organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(2-Hydr­­oxy-3-meth­oxy­benzyl­­idene­amino)benzo­nitrile

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jczhou@seu.edu.cn

(Received 17 July 2009; accepted 23 July 2009; online 29 July 2009)

The mol­ecule of the title compound, C15H12N2O2, displays a trans configuration with respect to the C=N double bond. The dihedral angle between the two benzene rings is 30.46 (14)°. A strong intra­molecular O—H⋯O hydrogen bond stabilizes the mol­ecular structure.

Related literature

For the magnetic and biological properties of Schiff bases, see: May et al. (2004[May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145-4156.]); Weber et al. (2007[Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159-1162.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12N2O2

  • Mr = 252.27

  • Monoclinic, C c

  • a = 15.476 (5) Å

  • b = 5.9927 (19) Å

  • c = 15.413 (7) Å

  • β = 116.127 (3)°

  • V = 1283.5 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.991

  • 5235 measured reflections

  • 1470 independent reflections

  • 1808 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.124

  • S = 1.03

  • 1470 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.82 2.18 2.645 (4) 117

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base compounds have received considerable attention for many years because these compounds play important role in coordination chemistry related to magnetism (Weber, et al., 2007) and biological process (May, et al.,2004). Our group is interested in the synthesis and characterization of Schiff base ligands. Here, we report the synthesis and crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The molecule displays a trans configuration about the central C=N double bond and adopts the phenol–imine tautomeric form, with a strong intramolecular O—H···O hydrogen bond (Table 1). Bond lengths (Allen et al., 1987) and angles are within normal ranges. The dihedral angle between two benzene rings is 30.46 (14)°. The crystal packing is stabilized only by van der Waals interactions.

Related literature top

For the magnetic and biological properties of Schiff bases, see: May et al. (2004); Weber et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

3-Aminobenzonitrile (0.59 g, 5 mmol) and 2-hydroxynaphthalene-1-carbaldehyde (0.760 g, 5 mmol) were dissolved in ethanol (25 ml). The resulting mixture was heated to reflux for 5 h, then cooled to room temperature. The solid obtained product was collected by filtration. Crystals suitable for X-ray diffraction studies were obtained on slow evaporation of the solvent at room temperature.

Refinement top

All H atoms were located geometrically and treated as riding atoms, with O—H = 0.82 Å, C—H = 0.93-0.96 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C, O) for hydroxy and methyl H atoms. Due to lack of significant anomalous dispersion effects, Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.
(E)-3-(2-Hydroxy-3-methoxybenzylideneamino)benzonitrile top
Crystal data top
C15H12N2O2F(000) = 528
Mr = 252.27Dx = 1.306 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1698 reflections
a = 15.476 (5) Åθ = 3.1–27.3°
b = 5.9927 (19) ŵ = 0.09 mm1
c = 15.413 (7) ÅT = 293 K
β = 116.127 (3)°Block, yellow
V = 1283.5 (8) Å30.20 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1470 independent reflections
Radiation source: fine-focus sealed tube1808 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ and ω scansh = 2020
Absorption correction: multi-scan
(SADABS; Bruker,2000)
k = 77
Tmin = 0.973, Tmax = 0.991l = 1919
5235 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0766P)2]
where P = (Fo2 + 2Fc2)/3
1470 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H12N2O2V = 1283.5 (8) Å3
Mr = 252.27Z = 4
Monoclinic, CcMo Kα radiation
a = 15.476 (5) ŵ = 0.09 mm1
b = 5.9927 (19) ÅT = 293 K
c = 15.413 (7) Å0.20 × 0.20 × 0.10 mm
β = 116.127 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1470 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker,2000)
1808 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.991Rint = 0.022
5235 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
1470 reflectionsΔρmin = 0.21 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.49736 (19)0.0595 (4)0.27600 (18)0.0540 (6)
C20.3732 (2)0.3128 (5)0.1960 (2)0.0509 (7)
O10.37225 (17)0.2232 (4)0.27625 (16)0.0617 (6)
H1A0.33620.29590.29150.093*
C10.4293 (2)0.2203 (5)0.1547 (2)0.0516 (8)
C30.3177 (2)0.5039 (6)0.1545 (2)0.0549 (7)
C80.4899 (2)0.0288 (5)0.1971 (2)0.0538 (7)
H8A0.52440.03220.16640.065*
C60.4292 (3)0.3209 (6)0.0714 (2)0.0607 (8)
H6A0.46620.26020.04330.073*
C40.3194 (2)0.5982 (6)0.0740 (2)0.0613 (9)
H4A0.28300.72520.04680.074*
O20.26595 (18)0.5821 (4)0.20096 (17)0.0703 (7)
C90.5623 (2)0.2388 (5)0.3193 (2)0.0497 (7)
C110.5989 (2)0.5663 (5)0.4178 (2)0.0536 (8)
C100.5378 (2)0.3913 (5)0.3722 (2)0.0520 (7)
H10A0.48030.37580.37700.062*
C120.6857 (3)0.5916 (6)0.4126 (3)0.0623 (8)
H12A0.72670.70990.44340.075*
C50.3752 (2)0.5055 (7)0.0327 (2)0.0663 (9)
H5A0.37540.57090.02190.080*
C70.2045 (3)0.7693 (6)0.1576 (3)0.0754 (11)
H7A0.17160.80940.19550.113*
H7B0.24250.89330.15490.113*
H7C0.15830.73090.09340.113*
C130.7098 (3)0.4369 (6)0.3605 (2)0.0641 (9)
H13A0.76780.45130.35650.077*
C140.6495 (2)0.2616 (6)0.3144 (2)0.0583 (8)
H14A0.66700.15830.28000.070*
C150.5744 (3)0.7276 (6)0.4731 (2)0.0616 (9)
N20.5552 (3)0.8546 (6)0.5162 (3)0.0899 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0569 (15)0.0522 (14)0.0546 (13)0.0032 (12)0.0259 (11)0.0012 (11)
C20.0500 (17)0.0543 (17)0.0498 (16)0.0108 (14)0.0231 (14)0.0003 (13)
O10.0663 (14)0.0705 (14)0.0604 (12)0.0002 (11)0.0389 (11)0.0077 (11)
C10.0483 (17)0.0575 (19)0.0494 (16)0.0080 (13)0.0218 (14)0.0031 (13)
C30.0488 (18)0.0570 (19)0.0581 (18)0.0041 (15)0.0226 (14)0.0006 (15)
C80.0562 (18)0.0572 (18)0.0514 (16)0.0041 (15)0.0266 (14)0.0009 (14)
C60.0557 (18)0.076 (2)0.0547 (17)0.0003 (17)0.0283 (15)0.0140 (16)
C40.057 (2)0.059 (2)0.0614 (19)0.0009 (16)0.0197 (16)0.0090 (15)
O20.0728 (16)0.0706 (16)0.0700 (14)0.0105 (13)0.0336 (12)0.0020 (11)
C90.0571 (19)0.0498 (18)0.0434 (14)0.0009 (14)0.0234 (14)0.0012 (12)
C110.062 (2)0.0524 (18)0.0500 (16)0.0002 (14)0.0278 (15)0.0015 (12)
C100.0583 (19)0.0550 (18)0.0480 (15)0.0007 (15)0.0281 (14)0.0001 (13)
C120.061 (2)0.066 (2)0.0612 (18)0.0053 (18)0.0280 (16)0.0001 (16)
C50.063 (2)0.078 (2)0.0588 (18)0.0064 (19)0.0274 (17)0.0169 (17)
C70.067 (2)0.061 (2)0.087 (3)0.0073 (19)0.023 (2)0.0085 (19)
C130.055 (2)0.077 (2)0.0641 (19)0.0004 (18)0.0303 (17)0.0022 (17)
C140.062 (2)0.061 (2)0.0599 (18)0.0086 (16)0.0333 (17)0.0002 (14)
C150.069 (2)0.062 (2)0.0601 (18)0.0129 (16)0.0340 (17)0.0106 (16)
N20.103 (3)0.091 (2)0.097 (2)0.026 (2)0.063 (2)0.037 (2)
Geometric parameters (Å, º) top
N1—C81.284 (4)C9—C101.383 (4)
N1—C91.421 (4)C9—C141.391 (5)
C2—O11.354 (4)C11—C101.379 (4)
C2—C11.397 (4)C11—C121.389 (5)
C2—C31.405 (5)C11—C151.445 (5)
O1—H1A0.8200C10—H10A0.9300
C1—C61.418 (4)C12—C131.381 (5)
C1—C81.444 (5)C12—H12A0.9300
C3—O21.371 (4)C5—H5A0.9300
C3—C41.374 (5)C7—H7A0.9600
C8—H8A0.9300C7—H7B0.9600
C6—C51.356 (5)C7—H7C0.9600
C6—H6A0.9300C13—C141.377 (5)
C4—C51.393 (5)C13—H13A0.9300
C4—H4A0.9300C14—H14A0.9300
O2—C71.432 (4)C15—N21.134 (4)
C8—N1—C9120.4 (3)C10—C11—C15120.7 (3)
O1—C2—C1121.2 (3)C12—C11—C15118.2 (3)
O1—C2—C3119.3 (3)C9—C10—C11119.9 (3)
C1—C2—C3119.5 (3)C9—C10—H10A120.0
C2—O1—H1A109.5C11—C10—H10A120.0
C2—C1—C6119.4 (3)C13—C12—C11118.4 (3)
C2—C1—C8121.3 (3)C13—C12—H12A120.8
C6—C1—C8119.3 (3)C11—C12—H12A120.8
O2—C3—C4125.4 (3)C6—C5—C4120.7 (3)
O2—C3—C2114.9 (3)C6—C5—H5A119.7
C4—C3—C2119.7 (3)C4—C5—H5A119.7
N1—C8—C1121.7 (3)O2—C7—H7A109.5
N1—C8—H8A119.2O2—C7—H7B109.5
C1—C8—H8A119.2H7A—C7—H7B109.5
C5—C6—C1120.0 (3)O2—C7—H7C109.5
C5—C6—H6A120.0H7A—C7—H7C109.5
C1—C6—H6A120.0H7B—C7—H7C109.5
C3—C4—C5120.7 (3)C14—C13—C12121.1 (3)
C3—C4—H4A119.7C14—C13—H13A119.5
C5—C4—H4A119.7C12—C13—H13A119.5
C3—O2—C7116.4 (3)C13—C14—C9120.1 (3)
C10—C9—C14119.4 (3)C13—C14—H14A120.0
C10—C9—N1117.1 (3)C9—C14—H14A120.0
C14—C9—N1123.4 (3)N2—C15—C11179.8 (4)
C10—C11—C12121.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.822.182.645 (4)117

Experimental details

Crystal data
Chemical formulaC15H12N2O2
Mr252.27
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)15.476 (5), 5.9927 (19), 15.413 (7)
β (°) 116.127 (3)
V3)1283.5 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker,2000)
Tmin, Tmax0.973, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
5235, 1470, 1808
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.124, 1.03
No. of reflections1470
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.21

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.822.182.645 (4)116.5
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMay, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145–4156.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159–1162.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds