organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,15:21,35-Bis(oxydi­ethyl­ene)-5,8,11,18,25,28,31,38-octa­oxa-1,15,21,35-tetra­aza­cyclo­tetra­decane-16,20,36,40-tetra­one–benzene (1/2): a macrotricyclic tetra­lactam

aPoint Loma Nazarene University, Department of Chemistry, 3900 Lomaland Dr., Rohr Science 305E, San Diego, CA 92106, USA, and bDepartment of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Room 208, Norman, OK 73019-3051, USA
*Correspondence e-mail: GarySmith@pointloma.edu

(Received 22 June 2009; accepted 7 July 2009; online 18 July 2009)

The macrotricyclic title compound, C36H64N4O14·2C6H6, is located on a crystallographic center of symmetry. The mol­ecule has four tertiary amide bridgehead atoms and consists of two unsymmetrical 20-membered diaza­tetra­oxamacrocycles (N2O4 donor atom set) connected through the N atoms by two lateral oxydiethyl­ene bridges. The bridging subunits, together with the short bridging strand (NCCOCCN) from each monocycle, define a 24-membered ring (N4O4 donor atom set) that forms a central cavity.

Related literature

For general background to macrotricyclic ligands as receptors for cationic, anionic and neutral guests, see: Lehn (1973[Lehn, J. M. (1973). Struct. Bond. 16, 1-69.], 1988[Lehn, J. M. (1988). Angew. Chem. Int. Ed. Engl. 27, 89-112.]); Lehn et al. (1977[Lehn, J. M., Simon, J. & Wagner, J. (1977). Nouv. J. Chim. 1, 77-84.]). For related structures, see: Wiest & Weiss (1973[Wiest, R. & Weiss, R. (1973). J. Chem. Soc. Chem. Commun. pp. 678-679.]); Fischer et al. (1977[Fischer, J., Mellinger, M. & Weiss, R. (1977). Inorg. Chim. Acta, 21, 259-263.]); Pascard et al. (1982[Pascard, C., Riche, C., Cesario, M., Kotzyba-Hibert, F. & Lehn, J. M. (1982). J. Chem. Soc. Chem. Commun. pp. 557-560.]); Rebizant et al. (1984[Rebizant, J., Spirlet, M. R., Barthelemy, P. & Desreux, J. F. (1984). Acta Cryst. C40, 484-486.]); Groth (1986[Groth, P. (1986). Acta Chem. Scand. Ser. A, 40, 154-156.]); Cheetham & Harding (1991[Cheetham, G. M. T. & Harding, M. M. (1991). Acta Cryst. C47, 2478-2479.]); Bencini et al. (1992[Bencini, A., Bianchi, A., Ciampolini, M., Dapporto, P., Fusi, V., Micheloni, M., Nardi, N., Paoli, P. & Valtancoli, B. (1992). J. Chem. Soc. Dalton Trans. pp. 2049-2054.]); Krakowiak et al. (1995[Krakowiak, K. E., Bradshaw, J. S., Kou, X. & Dalley, N. K. (1995). J. Heterocycl. Chem. 32, 931-935.]); Plenio & Diodone (1995[Plenio, H. & Diodone, R. (1995). J. Organomet. Chem. 492, 73-80.]); Smith et al. (2007[Smith, G. L. N., Rocher, N. M., Powell, D. R. & Taylor, R. W. (2007). Acta Cryst. E63, o1253-o1255.]). For the synthesis, see: Dietrich et al. (1973[Dietrich, B., Lehn, J. M., Sauvage, J. P. & Blanzat, J. (1973). Tetrahedron, 29, 1629-1645.]); Cheney et al. (1978[Cheney, J., Kintzinger, J. P. & Lehn, J. M. (1978). Nouv. J. Chim. 2, 411-418.]).

[Scheme 1]

Experimental

Crystal data
  • C36H64N4O14·2C6H6

  • Mr = 933.13

  • Triclinic, [P \overline 1]

  • a = 8.9632 (14) Å

  • b = 11.988 (2) Å

  • c = 12.806 (2) Å

  • α = 72.728 (5)°

  • β = 71.758 (5)°

  • γ = 68.443 (6)°

  • V = 1189.4 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.41 × 0.37 × 0.30 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.954, Tmax = 0.978

  • 9363 measured reflections

  • 4603 independent reflections

  • 4198 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.089

  • S = 1.00

  • 4603 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Macrotricyclic ligands are of interest as receptors for cationic, anionic and neutral guests (Lehn et al., 1977; Lehn, 1988). The title compound (I) was isolated as the 2 + 2 addition product during the synthesis of the corresponding bicyclic cryptand 3pp1.1. A related macrotricyclic tetraamine has been reported, but with the propylene groups in (I) replaced by benzene rings (Smith et al., 2007). Fig. 1 shows that (I) contains three monocyclic rings: a 24-membered ring, B (N1/O4/N7/O24A/N1A/O4A/N7A/O24) and two 20-membered rings, A (N1/O4/N7/O11/O14/O17) and C (N1A/O4A/N7A/O11A/O14A/O17A). The two 20-membered macrocyclic rings form the ends of the skewed cylinder with two oxydiethylene bridges linking the macrocylic end groups. Each of the 20-membered rings (A and C) has an elliptical shape, with non-bonding distances of 4.495 (2)Å (N1···O11), 6.639 (2)Å (O4···O14), and 7.209 (2)Å (N7···O17). The planes defined by donor atoms (N1/N7/O11/O14/O17) of rings A (and C) (average deviation = 0.1796 Å) are parallel, and form a dihedral angle of 100.7 (2)° with the plane defined by the nitrogen donor atoms in ring B. Thus, the centers of rings A and C do not overlap in the direction defined by the O4···O14 axis. The two 20-membered rings are oriented in an opposing fashion with respect to the plane defined by the N donor atoms in ring B. Similar behavior has been seen with other cylindrical tricyclic cryptands having unsymmetric end groups. (Groth, 1986; Cheetham & Harding, 1991; Plenio & Diodone, 1995). Fig. 2 shows that the nitrogen atoms in the 24-membered ring form the corners of a parallelogram defined by the following non-bonding distances and angles: 4.300 (2)Å (N1···N7); 6.901 (2)Å (N7···N1A); 74.0 (2)° (N1···N7···N1A); 106.0 (2)° (N7···N1···N7A). As a result, the 20-membered rings are also offset along the O24···O24A axis. Analogous macrotricyclic compounds also exhibit a skewed cylindrical shape (Bencini et al., 1992; Pascard et al., 1982; Rebizant et al., 1984: Smith et al., 2007).

Related literature top

For general background to macrotricyclic ligands as receptors for cationic, anionic and neutral guests, see: Lehn (1973, 1988); Lehn et al. (1977). For related structures, see: Wiest & Weiss (1973); Fischer et al. (1977); Pascard et al. (1982); Rebizant et al. (1984); Groth (1986); Cheetham & Harding (1991); Bencini et al. (1992); Krakowiak et al. (1995); Plenio & Diodone (1995); Smith et al. (2007). For the synthesis, see: Dietrich et al. (1973); Cheney et al. (1978).

Experimental top

The 20-membered monocyclic diamine was prepared according to reported methods (Dietrich et al., 1973). The tricyclic tetralactam was obtained as the 2 + 2 cycloaddition product from the reaction of 1,7-diaza-4,11,14,17-tetraoxacycloicosane (3.56 mmole) in 150 ml toluene and 2,2'-oxydiacetyl chloride (3.54 mmole) in 150 ml toluene. These solutions were added synchronously to 800 ml of toluene containing triethylamine (7.80 mmole) over a period of 2 h under high-dilution conditions (Dietrich et al., 1973; Cheney et al., 1978). The crude tetralactam was purified by recrystallization from benzene to give (I) in 10% overall yield. ESI-MS: m/z = 799.5 (M + Na+). Crystals suitable for X-ray crystallography were grown by vapor diffusion of heptane into a solution of (I) in benzene.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.99Å for RCH2R and 0.95Å for H atoms in the aromatic solvent; Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to their labelled counterparts by (1-x, 1-y, 1-z).
[Figure 2] Fig. 2. A view of the molecular structure of (I), along an axis perpendicular to the plane defined by the donor atoms of the 24-membered ring (B). Atoms marked with the letter A are related to unsubscripted atoms by (1-x, 1-y, 1-z). H atoms have been omitted for clarity.
1,15:21,35-Bis(oxydiethylene)-5,8,11,18,25,28,31,38-octaoxa-1,15,21,35- tetraazacyclotetradecane-16,20,36,40-tetraone–benzene (1/2) top
Crystal data top
C36H64N4O14·2C6H6Z = 1
Mr = 933.13F(000) = 504
Triclinic, P1Dx = 1.303 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9632 (14) ÅCell parameters from 7833 reflections
b = 11.988 (2) Åθ = 2.3–28.3°
c = 12.806 (2) ŵ = 0.10 mm1
α = 72.728 (5)°T = 100 K
β = 71.758 (5)°Block, colorless
γ = 68.443 (6)°0.41 × 0.37 × 0.30 mm
V = 1189.4 (3) Å3
Data collection top
Bruker APEX CCD
diffractometer
4603 independent reflections
Radiation source: fine-focus sealed tube4198 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1111
Tmin = 0.954, Tmax = 0.978k = 1413
9363 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.04P)2 + 0.42P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
4603 reflectionsΔρmax = 0.27 e Å3
299 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0145 (16)
Crystal data top
C36H64N4O14·2C6H6γ = 68.443 (6)°
Mr = 933.13V = 1189.4 (3) Å3
Triclinic, P1Z = 1
a = 8.9632 (14) ÅMo Kα radiation
b = 11.988 (2) ŵ = 0.10 mm1
c = 12.806 (2) ÅT = 100 K
α = 72.728 (5)°0.41 × 0.37 × 0.30 mm
β = 71.758 (5)°
Data collection top
Bruker APEX CCD
diffractometer
4603 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
4198 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.978Rint = 0.018
9363 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.00Δρmax = 0.27 e Å3
4603 reflectionsΔρmin = 0.21 e Å3
299 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.47767 (12)0.74664 (8)0.56224 (8)0.0167 (2)
C20.53952 (14)0.83074 (10)0.46324 (9)0.0186 (2)
H2A0.65670.79000.43170.022*
H2B0.53410.90390.48680.022*
C30.44488 (14)0.87172 (10)0.37224 (9)0.0188 (2)
H3A0.50760.91090.30150.023*
H3B0.43030.79980.35850.023*
O40.28675 (10)0.95714 (7)0.40616 (7)0.02112 (19)
C50.18854 (16)0.99679 (11)0.32485 (10)0.0224 (3)
H5A0.26140.98270.25080.027*
H5B0.13171.08590.31760.027*
C60.06115 (15)0.92948 (11)0.35714 (10)0.0217 (3)
H6A0.01560.94790.42890.026*
H6B0.00370.96050.29890.026*
N70.13369 (12)0.79611 (9)0.36959 (8)0.0176 (2)
C80.12705 (14)0.72108 (11)0.48393 (9)0.0179 (2)
H8A0.15070.76260.53040.021*
H8B0.21390.64120.48090.021*
C90.03960 (14)0.69865 (11)0.53976 (9)0.0208 (3)
H9A0.12610.77800.54700.025*
H9B0.06630.66050.49190.025*
C100.03863 (15)0.61574 (11)0.65499 (10)0.0215 (3)
H10A0.14870.60430.69040.026*
H10B0.04290.53440.64790.026*
O110.00290 (10)0.66990 (7)0.72305 (6)0.02062 (19)
C120.04284 (15)0.61758 (12)0.83951 (9)0.0228 (3)
H12A0.00260.52710.85090.027*
H12B0.16450.64290.86510.027*
C130.02910 (15)0.65877 (12)0.90752 (10)0.0236 (3)
H13A0.02660.74530.87570.028*
H13B0.03680.65290.98600.028*
O140.19488 (10)0.58292 (8)0.90553 (7)0.0235 (2)
C150.26383 (16)0.59898 (12)0.98450 (10)0.0256 (3)
H15A0.35440.52381.00250.031*
H15B0.17820.60971.05480.031*
C160.32977 (16)0.70713 (12)0.94297 (10)0.0254 (3)
H16A0.24250.78260.92040.031*
H16B0.36610.71861.00350.031*
O170.46530 (10)0.68442 (8)0.84922 (7)0.0226 (2)
C180.50076 (16)0.79286 (12)0.77925 (10)0.0247 (3)
H18A0.60990.76980.72720.030*
H18B0.50700.84210.82670.030*
C190.37289 (16)0.87074 (11)0.71125 (10)0.0235 (3)
H19A0.41240.93820.65750.028*
H19B0.26970.90810.76280.028*
C200.33413 (14)0.80088 (10)0.64589 (9)0.0177 (2)
H20A0.29150.73480.69960.021*
H20B0.24610.85760.60720.021*
C210.54820 (14)0.62431 (10)0.56542 (9)0.0159 (2)
O220.66849 (10)0.58351 (7)0.49363 (6)0.01991 (19)
C230.46919 (14)0.53806 (10)0.66279 (9)0.0180 (2)
H23A0.45370.56100.73450.022*
H23B0.35930.54720.65370.022*
O240.56807 (9)0.41414 (7)0.66696 (6)0.01685 (18)
C250.70820 (14)0.38705 (10)0.71013 (9)0.0184 (2)
H25A0.67410.41190.78330.022*
H25B0.78470.43190.65740.022*
C260.79233 (13)0.24948 (10)0.72452 (9)0.0166 (2)
O270.79022 (10)0.18395 (7)0.81918 (6)0.02115 (19)
C1S0.23336 (16)0.07749 (12)0.97250 (11)0.0275 (3)
H1S0.22650.00581.02850.033*
C2S0.13507 (16)0.12252 (12)0.89521 (10)0.0258 (3)
H2S0.05910.08240.89890.031*
C3S0.14782 (15)0.22620 (12)0.81243 (10)0.0253 (3)
H3S0.08090.25660.75930.030*
C4S0.25741 (15)0.28561 (12)0.80677 (10)0.0252 (3)
H4S0.26650.35600.74950.030*
C5S0.35382 (15)0.24199 (12)0.88490 (11)0.0257 (3)
H5S0.42790.28330.88200.031*
C6S0.34207 (16)0.13823 (12)0.96721 (11)0.0273 (3)
H6S0.40870.10831.02040.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0211 (5)0.0133 (5)0.0153 (4)0.0056 (4)0.0043 (4)0.0019 (4)
C20.0237 (6)0.0147 (5)0.0178 (5)0.0080 (5)0.0051 (4)0.0009 (4)
C30.0229 (6)0.0154 (5)0.0176 (5)0.0050 (5)0.0048 (4)0.0034 (4)
O40.0265 (4)0.0169 (4)0.0188 (4)0.0007 (3)0.0096 (3)0.0049 (3)
C50.0309 (7)0.0144 (6)0.0202 (6)0.0014 (5)0.0122 (5)0.0013 (4)
C60.0238 (6)0.0173 (6)0.0207 (6)0.0020 (5)0.0092 (5)0.0054 (5)
N70.0191 (5)0.0153 (5)0.0165 (5)0.0014 (4)0.0066 (4)0.0027 (4)
C80.0190 (6)0.0196 (6)0.0149 (5)0.0045 (5)0.0059 (4)0.0030 (4)
C90.0199 (6)0.0238 (6)0.0203 (6)0.0058 (5)0.0070 (5)0.0056 (5)
C100.0228 (6)0.0219 (6)0.0224 (6)0.0096 (5)0.0046 (5)0.0053 (5)
O110.0266 (4)0.0225 (4)0.0148 (4)0.0122 (4)0.0041 (3)0.0017 (3)
C120.0212 (6)0.0262 (6)0.0169 (6)0.0085 (5)0.0020 (4)0.0006 (5)
C130.0221 (6)0.0262 (6)0.0168 (5)0.0020 (5)0.0028 (5)0.0047 (5)
O140.0207 (4)0.0255 (5)0.0236 (4)0.0031 (4)0.0064 (3)0.0075 (4)
C150.0279 (7)0.0303 (7)0.0184 (6)0.0102 (5)0.0079 (5)0.0005 (5)
C160.0303 (7)0.0304 (7)0.0164 (6)0.0111 (5)0.0030 (5)0.0062 (5)
O170.0236 (4)0.0240 (5)0.0183 (4)0.0061 (4)0.0051 (3)0.0026 (3)
C180.0294 (7)0.0307 (7)0.0198 (6)0.0161 (5)0.0047 (5)0.0056 (5)
C190.0367 (7)0.0159 (6)0.0181 (6)0.0090 (5)0.0057 (5)0.0034 (4)
C200.0205 (6)0.0139 (5)0.0165 (5)0.0020 (4)0.0050 (4)0.0031 (4)
C210.0190 (6)0.0151 (5)0.0154 (5)0.0044 (4)0.0071 (4)0.0031 (4)
O220.0209 (4)0.0173 (4)0.0186 (4)0.0047 (3)0.0017 (3)0.0038 (3)
C230.0179 (6)0.0128 (5)0.0200 (5)0.0026 (4)0.0027 (4)0.0032 (4)
O240.0179 (4)0.0119 (4)0.0206 (4)0.0031 (3)0.0066 (3)0.0027 (3)
C250.0217 (6)0.0172 (6)0.0181 (5)0.0054 (5)0.0076 (4)0.0039 (4)
C260.0160 (5)0.0174 (6)0.0185 (5)0.0051 (4)0.0074 (4)0.0028 (4)
O270.0256 (4)0.0196 (4)0.0169 (4)0.0050 (3)0.0081 (3)0.0009 (3)
C1S0.0335 (7)0.0196 (6)0.0252 (6)0.0047 (5)0.0063 (5)0.0032 (5)
C2S0.0256 (6)0.0269 (7)0.0273 (6)0.0102 (5)0.0033 (5)0.0092 (5)
C3S0.0212 (6)0.0309 (7)0.0215 (6)0.0039 (5)0.0061 (5)0.0060 (5)
C4S0.0230 (6)0.0242 (6)0.0227 (6)0.0059 (5)0.0008 (5)0.0029 (5)
C5S0.0193 (6)0.0302 (7)0.0291 (6)0.0077 (5)0.0013 (5)0.0125 (5)
C6S0.0246 (6)0.0299 (7)0.0256 (6)0.0006 (5)0.0104 (5)0.0096 (5)
Geometric parameters (Å, º) top
N1—C211.3606 (15)C15—H15B0.9900
N1—C21.4639 (14)C16—O171.4245 (14)
N1—C201.4702 (14)C16—H16A0.9900
C2—C31.5137 (15)C16—H16B0.9900
C2—H2A0.9900O17—C181.4240 (14)
C2—H2B0.9900C18—C191.5163 (18)
C3—O41.4347 (14)C18—H18A0.9900
C3—H3A0.9900C18—H18B0.9900
C3—H3B0.9900C19—C201.5281 (16)
O4—C51.4344 (14)C19—H19A0.9900
C5—C61.5196 (18)C19—H19B0.9900
C5—H5A0.9900C20—H20A0.9900
C5—H5B0.9900C20—H20B0.9900
C6—N71.4677 (15)C21—O221.2272 (14)
C6—H6A0.9900C21—C231.5314 (15)
C6—H6B0.9900C23—O241.4178 (13)
N7—C26i1.3473 (15)C23—H23A0.9900
N7—C81.4695 (14)C23—H23B0.9900
C8—C91.5254 (16)O24—C251.4202 (13)
C8—H8A0.9900C25—C261.5216 (16)
C8—H8B0.9900C25—H25A0.9900
C9—C101.5153 (16)C25—H25B0.9900
C9—H9A0.9900C26—O271.2321 (14)
C9—H9B0.9900C26—N7i1.3473 (15)
C10—O111.4270 (14)C1S—C2S1.3879 (18)
C10—H10A0.9900C1S—C6S1.3910 (19)
C10—H10B0.9900C1S—H1S0.9500
O11—C121.4271 (13)C2S—C3S1.3884 (18)
C12—C131.5030 (17)C2S—H2S0.9500
C12—H12A0.9900C3S—C4S1.3842 (19)
C12—H12B0.9900C3S—H3S0.9500
C13—O141.4257 (15)C4S—C5S1.3856 (18)
C13—H13A0.9900C4S—H4S0.9500
C13—H13B0.9900C5S—C6S1.3848 (19)
O14—C151.4269 (14)C5S—H5S0.9500
C15—C161.5066 (18)C6S—H6S0.9500
C15—H15A0.9900
C21—N1—C2117.64 (9)O14—C15—H15B108.9
C21—N1—C20124.81 (9)C16—C15—H15B108.9
C2—N1—C20117.31 (9)H15A—C15—H15B107.7
N1—C2—C3113.65 (9)O17—C16—C15108.46 (10)
N1—C2—H2A108.8O17—C16—H16A110.0
C3—C2—H2A108.8C15—C16—H16A110.0
N1—C2—H2B108.8O17—C16—H16B110.0
C3—C2—H2B108.8C15—C16—H16B110.0
H2A—C2—H2B107.7H16A—C16—H16B108.4
O4—C3—C2109.78 (9)C18—O17—C16113.39 (9)
O4—C3—H3A109.7O17—C18—C19112.94 (10)
C2—C3—H3A109.7O17—C18—H18A109.0
O4—C3—H3B109.7C19—C18—H18A109.0
C2—C3—H3B109.7O17—C18—H18B109.0
H3A—C3—H3B108.2C19—C18—H18B109.0
C5—O4—C3112.59 (8)H18A—C18—H18B107.8
O4—C5—C6112.06 (9)C18—C19—C20114.43 (10)
O4—C5—H5A109.2C18—C19—H19A108.7
C6—C5—H5A109.2C20—C19—H19A108.7
O4—C5—H5B109.2C18—C19—H19B108.7
C6—C5—H5B109.2C20—C19—H19B108.7
H5A—C5—H5B107.9H19A—C19—H19B107.6
N7—C6—C5113.36 (10)N1—C20—C19113.30 (10)
N7—C6—H6A108.9N1—C20—H20A108.9
C5—C6—H6A108.9C19—C20—H20A108.9
N7—C6—H6B108.9N1—C20—H20B108.9
C5—C6—H6B108.9C19—C20—H20B108.9
H6A—C6—H6B107.7H20A—C20—H20B107.7
C26i—N7—C6117.95 (9)O22—C21—N1122.34 (10)
C26i—N7—C8124.07 (9)O22—C21—C23120.75 (10)
C6—N7—C8117.93 (9)N1—C21—C23116.91 (9)
N7—C8—C9112.88 (9)O24—C23—C21111.41 (9)
N7—C8—H8A109.0O24—C23—H23A109.3
C9—C8—H8A109.0C21—C23—H23A109.3
N7—C8—H8B109.0O24—C23—H23B109.3
C9—C8—H8B109.0C21—C23—H23B109.3
H8A—C8—H8B107.8H23A—C23—H23B108.0
C10—C9—C8111.23 (9)C23—O24—C25112.15 (8)
C10—C9—H9A109.4O24—C25—C26107.45 (9)
C8—C9—H9A109.4O24—C25—H25A110.2
C10—C9—H9B109.4C26—C25—H25A110.2
C8—C9—H9B109.4O24—C25—H25B110.2
H9A—C9—H9B108.0C26—C25—H25B110.2
O11—C10—C9109.22 (9)H25A—C25—H25B108.5
O11—C10—H10A109.8O27—C26—N7i122.37 (10)
C9—C10—H10A109.8O27—C26—C25120.34 (10)
O11—C10—H10B109.8N7i—C26—C25117.29 (10)
C9—C10—H10B109.8C2S—C1S—C6S119.43 (12)
H10A—C10—H10B108.3C2S—C1S—H1S120.3
C10—O11—C12111.42 (9)C6S—C1S—H1S120.3
O11—C12—C13110.40 (10)C1S—C2S—C3S119.94 (12)
O11—C12—H12A109.6C1S—C2S—H2S120.0
C13—C12—H12A109.6C3S—C2S—H2S120.0
O11—C12—H12B109.6C4S—C3S—C2S120.43 (12)
C13—C12—H12B109.6C4S—C3S—H3S119.8
H12A—C12—H12B108.1C2S—C3S—H3S119.8
O14—C13—C12109.13 (10)C3S—C4S—C5S119.77 (12)
O14—C13—H13A109.9C3S—C4S—H4S120.1
C12—C13—H13A109.9C5S—C4S—H4S120.1
O14—C13—H13B109.9C6S—C5S—C4S119.96 (12)
C12—C13—H13B109.9C6S—C5S—H5S120.0
H13A—C13—H13B108.3C4S—C5S—H5S120.0
C13—O14—C15113.38 (9)C5S—C6S—C1S120.47 (12)
O14—C15—C16113.48 (10)C5S—C6S—H6S119.8
O14—C15—H15A108.9C1S—C6S—H6S119.8
C16—C15—H15A108.9
C21—N1—C2—C392.67 (12)O17—C18—C19—C2050.94 (14)
C20—N1—C2—C381.95 (12)C21—N1—C20—C19115.78 (12)
N1—C2—C3—O473.21 (12)C2—N1—C20—C1970.02 (12)
C2—C3—O4—C5178.20 (9)C18—C19—C20—N161.35 (13)
C3—O4—C5—C6100.21 (11)C2—N1—C21—O226.07 (15)
O4—C5—C6—N759.09 (13)C20—N1—C21—O22179.75 (10)
C5—C6—N7—C26i75.20 (13)C2—N1—C21—C23173.17 (9)
C5—C6—N7—C8102.34 (11)C20—N1—C21—C231.00 (15)
C26i—N7—C8—C9102.18 (12)O22—C21—C23—O2410.07 (15)
C6—N7—C8—C980.43 (12)N1—C21—C23—O24170.67 (9)
N7—C8—C9—C10177.10 (9)C21—C23—O24—C2575.22 (11)
C8—C9—C10—O1157.98 (13)C23—O24—C25—C26172.99 (8)
C9—C10—O11—C12162.03 (9)O24—C25—C26—O27110.47 (11)
C10—O11—C12—C13169.66 (10)O24—C25—C26—N7i68.94 (12)
O11—C12—C13—O1483.13 (12)C6S—C1S—C2S—C3S1.05 (19)
C12—C13—O14—C15168.70 (9)C1S—C2S—C3S—C4S0.38 (19)
C13—O14—C15—C1682.55 (13)C2S—C3S—C4S—C5S0.64 (18)
O14—C15—C16—O1765.05 (13)C3S—C4S—C5S—C6S0.98 (18)
C15—C16—O17—C18159.12 (10)C4S—C5S—C6S—C1S0.31 (19)
C16—O17—C18—C1971.92 (12)C2S—C1S—C6S—C5S0.71 (19)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC36H64N4O14·2C6H6
Mr933.13
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.9632 (14), 11.988 (2), 12.806 (2)
α, β, γ (°)72.728 (5), 71.758 (5), 68.443 (6)
V3)1189.4 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.41 × 0.37 × 0.30
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.954, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
9363, 4603, 4198
Rint0.018
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.089, 1.00
No. of reflections4603
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.21

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Oklahoma Center for the Advancement of Science and Technology (grant HR06–113). The authors also thank the National Science Foundation (CHE-0130835) and the University of Oklahoma for funds to acquire the diffractometer and computers used in this work.

References

First citationBencini, A., Bianchi, A., Ciampolini, M., Dapporto, P., Fusi, V., Micheloni, M., Nardi, N., Paoli, P. & Valtancoli, B. (1992). J. Chem. Soc. Dalton Trans. pp. 2049–2054.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheetham, G. M. T. & Harding, M. M. (1991). Acta Cryst. C47, 2478–2479.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCheney, J., Kintzinger, J. P. & Lehn, J. M. (1978). Nouv. J. Chim. 2, 411–418.  CAS Google Scholar
First citationDietrich, B., Lehn, J. M., Sauvage, J. P. & Blanzat, J. (1973). Tetrahedron, 29, 1629–1645.  CrossRef CAS Web of Science Google Scholar
First citationFischer, J., Mellinger, M. & Weiss, R. (1977). Inorg. Chim. Acta, 21, 259–263.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroth, P. (1986). Acta Chem. Scand. Ser. A, 40, 154–156.  CrossRef Web of Science Google Scholar
First citationKrakowiak, K. E., Bradshaw, J. S., Kou, X. & Dalley, N. K. (1995). J. Heterocycl. Chem. 32, 931–935.  CrossRef CAS Google Scholar
First citationLehn, J. M. (1973). Struct. Bond. 16, 1–69.  CrossRef CAS Google Scholar
First citationLehn, J. M. (1988). Angew. Chem. Int. Ed. Engl. 27, 89–112.  CrossRef Web of Science Google Scholar
First citationLehn, J. M., Simon, J. & Wagner, J. (1977). Nouv. J. Chim. 1, 77–84.  CAS Google Scholar
First citationPascard, C., Riche, C., Cesario, M., Kotzyba-Hibert, F. & Lehn, J. M. (1982). J. Chem. Soc. Chem. Commun. pp. 557–560.  CrossRef Web of Science Google Scholar
First citationPlenio, H. & Diodone, R. (1995). J. Organomet. Chem. 492, 73–80.  CSD CrossRef CAS Web of Science Google Scholar
First citationRebizant, J., Spirlet, M. R., Barthelemy, P. & Desreux, J. F. (1984). Acta Cryst. C40, 484–486.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. L. N., Rocher, N. M., Powell, D. R. & Taylor, R. W. (2007). Acta Cryst. E63, o1253–o1255.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWiest, R. & Weiss, R. (1973). J. Chem. Soc. Chem. Commun. pp. 678–679.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds