organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-(3-amino­phen­­oxy)phen­yl] ketone

aCollege of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China, and bCollege of Materials and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, People's Republic of China
*Correspondence e-mail: menjian@scu.edu.cn

(Received 27 June 2009; accepted 4 July 2009; online 11 July 2009)

In the mol­ecule of the title compound, C25H20N2O3, the dihedral angles formed by adjacent benzene rings are 66.75 (8), 48.37 (8) and 71.43 (9)°. In the crystal structure, centrosymmetrically related mol­ecules are linked into dimers by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the properties and synthesis of the title compound, see: Wilson et al. (1990[Wilson, D., Stengenberger, H. D. & Hergenrother, P. M. (1990). In Polyimides. New York: Chapman and Hall.]); Mehdipour-Ataei & Saidi (2008[Mehdipour-Ataei, S. & Saidi, S. (2008). Polym. Adv. Technol. 19, 889-894.]). For the applications of the title compound, see: Rao & Prabhakaran (1992[Rao, V. L. & Prabhakaran, P. V. (1992). Eur. Polym. J. 28, 363-366.]).

[Scheme 1]

Experimental

Crystal data
  • C25H20N2O3

  • Mr = 396.43

  • Triclinic, [P \overline 1]

  • a = 7.370 (3) Å

  • b = 11.856 (3) Å

  • c = 12.319 (3) Å

  • α = 101.79 (4)°

  • β = 95.10 (4)°

  • γ = 107.86 (3)°

  • V = 989.6 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 292 K

  • 0.48 × 0.42 × 0.23 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 3693 measured reflections

  • 3682 independent reflections

  • 2206 reflections with I > 2σ(I)

  • Rint = 0.006

  • 3 standard reflections every 200 reflections intensity decay: 1.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.165

  • S = 1.05

  • 3682 reflections

  • 288 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.92 (4) 2.32 (4) 3.223 (5) 164 (3)
Symmetry code: (i) -x+2, -y+2, -z+1.

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). Am. Crystallogr. Assoc. Pittsburgh Meet. Abstract PA104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Aromatic polyimides has found useful applications in aircraft technology, space vehicles, sea transport equipment and other applications due to their excellent thermal stability, good mechanical properties, low dielectric constants and intrinsic purity (Wilson et al., 1990). The title compound is an important raw material for the synthesis of aromatic polyimides, as the presence of ether and ketone groups connected by aromatic rings greatly improves the chain flexibility (Rao & Prabhakaran, 1992; Mehdipour-Ataei & Saidi, 2008). Herein, we report the synthesis and crystal structure of the title compound.

The structure of the title compound (Fig. 1) is not planar. The dihedral angle between the two central benzene rings, ring A (C7–C12) and ring B (C14–C19), is 48.37 (8)°. Ring A forms a dihedral angle of 66.75 (8)° with the C1–C6 benzene ring. The corresponding dihedral angle between ring B and the C20–C25 benzene ring is 71.43 (9)°. The plane formed by atoms C10, C14, O1 and C13, makes a dihedral angle of 22.28 (12)° and 31.23 (8)° with ring A and B, respectively. The crystal structure is stabilized by N—H···O hydrogen bonds (Table 1) linking centrosymmetrically related molecules into dimers.

Related literature top

For the properties and synthesis of the title compound, see: Wilson et al., (1990); Mehdipour-Ataei & Saidi (2008). For the applications of the title compound, see: Rao & Prabhakaran (1992). [Author: please revise scheme to show 3-amino rather than 4-amino]

Experimental top

4,4'-Difluorobenzophenone (11.0 g, 0.05 mol), m-aminophenol (22.0 g, 0.20 mol) and anhydrous potassium carbonate (14.0 g, 0.10 mol) were dissolved in a solution of toluene (60 ml) and N,N-dimethylformamide (100 ml) in a three-necked flask. The mixture was heated to reflux and water was removed by azeotropic distillation. After complete dehydration, the mixture was poured to a large excess of ice water. Then, the precipitated solid was collected by filtration and recrystallized from ethanol to obtain a tan solid (16.5 g, 76% yield, m.p.411–413 K). Red single crystals suitable for X-ray diffraction were obtained by slow evaporation at room temperature of a toluene solution.

Refinement top

H-atoms bound to nitrogen atoms were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
Bis[4-(3-aminophenoxy)phenyl] ketone top
Crystal data top
C25H20N2O3Z = 2
Mr = 396.43F(000) = 416
Triclinic, P1Dx = 1.330 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.370 (3) ÅCell parameters from 23 reflections
b = 11.856 (3) Åθ = 5.4–5.6°
c = 12.319 (3) ŵ = 0.09 mm1
α = 101.79 (4)°T = 292 K
β = 95.10 (4)°Block, red
γ = 107.86 (3)°0.48 × 0.42 × 0.23 mm
V = 989.6 (6) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.006
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 1.7°
Graphite monochromatorh = 88
ω/2θ scansk = 414
3693 measured reflectionsl = 1414
3682 independent reflections3 standard reflections every 200 reflections
2206 reflections with I > 2σ(I) intensity decay: 1.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.0943P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3682 reflectionsΔρmax = 0.23 e Å3
288 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.027 (5)
Crystal data top
C25H20N2O3γ = 107.86 (3)°
Mr = 396.43V = 989.6 (6) Å3
Triclinic, P1Z = 2
a = 7.370 (3) ÅMo Kα radiation
b = 11.856 (3) ŵ = 0.09 mm1
c = 12.319 (3) ÅT = 292 K
α = 101.79 (4)°0.48 × 0.42 × 0.23 mm
β = 95.10 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.006
3693 measured reflections3 standard reflections every 200 reflections
3682 independent reflections intensity decay: 1.5%
2206 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.165H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.23 e Å3
3682 reflectionsΔρmin = 0.24 e Å3
288 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4068 (2)0.59493 (16)0.42259 (15)0.0665 (5)
O21.2554 (2)0.95837 (18)0.55618 (15)0.0746 (6)
O30.0557 (2)0.57862 (15)0.86702 (15)0.0623 (5)
N11.7663 (5)1.3024 (3)0.7708 (4)0.0988 (11)
H1N11.729 (5)1.346 (3)0.725 (3)0.116 (15)*
H2N11.840 (5)1.333 (3)0.828 (3)0.109 (15)*
N20.3694 (6)0.6550 (4)1.1145 (3)0.1179 (13)
H1N20.378 (6)0.581 (4)1.131 (3)0.119 (14)*
H2N20.399 (8)0.712 (5)1.153 (5)0.19 (3)*
C11.6441 (3)1.1849 (2)0.7619 (2)0.0591 (7)
C21.6600 (4)1.1216 (3)0.8431 (2)0.0655 (7)
H21.75501.15810.90640.079*
C31.5354 (4)1.0050 (3)0.8303 (2)0.0631 (7)
H31.54640.96380.88590.076*
C41.3949 (3)0.9477 (2)0.7371 (2)0.0544 (6)
H41.31150.86850.72860.065*
C51.3819 (3)1.0112 (2)0.6574 (2)0.0509 (6)
C61.5030 (3)1.1280 (2)0.6682 (2)0.0558 (7)
H61.49011.16890.61260.067*
C71.0692 (3)0.8848 (2)0.5542 (2)0.0518 (6)
C80.9903 (3)0.7910 (2)0.4600 (2)0.0549 (6)
H81.06220.77890.40310.066*
C90.8035 (3)0.7150 (2)0.4507 (2)0.0517 (6)
H90.74940.65120.38690.062*
C100.6938 (3)0.73176 (19)0.53531 (19)0.0450 (6)
C110.7750 (3)0.8300 (2)0.6275 (2)0.0511 (6)
H110.70230.84440.68340.061*
C120.9628 (3)0.9070 (2)0.6377 (2)0.0543 (6)
H121.01650.97280.70000.065*
C130.4904 (3)0.6501 (2)0.5182 (2)0.0505 (6)
C140.3844 (3)0.63592 (19)0.6137 (2)0.0451 (6)
C150.1849 (3)0.61103 (19)0.5934 (2)0.0475 (6)
H150.12560.60570.52180.057*
C160.0742 (3)0.5943 (2)0.6765 (2)0.0521 (6)
H160.05850.57790.66150.063*
C170.1629 (3)0.6021 (2)0.7822 (2)0.0502 (6)
C180.3584 (3)0.6242 (2)0.8042 (2)0.0552 (6)
H180.41650.62820.87570.066*
C190.4680 (3)0.6404 (2)0.7205 (2)0.0539 (6)
H190.60000.65460.73560.065*
C200.0391 (3)0.6582 (2)0.9107 (2)0.0470 (6)
C210.1542 (3)0.6200 (2)0.9866 (2)0.0560 (6)
H210.16920.54431.00200.067*
C220.2484 (4)0.6946 (3)1.0405 (2)0.0665 (7)
C230.2239 (4)0.8067 (3)1.0155 (3)0.0705 (8)
H230.28470.85841.05140.085*
C240.1107 (4)0.8412 (2)0.9382 (2)0.0635 (7)
H240.09820.91570.92100.076*
C250.0142 (3)0.7687 (2)0.8849 (2)0.0550 (6)
H250.06470.79370.83340.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0462 (10)0.0733 (12)0.0579 (12)0.0017 (9)0.0019 (9)0.0004 (9)
O20.0424 (10)0.1008 (14)0.0539 (12)0.0116 (9)0.0015 (8)0.0184 (10)
O30.0645 (11)0.0627 (10)0.0744 (13)0.0286 (9)0.0262 (10)0.0307 (9)
N10.088 (2)0.0664 (18)0.105 (3)0.0097 (16)0.007 (2)0.0029 (18)
N20.136 (3)0.121 (3)0.142 (3)0.069 (3)0.092 (3)0.059 (3)
C10.0427 (13)0.0545 (15)0.0680 (18)0.0079 (12)0.0060 (13)0.0026 (13)
C20.0490 (15)0.0799 (19)0.0562 (17)0.0168 (14)0.0056 (13)0.0050 (14)
C30.0568 (16)0.0775 (18)0.0614 (18)0.0285 (14)0.0051 (14)0.0232 (15)
C40.0461 (13)0.0527 (14)0.0602 (16)0.0117 (11)0.0058 (12)0.0129 (12)
C50.0317 (11)0.0637 (15)0.0497 (15)0.0084 (11)0.0058 (11)0.0092 (12)
C60.0421 (13)0.0581 (15)0.0662 (17)0.0109 (12)0.0091 (12)0.0217 (13)
C70.0373 (12)0.0609 (15)0.0496 (15)0.0040 (11)0.0012 (11)0.0184 (12)
C80.0405 (13)0.0699 (16)0.0527 (16)0.0158 (12)0.0086 (11)0.0151 (13)
C90.0449 (13)0.0532 (14)0.0467 (15)0.0110 (11)0.0030 (11)0.0025 (11)
C100.0368 (12)0.0481 (13)0.0460 (14)0.0111 (10)0.0010 (10)0.0101 (11)
C110.0395 (13)0.0554 (14)0.0544 (16)0.0122 (11)0.0072 (11)0.0107 (12)
C120.0446 (14)0.0606 (15)0.0450 (14)0.0052 (11)0.0002 (11)0.0075 (11)
C130.0394 (13)0.0462 (13)0.0580 (17)0.0100 (11)0.0019 (12)0.0062 (12)
C140.0324 (11)0.0424 (12)0.0548 (15)0.0075 (9)0.0002 (10)0.0100 (11)
C150.0379 (12)0.0471 (13)0.0491 (14)0.0094 (10)0.0064 (11)0.0066 (11)
C160.0331 (12)0.0540 (14)0.0647 (17)0.0119 (10)0.0018 (12)0.0109 (12)
C170.0476 (14)0.0433 (12)0.0589 (16)0.0128 (10)0.0094 (12)0.0140 (11)
C180.0460 (14)0.0611 (15)0.0527 (16)0.0105 (11)0.0043 (12)0.0176 (12)
C190.0336 (12)0.0553 (14)0.0661 (17)0.0072 (10)0.0026 (12)0.0167 (12)
C200.0384 (12)0.0478 (13)0.0482 (14)0.0095 (10)0.0022 (11)0.0089 (11)
C210.0472 (13)0.0560 (15)0.0651 (17)0.0156 (12)0.0063 (12)0.0189 (13)
C220.0605 (17)0.0778 (19)0.0654 (19)0.0269 (15)0.0164 (14)0.0179 (15)
C230.0716 (19)0.0689 (18)0.072 (2)0.0342 (15)0.0058 (16)0.0045 (15)
C240.0725 (18)0.0523 (15)0.0602 (18)0.0216 (14)0.0049 (14)0.0076 (13)
C250.0520 (14)0.0529 (14)0.0546 (16)0.0118 (12)0.0022 (12)0.0128 (12)
Geometric parameters (Å, º) top
O1—C131.226 (3)C10—C111.384 (3)
O2—C71.377 (3)C10—C131.484 (3)
O2—C51.390 (3)C11—C121.383 (3)
O3—C171.387 (3)C11—H110.9300
O3—C201.390 (3)C12—H120.9300
N1—C11.384 (4)C13—C141.478 (3)
N1—H1N10.92 (4)C14—C191.386 (3)
N1—H2N10.79 (4)C14—C151.396 (3)
N2—C221.383 (4)C15—C161.373 (3)
N2—H1N20.93 (4)C15—H150.9300
N2—H2N20.84 (5)C16—C171.377 (3)
C1—C61.381 (4)C16—H160.9300
C1—C21.384 (4)C17—C181.374 (3)
C2—C31.373 (4)C18—C191.374 (3)
C2—H20.9300C18—H180.9300
C3—C41.375 (4)C19—H190.9300
C3—H30.9300C20—C211.370 (3)
C4—C51.368 (3)C20—C251.373 (3)
C4—H40.9300C21—C221.387 (4)
C5—C61.370 (3)C21—H210.9300
C6—H60.9300C22—C231.387 (4)
C7—C81.371 (3)C23—C241.364 (4)
C7—C121.379 (3)C23—H230.9300
C8—C91.374 (3)C24—C251.380 (4)
C8—H80.9300C24—H240.9300
C9—C101.394 (3)C25—H250.9300
C9—H90.9300
C7—O2—C5120.22 (19)C7—C12—H12120.5
C17—O3—C20119.63 (18)C11—C12—H12120.5
C1—N1—H1N1117 (2)O1—C13—C14119.2 (2)
C1—N1—H2N1115 (3)O1—C13—C10119.3 (2)
H1N1—N1—H2N1124 (4)C14—C13—C10121.5 (2)
C22—N2—H1N2118 (2)C19—C14—C15117.8 (2)
C22—N2—H2N2112 (4)C19—C14—C13124.5 (2)
H1N2—N2—H2N2127 (5)C15—C14—C13117.6 (2)
C6—C1—N1119.0 (3)C16—C15—C14121.7 (2)
C6—C1—C2118.8 (2)C16—C15—H15119.2
N1—C1—C2122.2 (3)C14—C15—H15119.2
C3—C2—C1120.1 (3)C15—C16—C17118.9 (2)
C3—C2—H2120.0C15—C16—H16120.6
C1—C2—H2120.0C17—C16—H16120.6
C2—C3—C4121.5 (3)C18—C17—C16120.8 (2)
C2—C3—H3119.2C18—C17—O3118.1 (2)
C4—C3—H3119.2C16—C17—O3121.0 (2)
C5—C4—C3117.7 (2)C19—C18—C17119.9 (2)
C5—C4—H4121.2C19—C18—H18120.0
C3—C4—H4121.2C17—C18—H18120.0
C4—C5—C6122.2 (2)C18—C19—C14120.9 (2)
C4—C5—O2122.2 (2)C18—C19—H19119.6
C6—C5—O2115.4 (2)C14—C19—H19119.6
C5—C6—C1119.8 (2)C21—C20—C25122.1 (2)
C5—C6—H6120.1C21—C20—O3114.4 (2)
C1—C6—H6120.1C25—C20—O3123.5 (2)
C8—C7—O2115.7 (2)C20—C21—C22119.7 (2)
C8—C7—C12121.3 (2)C20—C21—H21120.1
O2—C7—C12122.9 (2)C22—C21—H21120.1
C7—C8—C9119.2 (2)N2—C22—C21120.0 (3)
C7—C8—H8120.4N2—C22—C23121.2 (3)
C9—C8—H8120.4C21—C22—C23118.8 (3)
C8—C9—C10121.1 (2)C24—C23—C22120.0 (3)
C8—C9—H9119.4C24—C23—H23120.0
C10—C9—H9119.4C22—C23—H23120.0
C11—C10—C9118.4 (2)C23—C24—C25121.9 (2)
C11—C10—C13122.8 (2)C23—C24—H24119.0
C9—C10—C13118.6 (2)C25—C24—H24119.0
C12—C11—C10120.9 (2)C20—C25—C24117.4 (2)
C12—C11—H11119.5C20—C25—H25121.3
C10—C11—H11119.5C24—C25—H25121.3
C7—C12—C11119.0 (2)
C6—C1—C2—C30.7 (4)O1—C13—C14—C19147.9 (2)
N1—C1—C2—C3179.9 (3)C10—C13—C14—C1933.6 (3)
C1—C2—C3—C40.9 (4)O1—C13—C14—C1529.1 (3)
C2—C3—C4—C50.5 (4)C10—C13—C14—C15149.3 (2)
C3—C4—C5—C60.1 (4)C19—C14—C15—C161.5 (3)
C3—C4—C5—O2174.8 (2)C13—C14—C15—C16178.8 (2)
C7—O2—C5—C443.0 (3)C14—C15—C16—C170.1 (3)
C7—O2—C5—C6141.8 (2)C15—C16—C17—C181.1 (3)
C4—C5—C6—C10.2 (4)C15—C16—C17—O3176.1 (2)
O2—C5—C6—C1174.9 (2)C20—O3—C17—C18116.9 (2)
N1—C1—C6—C5179.4 (3)C20—O3—C17—C1668.0 (3)
C2—C1—C6—C50.1 (4)C16—C17—C18—C190.9 (4)
C5—O2—C7—C8147.3 (2)O3—C17—C18—C19176.0 (2)
C5—O2—C7—C1236.4 (4)C17—C18—C19—C140.6 (4)
O2—C7—C8—C9178.7 (2)C15—C14—C19—C181.8 (3)
C12—C7—C8—C92.4 (4)C13—C14—C19—C18178.8 (2)
C7—C8—C9—C100.0 (4)C17—O3—C20—C21174.4 (2)
C8—C9—C10—C112.4 (3)C17—O3—C20—C258.5 (3)
C8—C9—C10—C13177.4 (2)C25—C20—C21—C220.5 (4)
C9—C10—C11—C122.4 (3)O3—C20—C21—C22176.6 (2)
C13—C10—C11—C12177.1 (2)C20—C21—C22—N2178.0 (3)
C8—C7—C12—C112.4 (4)C20—C21—C22—C230.3 (4)
O2—C7—C12—C11178.4 (2)N2—C22—C23—C24177.0 (3)
C10—C11—C12—C70.1 (4)C21—C22—C23—C240.8 (4)
C11—C10—C13—O1154.3 (2)C22—C23—C24—C251.6 (4)
C9—C10—C13—O120.4 (3)C21—C20—C25—C240.2 (4)
C11—C10—C13—C1424.2 (3)O3—C20—C25—C24177.1 (2)
C9—C10—C13—C14161.1 (2)C23—C24—C25—C201.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.92 (4)2.32 (4)3.223 (5)164 (3)
Symmetry code: (i) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC25H20N2O3
Mr396.43
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)7.370 (3), 11.856 (3), 12.319 (3)
α, β, γ (°)101.79 (4), 95.10 (4), 107.86 (3)
V3)989.6 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.48 × 0.42 × 0.23
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3693, 3682, 2206
Rint0.006
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.165, 1.05
No. of reflections3682
No. of parameters288
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.24

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.92 (4)2.32 (4)3.223 (5)164 (3)
Symmetry code: (i) x+2, y+2, z+1.
 

Acknowledgements

The authors are grateful to the Undergraduates' Innovative Experiment Project of Sichuan University and thank Mr Zhi-Hua Mao of Sichuan University for the X-Ray data collection.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). Am. Crystallogr. Assoc. Pittsburgh Meet. Abstract PA104.  Google Scholar
First citationMehdipour-Ataei, S. & Saidi, S. (2008). Polym. Adv. Technol. 19, 889-894.  Web of Science CrossRef CAS Google Scholar
First citationRao, V. L. & Prabhakaran, P. V. (1992). Eur. Polym. J. 28, 363–366.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilson, D., Stengenberger, H. D. & Hergenrother, P. M. (1990). In Polyimides. New York: Chapman and Hall.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds