metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-fluoro­benzoato-κO)bis­­(pyridin-2-amine-κN1)zinc(II)

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: cep02chl@yahoo.com.cn

(Received 3 July 2009; accepted 15 July 2009; online 18 July 2009)

In the title compound, [Zn(C7H4FO2)2(C5H6N2)2] or [Zn(fa)2(2-pa)2] (Hfa is 2-fluoro­benzoic acid and 2-pa = pyridin-2-amine), the asymmetric unit contains one ZnII cation, two fa ligands and two 2-pa ligands, wherein the ZnII displays a distorted tetra­hedral geometry, being surrounded by two monodentate fa ligands with Zn—O distances of 1.962 (2) and 1.976 (3) Å, and by two 2-pa ligands with distances involving pyridyl N atoms of 2.069 (2) and 2.056 (2) Å. The F atoms of the fa ligands are equally disordered over two sites, viz. the 2- and 6-positions of fa. The mononuclear complex mol­ecules are joined by N—H⋯O and N—H⋯F hydrogen bonds into a two-dimensional layer, which is further constructed into a three-dimensional supra­molecular network by weak C—H⋯F inter­actions and effective ππ stacking [centroid-centroid separation of 3.74 (3) Å] between the inter­layer aromatic rings and adjacent heterocycles.

Related literature

For related structures, see: Darensbourg et al. (2002[Darensbourg, D. J., Wildeson, J. R. & Yarbrough, J. C. (2002). Inorg. Chem. 41, 973-980.]). For crystal engineering, see: Fyfe & Stoddart (1997[Fyfe, M. C. T. & Stoddart, J. F. (1997). Acc. Chem. Res. 30, 393-401.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H4FO2)2(C5H6N2)2]

  • Mr = 531.83

  • Monoclinic, P 21 /c

  • a = 9.1259 (7) Å

  • b = 11.1020 (9) Å

  • c = 24.5707 (17) Å

  • β = 108.048 (2)°

  • V = 2366.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.772, Tmax = 0.828

  • 13150 measured reflections

  • 4645 independent reflections

  • 3838 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.131

  • S = 1.04

  • 4645 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3 0.86 2.06 2.881 (3) 159
N2—H2B⋯O1i 0.86 2.03 2.864 (3) 162
N4—H4B⋯O2 0.86 2.02 2.838 (4) 159
N4—H4C⋯O4ii 0.86 2.03 2.884 (4) 175
N4—H4B⋯F2 0.86 2.52 3.143 (5) 130
C5—H5A⋯F4iii 0.93 2.34 3.147 (6) 144
C20—H20A⋯F3iv 0.93 2.47 3.244 (10) 141
Symmetry codes: (i) -x+2, -y, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, coordination compounds of d10 monovalent ions of the coinage metals have attracted much attention because of their interesting photophysical properties. In order to construct many novel and interesting metal-organic frameworks carboxylates have been used widely. Moreovere, supramolecular interactions such as hydrogen bonding and ππ stacking interactions have important effects on crystal engineering (Fyfe & Stoddart, 1997). In this paper, we present the synthesis and crystal structural of a new coordination compound of d10 monovalent ion Zn(fa)2(2-pa)2 (Hfa = 2-fluorobenzoic acid; 2-pa = pyridin-2-amine), (I).

The asymmetric unit of the title compound, contains a ZnII cation, two fa and two 2-pa ligands (Fig. 1). The ZnII ion in (I) is surrounded by two monodentate fa ligands with Zn—O coordinating distances 1.962 (2) and 1.976 (3) Å and two 2-pa ligands with distances involving pyridyl N atoms and Zn being 2.069 (2) and 2.056 (2) Å; the ZnII displays a distorted tetrahedral geometry with angles around Zn in the range 101.17 (10) - 137.12 (10)°. The other O-atoms of the fa ligands are at significantly longer distances from the ZnII ion (Zn1—O4 2.551 (3) and Zn1—O1 (2.781 (3)Å). The mononuclear complex (I) is joined into a two-dimensional layer by N—H···O type hydrogen-bonds; details have been provided in Table 1. The layers are further constructed in to a three-dimensional supramolecular network by rather weak C—H···F type interactions (C5···F4c 3.158 (2) and C20···F3d 3.256 (3) Å; symmetry codes: c, 1 - x, 1/2 + y, 1/2 - z and d, -x, -y, 1 - z) and effective ππ stacking between the interlayer adjacent benzene rings and pyridyl rings with the centroid-centroid separation of 3.74 (3) Å. The F atoms of fa ligands in (I) are disordered over two sites, the 2- and 6-position of fa with equal site occupancy factors.

The crystal structures of a few ZnII benzoate complexes have been reported by Darensbourg et al., (2002).

Related literature top

For related structures, see: Darensbourg et al. (2002). For crystal engineering, see: Fyfe & Stoddart (1997).

Experimental top

A mixture of 2-fluorobenzoic acid (0.0280 g, 0.2 mmol), pyridin-2-amine(0.0188 g, 0.2 mmol), ZnSO4.7H2O (0.0285 g, 0.1 mmol) and H2O (8 ml) was heated in a 15-ml Teflon-lined autoclave at 393 K for 5 days, followed by slow cooling (5 ° h-1) to room temperature. The resulting mixture was washed with water, and colorless block crystals were collected and dried in air [yield, 62% (32.4 mg) based on ZnII].

Refinement top

All the H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and N—H = 0.86 Å with Uiso(H) = 1.2Uiso(C/N). The site occupancy factors of all F-atoms are given as 0.5 because of disordered position over two sites, the 2- and 6-position of fa.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with 15% thermal ellipsoids.
[Figure 2] Fig. 2. The three-dimensional supramolecular network of the title compound.
Bis(2-fluorobenzoato-κO)bis(pyridin-2-amine-κN1)zinc(II) top
Crystal data top
[Zn(C7H4FO2)2(C5H6N2)2]F(000) = 1088
Mr = 531.83Dx = 1.492 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 785 reflections
a = 9.1259 (7) Åθ = 2.4–28.0°
b = 11.1020 (9) ŵ = 1.09 mm1
c = 24.5707 (17) ÅT = 293 K
β = 108.048 (2)°Block, colorless
V = 2366.9 (3) Å30.25 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
4645 independent reflections
Radiation source: fine-focus sealed tube3838 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1011
Tmin = 0.772, Tmax = 0.828k = 1311
13150 measured reflectionsl = 3026
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.077P)2 + 0.6445P]
where P = (Fo2 + 2Fc2)/3
4645 reflections(Δ/σ)max = 0.001
334 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Zn(C7H4FO2)2(C5H6N2)2]V = 2366.9 (3) Å3
Mr = 531.83Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1259 (7) ŵ = 1.09 mm1
b = 11.1020 (9) ÅT = 293 K
c = 24.5707 (17) Å0.25 × 0.20 × 0.18 mm
β = 108.048 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4645 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
3838 reflections with I > 2σ(I)
Tmin = 0.772, Tmax = 0.828Rint = 0.016
13150 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.04Δρmax = 0.50 e Å3
4645 reflectionsΔρmin = 0.28 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.69105 (4)0.07190 (3)0.378555 (11)0.06568 (15)
O10.9562 (3)0.0314 (3)0.36588 (9)0.1045 (8)
O20.7767 (3)0.0875 (2)0.31487 (9)0.0835 (6)
O30.6376 (3)0.06015 (18)0.42292 (10)0.0884 (7)
O40.5834 (4)0.1323 (3)0.33750 (11)0.1169 (9)
N10.8367 (2)0.1820 (2)0.43970 (9)0.0634 (5)
N20.8527 (3)0.0615 (2)0.51811 (10)0.0716 (6)
H2A0.78110.01650.49670.086*
H2B0.89280.04470.55380.086*
N30.4880 (2)0.1672 (2)0.35345 (9)0.0638 (5)
N40.5189 (4)0.2413 (3)0.27024 (11)0.0985 (9)
H4B0.60700.20600.27860.118*
H4C0.48600.28260.23920.118*
C10.9007 (3)0.0286 (3)0.32286 (11)0.0658 (6)
C20.9760 (3)0.0354 (3)0.27689 (12)0.0663 (7)
C31.1117 (4)0.0251 (3)0.28201 (18)0.0943 (10)
H3A1.15580.07180.31440.113*0.50
F11.1788 (7)0.0903 (6)0.3380 (3)0.155 (2)0.50
C41.1843 (5)0.0177 (5)0.2398 (3)0.1265 (18)
H4A1.27530.05940.24350.152*
C51.1190 (7)0.0514 (6)0.1936 (3)0.136 (2)
H5A1.16730.05750.16550.163*
C60.9885 (6)0.1112 (5)0.18654 (18)0.1150 (14)
H6A0.94610.15730.15380.138*
C70.9163 (4)0.1044 (3)0.22799 (13)0.0822 (9)
H7A0.82550.14710.22310.099*0.50
F20.7836 (4)0.1724 (4)0.21912 (14)0.0941 (11)0.50
C80.5867 (3)0.1415 (3)0.38668 (13)0.0768 (8)
C90.5172 (3)0.2517 (3)0.40796 (12)0.0707 (7)
C100.4409 (5)0.2449 (4)0.44744 (17)0.1011 (11)
H10A0.43570.17080.46440.121*0.50
F30.4654 (14)0.1351 (9)0.4726 (4)0.224 (4)0.50
C110.3718 (6)0.3414 (5)0.4633 (2)0.1287 (17)
H11A0.32020.33200.49020.154*
C120.3779 (5)0.4498 (5)0.4402 (2)0.1193 (15)
H12A0.32880.51540.45050.143*
C130.4567 (5)0.4637 (4)0.4015 (2)0.1106 (13)
H13A0.46550.53900.38620.133*
C140.5223 (4)0.3637 (3)0.38576 (17)0.0946 (10)
H14A0.57300.37280.35850.114*0.50
F40.6067 (6)0.3817 (4)0.3530 (2)0.1135 (15)0.50
C150.8819 (4)0.2827 (3)0.41838 (13)0.0803 (8)
H15A0.83460.30020.37990.096*
C160.9906 (4)0.3591 (3)0.44900 (17)0.0921 (9)
H16A1.01790.42720.43230.111*
C171.0612 (4)0.3324 (3)0.50709 (16)0.0888 (9)
H17A1.13770.38270.52960.107*
C181.0180 (3)0.2340 (3)0.53020 (13)0.0768 (8)
H18A1.06440.21620.56870.092*
C190.9016 (3)0.1578 (2)0.49576 (10)0.0606 (6)
C200.4016 (4)0.1603 (3)0.38926 (13)0.0765 (7)
H20A0.43840.11410.42230.092*
C210.2633 (4)0.2177 (3)0.37954 (17)0.0867 (9)
H21A0.20800.21200.40550.104*
C220.2084 (4)0.2842 (3)0.32992 (18)0.0908 (10)
H22A0.11430.32380.32180.109*
C230.2914 (4)0.2918 (3)0.29318 (14)0.0833 (9)
H23A0.25410.33660.25980.100*
C240.4341 (3)0.2322 (2)0.30510 (12)0.0692 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0722 (2)0.0778 (2)0.04154 (19)0.01443 (14)0.00970 (14)0.00021 (12)
O10.1209 (19)0.1082 (17)0.0622 (13)0.0016 (15)0.0042 (12)0.0207 (12)
O20.0868 (14)0.1085 (16)0.0585 (11)0.0235 (12)0.0275 (10)0.0056 (10)
O30.1029 (16)0.0703 (13)0.0712 (13)0.0056 (10)0.0036 (12)0.0099 (9)
O40.143 (2)0.129 (2)0.0806 (17)0.0444 (19)0.0377 (16)0.0251 (16)
N10.0669 (12)0.0705 (13)0.0498 (11)0.0109 (10)0.0136 (9)0.0004 (9)
N20.0803 (15)0.0780 (15)0.0471 (11)0.0004 (11)0.0059 (11)0.0008 (10)
N30.0636 (12)0.0679 (13)0.0518 (11)0.0068 (10)0.0061 (9)0.0010 (9)
N40.0970 (19)0.125 (2)0.0697 (16)0.0311 (17)0.0199 (14)0.0357 (16)
C10.0700 (16)0.0686 (15)0.0487 (13)0.0060 (13)0.0035 (11)0.0076 (12)
C20.0594 (14)0.0699 (15)0.0645 (15)0.0093 (12)0.0116 (12)0.0204 (13)
C30.0734 (19)0.088 (2)0.115 (3)0.0021 (17)0.0206 (19)0.031 (2)
F10.119 (4)0.137 (5)0.195 (7)0.042 (3)0.026 (4)0.008 (4)
C40.077 (2)0.139 (4)0.174 (5)0.014 (3)0.054 (3)0.070 (4)
C50.120 (4)0.180 (6)0.133 (4)0.058 (4)0.074 (4)0.066 (4)
C60.110 (3)0.167 (4)0.078 (2)0.039 (3)0.043 (2)0.016 (3)
C70.0791 (19)0.108 (2)0.0595 (16)0.0155 (17)0.0223 (14)0.0096 (16)
F20.085 (2)0.134 (3)0.0648 (19)0.030 (2)0.0249 (17)0.040 (2)
C80.0685 (16)0.0784 (19)0.0685 (17)0.0052 (14)0.0005 (13)0.0200 (15)
C90.0593 (14)0.0695 (17)0.0711 (16)0.0056 (12)0.0024 (12)0.0139 (13)
C100.131 (3)0.086 (2)0.091 (2)0.030 (2)0.042 (2)0.0014 (19)
F30.339 (13)0.194 (8)0.187 (7)0.059 (8)0.150 (8)0.001 (6)
C110.136 (4)0.135 (4)0.136 (4)0.039 (3)0.073 (3)0.033 (3)
C120.094 (3)0.118 (4)0.144 (4)0.003 (2)0.035 (3)0.021 (3)
C130.113 (3)0.076 (2)0.129 (3)0.018 (2)0.017 (3)0.025 (2)
C140.089 (2)0.089 (2)0.102 (2)0.0056 (18)0.0255 (19)0.029 (2)
F40.172 (4)0.090 (3)0.121 (3)0.015 (3)0.106 (3)0.015 (2)
C150.093 (2)0.081 (2)0.0661 (17)0.0059 (16)0.0231 (15)0.0037 (15)
C160.092 (2)0.080 (2)0.106 (3)0.0051 (18)0.034 (2)0.0042 (19)
C170.0722 (18)0.080 (2)0.104 (2)0.0020 (15)0.0115 (17)0.0141 (19)
C180.0678 (16)0.0799 (19)0.0685 (16)0.0092 (14)0.0003 (13)0.0102 (14)
C190.0559 (13)0.0696 (15)0.0516 (12)0.0148 (11)0.0097 (10)0.0071 (11)
C200.0832 (19)0.0736 (18)0.0721 (17)0.0086 (14)0.0235 (15)0.0016 (14)
C210.0767 (19)0.079 (2)0.109 (3)0.0037 (16)0.0346 (18)0.0059 (18)
C220.0663 (17)0.0722 (19)0.122 (3)0.0099 (14)0.0109 (19)0.0084 (19)
C230.0765 (18)0.0679 (17)0.085 (2)0.0096 (14)0.0043 (16)0.0052 (15)
C240.0690 (15)0.0647 (15)0.0618 (15)0.0022 (12)0.0025 (12)0.0003 (12)
Geometric parameters (Å, º) top
Zn1—O21.962 (2)C7—F21.386 (5)
Zn1—O31.976 (3)C7—H7A0.9300
Zn1—N32.056 (2)C8—C91.542 (5)
Zn1—N12.069 (2)C9—C101.360 (5)
Zn1—O42.551 (3)C9—C141.365 (4)
Zn1—O12.781 (3)C10—F31.353 (10)
O1—C11.219 (3)C10—C111.359 (6)
O2—C11.268 (3)C10—H10A0.9300
O3—C81.252 (3)C11—C121.339 (7)
O4—C81.204 (4)C11—H11A0.9300
N1—C191.347 (3)C12—C131.368 (7)
N1—C151.352 (4)C12—H12A0.9300
N2—C191.340 (4)C13—C141.372 (6)
N2—H2A0.8599C13—H13A0.9300
N2—H2B0.8603C14—F41.291 (5)
N3—C241.346 (3)C14—H14A0.9300
N3—C201.353 (4)C15—C161.344 (5)
N4—C241.324 (4)C15—H15A0.9300
N4—H4B0.8601C16—C171.404 (5)
N4—H4C0.8601C16—H16A0.9300
C1—C21.495 (4)C17—C181.345 (5)
C2—C31.380 (4)C17—H17A0.9300
C2—C71.386 (5)C18—C191.416 (4)
C3—C41.395 (6)C18—H18A0.9300
C3—F11.506 (8)C20—C211.367 (4)
C3—H3A0.9300C20—H20A0.9300
C4—C51.347 (8)C21—C221.380 (5)
C4—H4A0.9300C21—H21A0.9300
C5—C61.327 (8)C22—C231.349 (5)
C5—H5A0.9300C22—H22A0.9300
C6—C71.375 (5)C23—C241.408 (4)
C6—H6A0.9300C23—H23A0.9300
O2—Zn1—O3137.12 (10)C10—C9—C14115.1 (3)
O2—Zn1—N3105.09 (9)C10—C9—C8123.6 (3)
O3—Zn1—N3101.17 (10)C14—C9—C8121.3 (3)
O2—Zn1—N1101.66 (10)F3—C10—C11127.2 (5)
O3—Zn1—N1104.50 (9)F3—C10—C9109.1 (5)
N3—Zn1—N1103.33 (8)C11—C10—C9123.1 (4)
O2—Zn1—O487.86 (9)C11—C10—H10A118.5
O3—Zn1—O455.12 (9)C9—C10—H10A118.5
N3—Zn1—O497.91 (10)C12—C11—C10120.3 (4)
N1—Zn1—O4153.41 (10)C12—C11—H11A119.9
C1—O2—Zn1112.85 (18)C10—C11—H11A119.9
C8—O3—Zn1104.1 (2)C11—C12—C13119.7 (5)
C19—N1—C15118.1 (2)C11—C12—H12A120.2
C19—N1—Zn1127.21 (19)C13—C12—H12A120.2
C15—N1—Zn1114.31 (18)C12—C13—C14118.3 (4)
C19—N2—H2A120.0C12—C13—H13A120.8
C19—N2—H2B120.0C14—C13—H13A120.8
H2A—N2—H2B120.0F4—C14—C9119.4 (4)
C24—N3—C20118.5 (2)F4—C14—C13116.6 (4)
C24—N3—Zn1126.11 (19)C9—C14—C13123.5 (4)
C20—N3—Zn1115.36 (18)C9—C14—H14A118.2
C24—N4—H4B120.0C13—C14—H14A118.2
C24—N4—H4C120.0C16—C15—N1124.5 (3)
H4B—N4—H4C120.0C16—C15—H15A117.8
O1—C1—O2121.8 (3)N1—C15—H15A117.8
O1—C1—C2121.2 (3)C15—C16—C17117.5 (3)
O2—C1—C2117.0 (2)C15—C16—H16A121.2
C3—C2—C7116.6 (3)C17—C16—H16A121.2
C3—C2—C1121.1 (3)C18—C17—C16119.9 (3)
C7—C2—C1122.3 (3)C18—C17—H17A120.1
C2—C3—C4121.6 (4)C16—C17—H17A120.1
C2—C3—F1114.6 (4)C17—C18—C19119.8 (3)
C4—C3—F1123.6 (5)C17—C18—H18A120.1
C2—C3—H3A119.2C19—C18—H18A120.1
C4—C3—H3A119.2N2—C19—N1118.8 (2)
C5—C4—C3118.2 (4)N2—C19—C18121.0 (2)
C5—C4—H4A120.9N1—C19—C18120.2 (3)
C3—C4—H4A120.9N3—C20—C21123.5 (3)
C6—C5—C4122.7 (5)N3—C20—H20A118.2
C6—C5—H5A118.7C21—C20—H20A118.2
C4—C5—H5A118.7C20—C21—C22117.8 (3)
C5—C6—C7119.5 (5)C20—C21—H21A121.1
C5—C6—H6A120.3C22—C21—H21A121.1
C7—C6—H6A120.3C23—C22—C21120.0 (3)
C6—C7—F2116.7 (4)C23—C22—H22A120.0
C6—C7—C2121.5 (4)C21—C22—H22A120.0
F2—C7—C2121.8 (3)C22—C23—C24120.4 (3)
C6—C7—H7A119.3C22—C23—H23A119.8
C2—C7—H7A119.3C24—C23—H23A119.8
O4—C8—O3122.8 (3)N4—C24—N3119.0 (3)
O4—C8—C9121.5 (3)N4—C24—C23121.2 (3)
O3—C8—C9115.6 (3)N3—C24—C23119.8 (3)
O3—Zn1—O2—C151.4 (3)C3—C2—C7—F2177.7 (3)
N3—Zn1—O2—C1177.2 (2)C1—C2—C7—F20.7 (5)
N1—Zn1—O2—C175.3 (2)Zn1—O4—C8—O32.2 (3)
O4—Zn1—O2—C179.6 (2)Zn1—O4—C8—C9173.4 (3)
O2—Zn1—O3—C836.5 (3)Zn1—O3—C8—O42.9 (4)
N3—Zn1—O3—C890.5 (2)Zn1—O3—C8—C9173.00 (19)
N1—Zn1—O3—C8162.39 (19)O4—C8—C9—C10142.4 (4)
O4—Zn1—O3—C81.38 (19)O3—C8—C9—C1033.5 (4)
O2—Zn1—O4—C8158.3 (2)O4—C8—C9—C1434.3 (5)
O3—Zn1—O4—C81.4 (2)O3—C8—C9—C14149.8 (3)
N3—Zn1—O4—C896.7 (2)C14—C9—C10—F3170.2 (6)
N1—Zn1—O4—C846.2 (3)C8—C9—C10—F312.9 (7)
O2—Zn1—N1—C19135.2 (2)C14—C9—C10—C111.1 (6)
O3—Zn1—N1—C1910.5 (2)C8—C9—C10—C11175.8 (4)
N3—Zn1—N1—C19116.0 (2)F3—C10—C11—C12169.1 (8)
O4—Zn1—N1—C1926.1 (3)C9—C10—C11—C120.6 (7)
O2—Zn1—N1—C1537.3 (2)C10—C11—C12—C131.3 (8)
O3—Zn1—N1—C15177.0 (2)C11—C12—C13—C142.6 (7)
N3—Zn1—N1—C1571.5 (2)C10—C9—C14—F4172.2 (4)
O4—Zn1—N1—C15146.4 (2)C8—C9—C14—F410.8 (6)
O2—Zn1—N3—C244.1 (2)C10—C9—C14—C130.2 (5)
O3—Zn1—N3—C24149.9 (2)C8—C9—C14—C13177.2 (3)
N1—Zn1—N3—C24102.1 (2)C12—C13—C14—F4174.2 (5)
O4—Zn1—N3—C2494.0 (2)C12—C13—C14—C92.0 (6)
O2—Zn1—N3—C20174.6 (2)C19—N1—C15—C161.8 (4)
O3—Zn1—N3—C2028.8 (2)Zn1—N1—C15—C16171.4 (3)
N1—Zn1—N3—C2079.2 (2)N1—C15—C16—C170.2 (5)
O4—Zn1—N3—C2084.7 (2)C15—C16—C17—C180.7 (5)
Zn1—O2—C1—O10.8 (4)C16—C17—C18—C190.1 (5)
Zn1—O2—C1—C2179.51 (18)C15—N1—C19—N2176.8 (2)
O1—C1—C2—C30.7 (4)Zn1—N1—C19—N210.9 (3)
O2—C1—C2—C3179.6 (3)C15—N1—C19—C182.4 (4)
O1—C1—C2—C7179.1 (3)Zn1—N1—C19—C18169.80 (19)
O2—C1—C2—C71.3 (4)C17—C18—C19—N2177.7 (3)
C7—C2—C3—C40.5 (5)C17—C18—C19—N11.6 (4)
C1—C2—C3—C4178.9 (3)C24—N3—C20—C211.2 (4)
C7—C2—C3—F1175.1 (4)Zn1—N3—C20—C21180.0 (3)
C1—C2—C3—F13.3 (5)N3—C20—C21—C221.2 (5)
C2—C3—C4—C50.5 (6)C20—C21—C22—C230.6 (5)
F1—C3—C4—C5174.7 (5)C21—C22—C23—C240.1 (5)
C3—C4—C5—C60.7 (8)C20—N3—C24—N4178.8 (3)
C4—C5—C6—C70.8 (8)Zn1—N3—C24—N42.5 (4)
C5—C6—C7—F2177.7 (4)C20—N3—C24—C230.5 (4)
C5—C6—C7—C20.7 (6)Zn1—N3—C24—C23179.2 (2)
C3—C2—C7—C60.5 (5)C22—C23—C24—N4178.2 (3)
C1—C2—C7—C6178.9 (3)C22—C23—C24—N30.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.862.062.881 (3)159
N2—H2B···O1i0.862.032.864 (3)162
N4—H4B···O20.862.022.838 (4)159
N4—H4B···F20.862.523.143 (5)130
N4—H4C···O4ii0.862.032.884 (4)175
C5—H5A···F4iii0.932.343.147 (6)144
C20—H20A···F3iv0.932.473.244 (10)141
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y1/2, z+1/2; (iii) x+2, y1/2, z+1/2; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C7H4FO2)2(C5H6N2)2]
Mr531.83
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.1259 (7), 11.1020 (9), 24.5707 (17)
β (°) 108.048 (2)
V3)2366.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.772, 0.828
No. of measured, independent and
observed [I > 2σ(I)] reflections
13150, 4645, 3838
Rint0.016
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.131, 1.04
No. of reflections4645
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.28

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.862.062.881 (3)159
N2—H2B···O1i0.862.032.864 (3)162
N4—H4B···O20.862.022.838 (4)159
N4—H4B···F20.862.523.143 (5)130
N4—H4C···O4ii0.862.032.884 (4)175
C5—H5A···F4iii0.932.343.147 (6)144.4
C20—H20A···F3iv0.932.473.244 (10)140.8
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y1/2, z+1/2; (iii) x+2, y1/2, z+1/2; (iv) x+1, y, z+1.
 

Acknowledgements

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDarensbourg, D. J., Wildeson, J. R. & Yarbrough, J. C. (2002). Inorg. Chem. 41, 973–980.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFyfe, M. C. T. & Stoddart, J. F. (1997). Acc. Chem. Res. 30, 393–401.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds