organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2R)-2-(1,3-Dioxoisoindolin-2-yl)-4-(methyl­sulfan­yl)butanoic acid

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 8 July 2009; accepted 22 July 2009; online 25 July 2009)

The title compound, C13H13NO4S, the 1,3-dioxoisoindolin-2-yl unit is planar (r.m.s. deviation 0.0192 Å) and is oriented at a dihedral angle of 79.14 (18)° to the carboxyl­ate group. An intra­molecular C—H⋯O hydrogen bond leads to the formation of a planar (r.m.s. deviation 0.0419 Å)R(5) ring motif. In the crystal, mol­ecules are connected through O—H⋯O and C—H⋯O hydrogen bonds with R22(9) ring motifs into chains extending along the b axis.

Related literature

For the biological activity of isocoumarin and 3,4-dihydro­isocoumarin, see: Hill (1986[Hill, R. A. (1986). Chem. Org. Naturst. Fortschr. 49, 1-78.]); Canedo et al. (1997[Canedo, L. M., Puents, J. L. F. & Baz, J. P. (1997). J. Antibiot., 50, 175-176.]); Whyte et al. (1996[Whyte, A. C., Gloer, J. B., Scott, J. A. & Malloch, D. (1996). J. Nat. Prod. 59, 765-769. ]). For related structures, see: Barooah et al. (2007[Barooah, N., Sarma, R. J., Batsanov, A. S. & Baruah, J. B. (2007). J. Mol. Struct. 791, 122-130.]); Feeder & Jones (1994[Feeder, N. & Jones, W. (1994). Acta Cryst. C50, 820-823.]); Rajagopal et al. (2003[Rajagopal, K., Krishnakumar, R. V., Mostad, A. & Natarajan, S. (2003). Acta Cryst. E59, o31-o33.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13NO4S

  • Mr = 279.30

  • Orthorhombic, P 21 21 21

  • a = 6.7923 (6) Å

  • b = 9.9581 (8) Å

  • c = 20.0970 (17) Å

  • V = 1359.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.20 × 0.14 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.985

  • 7865 measured reflections

  • 1864 independent reflections

  • 1679 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.06

  • 1864 reflections

  • 179 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.77 (3) 1.96 (3) 2.673 (3) 154 (3)
C3—H3⋯O2ii 0.9300 2.4200 3.328 (4) 165.00
C9—H9⋯O4 0.96 (3) 2.48 (3) 2.905 (3) 106.4 (18)
C11—H11B⋯O1iii 0.9700 2.5400 3.443 (3) 156.00
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Isocoumarin and 3,4-dihydroisocoumarin have shown an impressive array of biological activities such as anti-tumor (Hill et al., 1986), anti-leucemic (Canedo et al., 1997) and anti-microbial (Whyte et al., 1996). The titled compound (I, Fig. 1) is an intermediate towards the synthesis of chiral isocoumarin. The biological activity of the title compound and synthesis of its complexes are in progress.

The crystal structures of 2-Phthalimidoethanoic acid monohydrate (Feeder & Jones, 1994), N-Phthaloylglycine (Barooah et al., 2007) and DL-Methioninium trichloroacetate (Rajagopal et al., 2003) have been published which contain the moieties of the title compound.

In the title compound the aromatic ring and heterocyclic ring along with O-atoms of carbonyl groups A (C1—C8/N1/O3/O4), the linear chain B (C9—C11/S1/C12) and the carboxylate group C (O1/C13/O2) are planar. There exists an intramolecular H-bond of type C—H···O completing a planar S(5) ring motif (Bernstein et al., 1995). The value of dihedral angle between A/B, A/C and B/C is 80.04 (7)°, 79.14 (18)° and 20.54 (30)°, respectively. Due to the intermolecular H-bonding (Table 1), the molecules are connected in one dimensional polymeric chains through ring motifs R22(9) extending along the b-axis.

Related literature top

For the biological activity of isocoumarin and 3,4-dihydroisocoumarin, see: Hill (1986); Canedo et al. (1997); Whyte et al. (1996). For related structures, see: Barooah et al. (2007); Feeder & Jones (1994); Rajagopal et al. (2003). For graph-set motifs, see: Bernstein et al. (1995).

Experimental top

The methionine (2.0 g, 13.4 mmol) and phthalic anhydride (2.13 g, 14.38 mmol) were added to a flask with constant stirring at 423 K for 2 h. The reaction mixture was brought to room temperature and the crystalline phthallic anhydride on the walls of the flask were removed. The solid crude product was purified by crystallization from ethanol/water (7:3) that afforded colorless prisms of the title compound (I).

Yield 81%.

Refinement top

All the Friedal pairs were merged.

H atoms (for hydroxy and methine) were located in a difference Fourier map and their coordinates were refined. The remaining H atoms were positioned geometrically with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H atoms, respectively and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The dotted line indicate the intramolecular H-bond.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form polymeric chains extending along the b-axis.
(2R)-2-(1,3-Dioxoisoindolin-2-yl)-4-(methylsulfanyl)butanoic acid top
Crystal data top
C13H13NO4SF(000) = 584
Mr = 279.30Dx = 1.365 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1864 reflections
a = 6.7923 (6) Åθ = 2.3–28.0°
b = 9.9581 (8) ŵ = 0.25 mm1
c = 20.0970 (17) ÅT = 296 K
V = 1359.3 (2) Å3Prismatic, colorless
Z = 40.20 × 0.14 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1864 independent reflections
Radiation source: fine-focus sealed tube1679 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 7.50 pixels mm-1θmax = 28.0°, θmin = 2.3°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 127
Tmin = 0.969, Tmax = 0.985l = 2326
7865 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.057P)2 + 0.2154P]
where P = (Fo2 + 2Fc2)/3
1864 reflections(Δ/σ)max < 0.001
179 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C13H13NO4SV = 1359.3 (2) Å3
Mr = 279.30Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.7923 (6) ŵ = 0.25 mm1
b = 9.9581 (8) ÅT = 296 K
c = 20.0970 (17) Å0.20 × 0.14 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1864 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1679 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.985Rint = 0.024
7865 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.20 e Å3
1864 reflectionsΔρmin = 0.33 e Å3
179 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.16661 (11)0.67441 (7)0.42200 (3)0.0592 (2)
O10.3364 (3)0.2322 (2)0.26744 (9)0.0561 (6)
O20.3978 (3)0.3163 (2)0.36803 (8)0.0651 (7)
O30.3730 (2)0.55141 (18)0.23747 (8)0.0475 (5)
O40.2132 (3)0.3346 (2)0.21563 (10)0.0656 (7)
N10.0832 (3)0.43417 (17)0.24261 (8)0.0355 (5)
C10.2192 (3)0.5168 (2)0.21199 (11)0.0361 (6)
C20.1381 (4)0.5487 (2)0.14518 (10)0.0390 (6)
C30.2158 (5)0.6255 (3)0.09427 (12)0.0543 (8)
C40.1055 (5)0.6347 (3)0.03591 (13)0.0638 (9)
C50.0735 (6)0.5715 (3)0.03025 (14)0.0668 (9)
C60.1514 (5)0.4944 (3)0.08144 (13)0.0594 (8)
C70.0415 (4)0.4844 (2)0.13909 (11)0.0430 (6)
C80.0790 (3)0.4072 (2)0.20120 (11)0.0422 (7)
C90.1029 (3)0.3829 (2)0.31004 (10)0.0358 (6)
C100.0710 (3)0.4911 (2)0.36262 (11)0.0423 (6)
C110.1370 (4)0.5462 (3)0.36027 (11)0.0465 (7)
C120.4193 (6)0.7176 (4)0.40992 (18)0.0927 (14)
C130.2982 (3)0.3089 (2)0.31883 (11)0.0412 (6)
H10.435 (5)0.196 (3)0.2742 (16)0.0673*
H30.336220.669100.098730.0652*
H40.153900.684380.000300.0764*
H50.144590.580590.009040.0801*
H60.272200.451410.077120.0713*
H90.002 (4)0.316 (3)0.3151 (12)0.0430*
H10A0.095950.453600.406360.0507*
H10B0.163740.563730.355430.0507*
H11A0.230380.474360.368340.0558*
H11B0.163210.583250.316510.0558*
H12A0.437040.752260.365760.1385*
H12B0.457050.784520.441810.1385*
H12C0.499500.639050.415680.1385*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0668 (4)0.0560 (3)0.0549 (4)0.0046 (3)0.0121 (3)0.0137 (3)
O10.0542 (10)0.0646 (11)0.0494 (10)0.0238 (9)0.0114 (9)0.0182 (9)
O20.0685 (11)0.0852 (14)0.0417 (9)0.0298 (11)0.0157 (8)0.0100 (9)
O30.0448 (8)0.0545 (9)0.0432 (9)0.0130 (8)0.0076 (7)0.0070 (7)
O40.0510 (10)0.0801 (13)0.0656 (12)0.0252 (10)0.0100 (9)0.0065 (11)
N10.0360 (8)0.0381 (8)0.0323 (8)0.0015 (8)0.0004 (7)0.0012 (7)
C10.0399 (10)0.0326 (9)0.0359 (10)0.0005 (8)0.0000 (8)0.0018 (8)
C20.0508 (12)0.0346 (9)0.0315 (10)0.0027 (9)0.0023 (9)0.0029 (8)
C30.0728 (17)0.0508 (12)0.0394 (12)0.0090 (12)0.0011 (12)0.0059 (10)
C40.097 (2)0.0591 (14)0.0353 (12)0.0061 (16)0.0088 (14)0.0057 (11)
C50.100 (2)0.0601 (15)0.0404 (13)0.0027 (17)0.0261 (15)0.0002 (12)
C60.0686 (16)0.0573 (13)0.0524 (14)0.0024 (14)0.0235 (14)0.0051 (12)
C70.0502 (12)0.0398 (10)0.0391 (11)0.0021 (10)0.0066 (10)0.0046 (9)
C80.0398 (11)0.0440 (11)0.0427 (12)0.0016 (9)0.0058 (9)0.0035 (9)
C90.0382 (10)0.0369 (10)0.0324 (10)0.0002 (9)0.0022 (8)0.0020 (8)
C100.0460 (12)0.0467 (11)0.0342 (10)0.0049 (10)0.0008 (9)0.0039 (9)
C110.0494 (12)0.0517 (12)0.0383 (11)0.0096 (11)0.0036 (10)0.0045 (10)
C120.089 (2)0.111 (3)0.078 (2)0.053 (2)0.0201 (19)0.001 (2)
C130.0466 (11)0.0424 (10)0.0347 (10)0.0074 (10)0.0002 (9)0.0013 (9)
Geometric parameters (Å, º) top
S1—C111.792 (3)C7—C81.488 (3)
S1—C121.786 (4)C9—C131.528 (3)
O1—C131.311 (3)C9—C101.525 (3)
O2—C131.200 (3)C10—C111.516 (3)
O3—C11.213 (3)C3—H30.9300
O4—C81.199 (3)C4—H40.9300
O1—H10.77 (3)C5—H50.9300
N1—C81.407 (3)C6—H60.9300
N1—C91.454 (3)C9—H90.96 (3)
N1—C11.382 (3)C10—H10A0.9700
C1—C21.486 (3)C10—H10B0.9700
C2—C71.383 (4)C11—H11A0.9700
C2—C31.382 (3)C11—H11B0.9700
C3—C41.395 (4)C12—H12A0.9600
C4—C51.374 (5)C12—H12B0.9600
C5—C61.389 (4)C12—H12C0.9600
C6—C71.382 (4)
S1···C7i3.610 (2)C10···O33.301 (3)
S1···H5ii3.1600C11···C83.506 (3)
S1···H12Biii3.1100C13···O32.960 (3)
O1···N12.693 (3)C1···H1vi2.96 (3)
O1···C13.148 (3)C1···H10B2.9400
O1···O3iv2.673 (3)C2···H9i2.94 (3)
O2···C4v3.409 (3)C3···H9i3.02 (3)
O2···C3iv3.328 (4)C8···H11B2.9600
O3···C132.960 (3)H1···O3iv1.96 (3)
O3···C103.301 (3)H1···C1iv2.96 (3)
O3···O4i3.165 (3)H3···O2vi2.4200
O3···O1vi2.673 (3)H4···O2viii2.6800
O4···O3vii3.165 (3)H5···S1ix3.1600
O1···H12Avii2.7700H6···H12Bx2.5100
O1···H11Bvii2.5400H9···O42.48 (3)
O2···H3iv2.4200H9···H11A2.4700
O2···H10A2.5800H9···C2vii2.94 (3)
O2···H4v2.6800H9···C3vii3.02 (3)
O3···H10B2.7700H10A···O22.5800
O3···H1vi1.96 (3)H10B···O32.7700
O4···H92.48 (3)H10B···C12.9400
N1···O12.693 (3)H11A···H92.4700
N1···H11B2.6900H11B···N12.6900
C1···O13.148 (3)H11B···C82.9600
C3···O2vi3.328 (4)H11B···O1i2.5400
C4···O2viii3.409 (3)H12A···O1i2.7700
C7···S1vii3.610 (2)H12B···S1xi3.1100
C8···C113.506 (3)H12B···H6xii2.5100
C11—S1—C12100.68 (15)O1—C13—O2125.0 (2)
C13—O1—H1108 (2)C2—C3—H3122.00
C1—N1—C8111.95 (17)C4—C3—H3122.00
C1—N1—C9124.23 (18)C3—C4—H4119.00
C8—N1—C9123.80 (18)C5—C4—H4120.00
O3—C1—N1123.8 (2)C4—C5—H5119.00
O3—C1—C2129.8 (2)C6—C5—H5119.00
N1—C1—C2106.38 (18)C5—C6—H6121.00
C1—C2—C7107.94 (18)C7—C6—H6121.00
C3—C2—C7121.8 (2)N1—C9—H9106.0 (15)
C1—C2—C3130.2 (2)C10—C9—H9108.4 (16)
C2—C3—C4117.0 (3)C13—C9—H9105.8 (17)
C3—C4—C5121.0 (3)C9—C10—H10A109.00
C4—C5—C6122.0 (3)C9—C10—H10B109.00
C5—C6—C7117.1 (3)C11—C10—H10A109.00
C2—C7—C8108.42 (19)C11—C10—H10B109.00
C6—C7—C8130.4 (2)H10A—C10—H10B108.00
C2—C7—C6121.2 (2)S1—C11—H11A110.00
O4—C8—N1124.6 (2)S1—C11—H11B110.00
N1—C8—C7105.28 (18)C10—C11—H11A110.00
O4—C8—C7130.1 (2)C10—C11—H11B110.00
N1—C9—C10112.62 (16)H11A—C11—H11B108.00
C10—C9—C13112.59 (17)S1—C12—H12A109.00
N1—C9—C13110.92 (17)S1—C12—H12B109.00
C9—C10—C11111.50 (18)S1—C12—H12C109.00
S1—C11—C10109.93 (17)H12A—C12—H12B110.00
O1—C13—C9111.22 (18)H12A—C12—H12C109.00
O2—C13—C9123.7 (2)H12B—C12—H12C109.00
C12—S1—C11—C10178.69 (19)C1—C2—C7—C81.1 (2)
C8—N1—C1—O3178.4 (2)C3—C2—C7—C60.0 (4)
C8—N1—C1—C21.0 (2)C3—C2—C7—C8178.1 (2)
C9—N1—C1—O32.7 (3)C2—C3—C4—C51.0 (4)
C9—N1—C1—C2177.97 (18)C3—C4—C5—C61.0 (5)
C1—N1—C8—O4177.4 (2)C4—C5—C6—C70.5 (5)
C1—N1—C8—C71.6 (2)C5—C6—C7—C20.0 (4)
C9—N1—C8—O43.6 (3)C5—C6—C7—C8177.6 (3)
C9—N1—C8—C7177.32 (18)C2—C7—C8—O4177.3 (2)
C1—N1—C9—C1072.2 (2)C2—C7—C8—N11.7 (2)
C1—N1—C9—C1355.0 (2)C6—C7—C8—O40.6 (4)
C8—N1—C9—C10106.6 (2)C6—C7—C8—N1179.6 (3)
C8—N1—C9—C13126.1 (2)N1—C9—C10—C1163.5 (2)
O3—C1—C2—C30.3 (4)C13—C9—C10—C11170.15 (18)
O3—C1—C2—C7179.4 (2)N1—C9—C13—O142.6 (2)
N1—C1—C2—C3179.0 (2)N1—C9—C13—O2140.5 (2)
N1—C1—C2—C70.2 (2)C10—C9—C13—O1169.85 (18)
C1—C2—C3—C4178.6 (2)C10—C9—C13—O213.3 (3)
C7—C2—C3—C40.5 (4)C9—C10—C11—S1179.19 (15)
C1—C2—C7—C6179.3 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1/2, y+1, z+1/2; (iii) x+1/2, y+3/2, z+1; (iv) x+1, y1/2, z+1/2; (v) x+1/2, y+1, z+1/2; (vi) x+1, y+1/2, z+1/2; (vii) x, y1/2, z+1/2; (viii) x+1/2, y+1, z1/2; (ix) x1/2, y+1, z1/2; (x) x1, y1/2, z+1/2; (xi) x1/2, y+3/2, z+1; (xii) x1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3iv0.77 (3)1.96 (3)2.673 (3)154 (3)
C3—H3···O2vi0.93002.42003.328 (4)165.00
C9—H9···O40.96 (3)2.48 (3)2.905 (3)106.4 (18)
C11—H11B···O1i0.97002.54003.443 (3)156.00
Symmetry codes: (i) x, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (vi) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H13NO4S
Mr279.30
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)6.7923 (6), 9.9581 (8), 20.0970 (17)
V3)1359.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.20 × 0.14 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.969, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
7865, 1864, 1679
Rint0.024
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.06
No. of reflections1864
No. of parameters179
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.33

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.77 (3)1.96 (3)2.673 (3)154 (3)
C3—H3···O2ii0.93002.42003.328 (4)165.00
C9—H9···O40.96 (3)2.48 (3)2.905 (3)106.4 (18)
C11—H11B···O1iii0.97002.54003.443 (3)156.00
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, and Bana International, Karachi, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore, and for technical support, respectively.

References

First citationBarooah, N., Sarma, R. J., Batsanov, A. S. & Baruah, J. B. (2007). J. Mol. Struct. 791, 122–130.  Web of Science CSD CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCanedo, L. M., Puents, J. L. F. & Baz, J. P. (1997). J. Antibiot., 50, 175–176.  CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFeeder, N. & Jones, W. (1994). Acta Cryst. C50, 820–823.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHill, R. A. (1986). Chem. Org. Naturst. Fortschr. 49, 1–78.  CAS Google Scholar
First citationRajagopal, K., Krishnakumar, R. V., Mostad, A. & Natarajan, S. (2003). Acta Cryst. E59, o31–o33.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhyte, A. C., Gloer, J. B., Scott, J. A. & Malloch, D. (1996). J. Nat. Prod. 59, 765–769.   CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds