-[(E)-(5-Bromo-2-hydroxyphenyl)(phenyl)methylidene]-4- chlorobenzohydrazide top
Crystal data top
C20H14BrClN2O2Z = 2
Mr = 429.69F(000) = 432
Triclinic, P1Dx = 1.565 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3664 (8) ÅCell parameters from 1806 reflections
b = 10.6894 (11) Åθ = 2.8–25.3°
c = 12.3029 (14) ŵ = 2.42 mm1
α = 71.976 (2)°T = 273 K
β = 82.228 (2)°Block, yellow
γ = 85.466 (2)°0.20 × 0.16 × 0.13 mm
V = 912.05 (17) Å3
Data collection top
Bruker SMART area-detector
diffractometer
3189 independent reflections
Radiation source: fine-focus sealed tube2467 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.644, Tmax = 0.744k = 812
4841 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.3768P]
where P = (Fo2 + 2Fc2)/3
3189 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C20H14BrClN2O2γ = 85.466 (2)°
Mr = 429.69V = 912.05 (17) Å3
Triclinic, P1Z = 2
a = 7.3664 (8) ÅMo Kα radiation
b = 10.6894 (11) ŵ = 2.42 mm1
c = 12.3029 (14) ÅT = 273 K
α = 71.976 (2)°0.20 × 0.16 × 0.13 mm
β = 82.228 (2)°
Data collection top
Bruker SMART area-detector
diffractometer
3189 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2467 reflections with I > 2σ(I)
Tmin = 0.644, Tmax = 0.744Rint = 0.015
4841 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.04Δρmax = 0.32 e Å3
3189 reflectionsΔρmin = 0.44 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.36717 (5)1.17236 (4)1.00467 (3)0.06975 (17)
Cl10.08513 (13)0.47987 (9)0.23226 (8)0.0729 (3)
O10.3069 (3)1.25145 (19)0.50596 (17)0.0627 (6)
H10.28821.18300.49310.094*
O20.2209 (3)1.0374 (2)0.33927 (17)0.0587 (6)
N10.2632 (3)1.0045 (2)0.55663 (18)0.0454 (6)
N20.2388 (3)0.9007 (2)0.51767 (19)0.0480 (6)
H20.23670.82150.56360.058*
C10.3457 (4)1.1936 (3)0.8483 (2)0.0465 (7)
C20.3209 (4)1.0858 (3)0.8134 (2)0.0432 (6)
H2A0.31411.00270.86730.052*
C30.3060 (3)1.0998 (2)0.6988 (2)0.0389 (6)
C40.3189 (4)1.2264 (3)0.6188 (2)0.0455 (7)
C50.3465 (4)1.3328 (3)0.6566 (3)0.0540 (8)
H50.35641.41630.60360.065*
C60.3595 (4)1.3169 (3)0.7695 (3)0.0534 (8)
H60.37751.38910.79320.064*
C70.2801 (4)0.9829 (3)0.6636 (2)0.0397 (6)
C80.2759 (4)0.8493 (2)0.7500 (2)0.0380 (6)
C90.4302 (4)0.7655 (3)0.7577 (2)0.0474 (7)
H90.53670.79200.70830.057*
C100.4261 (5)0.6424 (3)0.8389 (3)0.0544 (8)
H100.52960.58610.84330.065*
C110.2707 (5)0.6030 (3)0.9127 (3)0.0524 (8)
H110.26900.52060.96770.063*
C120.1173 (4)0.6854 (3)0.9054 (3)0.0534 (8)
H120.01170.65860.95570.064*
C130.1186 (4)0.8074 (3)0.8242 (2)0.0485 (7)
H130.01340.86200.81900.058*
C140.2180 (4)0.9262 (3)0.4043 (2)0.0415 (6)
C150.1925 (4)0.8100 (3)0.3660 (2)0.0394 (6)
C160.1873 (4)0.6816 (3)0.4374 (2)0.0548 (8)
H160.20200.66340.51470.066*
C170.1604 (5)0.5797 (3)0.3946 (3)0.0593 (8)
H170.16000.49310.44230.071*
C180.1345 (4)0.6076 (3)0.2821 (2)0.0480 (7)
C190.1422 (4)0.7332 (3)0.2085 (3)0.0555 (8)
H190.12750.75040.13120.067*
C200.1724 (4)0.8337 (3)0.2515 (2)0.0491 (7)
H200.17920.91930.20210.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0901 (3)0.0740 (3)0.0629 (2)0.00901 (19)0.02581 (18)0.04231 (19)
Cl10.0828 (6)0.0743 (6)0.0825 (6)0.0160 (5)0.0070 (5)0.0520 (5)
O10.1015 (18)0.0392 (12)0.0457 (12)0.0063 (12)0.0087 (11)0.0094 (9)
O20.0902 (16)0.0397 (12)0.0469 (12)0.0099 (11)0.0193 (11)0.0075 (10)
N10.0639 (15)0.0360 (13)0.0407 (13)0.0063 (11)0.0108 (11)0.0149 (10)
N20.0763 (17)0.0328 (13)0.0384 (12)0.0087 (11)0.0132 (11)0.0115 (10)
C10.0478 (16)0.0488 (18)0.0520 (16)0.0021 (13)0.0122 (13)0.0270 (14)
C20.0476 (16)0.0391 (15)0.0463 (16)0.0007 (12)0.0086 (13)0.0167 (13)
C30.0420 (15)0.0330 (14)0.0442 (15)0.0023 (11)0.0072 (12)0.0144 (12)
C40.0516 (17)0.0392 (16)0.0470 (17)0.0034 (13)0.0054 (13)0.0149 (13)
C50.068 (2)0.0306 (15)0.0629 (19)0.0036 (14)0.0084 (16)0.0122 (14)
C60.0555 (18)0.0443 (18)0.072 (2)0.0012 (14)0.0137 (15)0.0313 (16)
C70.0448 (15)0.0379 (15)0.0390 (15)0.0021 (12)0.0059 (12)0.0150 (12)
C80.0512 (16)0.0305 (14)0.0368 (14)0.0066 (12)0.0078 (12)0.0143 (11)
C90.0522 (18)0.0433 (17)0.0482 (16)0.0037 (14)0.0039 (13)0.0161 (13)
C100.064 (2)0.0395 (17)0.0618 (19)0.0082 (15)0.0187 (17)0.0169 (15)
C110.077 (2)0.0326 (16)0.0472 (17)0.0099 (15)0.0152 (16)0.0066 (13)
C120.063 (2)0.0460 (18)0.0503 (17)0.0166 (16)0.0007 (15)0.0128 (14)
C130.0518 (18)0.0431 (17)0.0523 (17)0.0014 (13)0.0086 (14)0.0158 (14)
C140.0458 (16)0.0412 (17)0.0382 (15)0.0038 (12)0.0082 (12)0.0109 (13)
C150.0433 (15)0.0388 (15)0.0380 (14)0.0041 (12)0.0084 (12)0.0122 (12)
C160.083 (2)0.0445 (17)0.0403 (16)0.0140 (15)0.0156 (15)0.0112 (13)
C170.084 (2)0.0423 (17)0.0538 (19)0.0151 (16)0.0114 (17)0.0132 (14)
C180.0465 (16)0.0549 (19)0.0530 (17)0.0078 (14)0.0055 (13)0.0300 (15)
C190.069 (2)0.064 (2)0.0417 (16)0.0029 (16)0.0131 (14)0.0250 (15)
C200.0633 (19)0.0458 (17)0.0373 (15)0.0027 (14)0.0085 (13)0.0102 (13)
Geometric parameters (Å, º) top
Br1—C11.893 (3)C8—C131.386 (4)
Cl1—C181.740 (3)C9—C101.384 (4)
O1—C41.344 (3)C9—H90.9300
O1—H10.8200C10—C111.368 (4)
O2—C141.210 (3)C10—H100.9300
N1—C71.285 (3)C11—C121.372 (4)
N1—N21.370 (3)C11—H110.9300
N2—C141.364 (3)C12—C131.376 (4)
N2—H20.8600C12—H120.9300
C1—C61.375 (4)C13—H130.9300
C1—C21.380 (4)C14—C151.491 (4)
C2—C31.390 (4)C15—C201.378 (4)
C2—H2A0.9300C15—C161.382 (4)
C3—C41.407 (4)C16—C171.385 (4)
C3—C71.476 (3)C16—H160.9300
C4—C51.392 (4)C17—C181.359 (4)
C5—C61.363 (4)C17—H170.9300
C5—H50.9300C18—C191.368 (4)
C6—H60.9300C19—C201.381 (4)
C7—C81.493 (4)C19—H190.9300
C8—C91.385 (4)C20—H200.9300
C4—O1—H1109.5C11—C10—H10119.8
C7—N1—N2119.3 (2)C9—C10—H10119.8
C14—N2—N1118.3 (2)C10—C11—C12119.8 (3)
C14—N2—H2120.8C10—C11—H11120.1
N1—N2—H2120.8C12—C11—H11120.1
C6—C1—C2120.4 (3)C11—C12—C13120.4 (3)
C6—C1—Br1119.3 (2)C11—C12—H12119.8
C2—C1—Br1120.2 (2)C13—C12—H12119.8
C1—C2—C3120.9 (3)C12—C13—C8120.4 (3)
C1—C2—H2A119.6C12—C13—H13119.8
C3—C2—H2A119.6C8—C13—H13119.8
C2—C3—C4118.4 (2)O2—C14—N2121.2 (2)
C2—C3—C7119.9 (2)O2—C14—C15122.5 (2)
C4—C3—C7121.8 (2)N2—C14—C15116.3 (2)
O1—C4—C5117.2 (2)C20—C15—C16118.5 (3)
O1—C4—C3123.5 (2)C20—C15—C14117.1 (2)
C5—C4—C3119.3 (3)C16—C15—C14124.4 (2)
C6—C5—C4121.3 (3)C15—C16—C17120.5 (3)
C6—C5—H5119.3C15—C16—H16119.8
C4—C5—H5119.3C17—C16—H16119.8
C5—C6—C1119.7 (3)C18—C17—C16119.3 (3)
C5—C6—H6120.2C18—C17—H17120.4
C1—C6—H6120.2C16—C17—H17120.4
N1—C7—C3116.0 (2)C17—C18—C19121.8 (3)
N1—C7—C8123.7 (2)C17—C18—Cl1118.7 (2)
C3—C7—C8120.2 (2)C19—C18—Cl1119.5 (2)
C9—C8—C13118.9 (2)C18—C19—C20118.4 (3)
C9—C8—C7120.4 (2)C18—C19—H19120.8
C13—C8—C7120.7 (2)C20—C19—H19120.8
C10—C9—C8120.1 (3)C15—C20—C19121.5 (3)
C10—C9—H9120.0C15—C20—H20119.2
C8—C9—H9120.0C19—C20—H20119.2
C11—C10—C9120.4 (3)
C7—N1—N2—C14178.9 (2)C13—C8—C9—C100.3 (4)
C6—C1—C2—C31.2 (4)C7—C8—C9—C10179.2 (3)
Br1—C1—C2—C3179.6 (2)C8—C9—C10—C110.6 (4)
C1—C2—C3—C40.7 (4)C9—C10—C11—C120.7 (4)
C1—C2—C3—C7179.8 (2)C10—C11—C12—C130.1 (4)
C2—C3—C4—O1179.8 (3)C11—C12—C13—C81.0 (4)
C7—C3—C4—O10.8 (4)C9—C8—C13—C121.1 (4)
C2—C3—C4—C50.2 (4)C7—C8—C13—C12178.4 (3)
C7—C3—C4—C5178.9 (3)N1—N2—C14—O20.0 (4)
O1—C4—C5—C6179.7 (3)N1—N2—C14—C15179.8 (2)
C3—C4—C5—C60.7 (4)O2—C14—C15—C200.2 (4)
C4—C5—C6—C10.2 (5)N2—C14—C15—C20179.6 (2)
C2—C1—C6—C50.7 (4)O2—C14—C15—C16179.6 (3)
Br1—C1—C6—C5179.2 (2)N2—C14—C15—C160.5 (4)
N2—N1—C7—C3180.0 (2)C20—C15—C16—C170.7 (5)
N2—N1—C7—C80.4 (4)C14—C15—C16—C17179.1 (3)
C2—C3—C7—N1178.4 (2)C15—C16—C17—C181.6 (5)
C4—C3—C7—N12.5 (4)C16—C17—C18—C192.9 (5)
C2—C3—C7—C82.0 (4)C16—C17—C18—Cl1175.6 (2)
C4—C3—C7—C8177.1 (2)C17—C18—C19—C201.7 (5)
N1—C7—C8—C979.9 (3)Cl1—C18—C19—C20176.7 (2)
C3—C7—C8—C999.7 (3)C16—C15—C20—C191.9 (4)
N1—C7—C8—C13100.6 (3)C14—C15—C20—C19177.9 (3)
C3—C7—C8—C1379.9 (3)C18—C19—C20—C150.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.842.554 (3)145

Experimental details

Crystal data
Chemical formulaC20H14BrClN2O2
Mr429.69
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)7.3664 (8), 10.6894 (11), 12.3029 (14)
α, β, γ (°)71.976 (2), 82.228 (2), 85.466 (2)
V3)912.05 (17)
Z2
Radiation typeMo Kα
µ (mm1)2.42
Crystal size (mm)0.20 × 0.16 × 0.13
Data collection
DiffractometerBruker SMART area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.644, 0.744
No. of measured, independent and
observed [I > 2σ(I)] reflections
4841, 3189, 2467
Rint0.015
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.085, 1.04
No. of reflections3189
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.44

Computer programs: SMART (Bruker, 1996), SAINT (Bruker, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.8201.8392.554 (3)145
 

Acknowledgements

This project was supported by the Postgraduate Foundation of Xi'an Polytechnic University (grant No. Y05–2–09).

References

First citationBruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarcelli, M., Mazza, P., Pelizzi, G. & Zani, F. (1995). J. Inorg. Biochem. 57, 43–62.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSalem, A. A. (1998). Microchem. J. 60, 51–66.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, R. B., Jain, P. & Singh, R. P. (1982). Talanta, 29, 77–84.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds