organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis(4-pyridylmeth­yl)piperazin-1-ium perchlorate fumaric acid hemisolvate

aLyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

(Received 29 June 2009; accepted 4 July 2009; online 11 July 2009)

In the title salt, C16H21N4+·ClO4·0.5C4H4O4, fumaric acid mol­ecules, situated across crystallographic inversion centres, are O—H⋯N hydrogen bonded to two protonated 1,4-bis­(4-pyridylmeth­yl)piperazine cations, forming trimolecular units. These construct one-dimensional supra­molecular ribbons by N—H⋯N hydrogen bonding, and further aggregate via ππ inter­actions [shortest C⋯C contact = 3.640 (1) Å] and perchlorate-mediated C—H⋯O inter­actions.

Related literature

For the preparation of bis­(4-pyridylmeth­yl)piperazine, see: Pocic et al. (2005[Pocic, D., Planeix, J.-M., Kyritsakas, N., Jouaiti, A., Abdelaziz, H. & Wais, M. (2005). CrystEngComm, 7, 624-628.]). For a cadmium fumarate coordination polymer containing bis­(4-pyridylmeth­yl)piperazine, see: Martin et al. (2009[Martin, D., Supkowski, R. M. & LaDuca, R. L. (2009). Dalton Trans. pp. 514-520.]).

[Scheme 1]

Experimental

Crystal data
  • C16H21N4+·ClO4·0.5C4H4O4

  • Mr = 426.85

  • Triclinic, [P \overline 1]

  • a = 7.7287 (9) Å

  • b = 9.6415 (11) Å

  • c = 14.3440 (17) Å

  • α = 88.691 (2)°

  • β = 83.785 (2)°

  • γ = 66.749 (2)°

  • V = 976.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 K

  • 0.41 × 0.21 × 0.13 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.908, Tmax = 0.969

  • 14571 measured reflections

  • 3593 independent reflections

  • 3178 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.092

  • S = 1.05

  • 3593 reflections

  • 268 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯N4i 0.925 (19) 1.884 (19) 2.8067 (19) 175.0 (17)
O1—H1A⋯N1ii 0.93 (2) 1.68 (2) 2.6081 (19) 178 (2)
C10—H10A⋯O3iii 0.99 2.37 3.281 (2) 153 (2)
C12—H12⋯O6iv 0.95 2.49 3.138 (3) 126 (2)
Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z; (iii) x-1, y+1, z; (iv) -x+2, -y+1, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Crystal Maker (Palmer, 2005[Palmer, D. (2005). Crystal Maker. Crystal Maker Software Ltd, Yarnton, England.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound (I) was prepared during an attempt to prepare a divalent Cd coordination polymer containing both fumarate and N,N'-di(4-pyridyl- methyl)piperazine (bpmp) ligands. The coordination polymer [Cd(fumarate)(bpmp)(H2O)2]n could only be prepared by using maleic acid, which underwent in situ cis-trans isomerization (Martin et al., 2009).

The asymmetric unit of the title compound (Fig. 1) consists of one bpmp molecule protonated at one of its piperazinyl-N atoms, one perchlorate anion, and one-half of a fumaric acid molecule situated across a crystallographic inversion centre. Hydrogen-bonding between the carboxylic acid functional groups of the fumaric acid molecules and pyridyl-N atoms within the Hbpmp+ moieties produces dicationic [(Hbpmp)2(H2fumarate)]2+ trimolecular aggregations (Fig. 2 & Table 1).

The [(Hbpmp)2(H2fumarate)]2+ units construct one-dimensional ribbon motifs (Fig. 3) by means of N—H···N hydrogen-bonding between the protonated piperazinyl-N atoms and pyridyl-N atoms. Individual ribbons aggregate into a 2-D supramolecular layer through C—H···O interactions mediated by the perchlorate anions (Table 1). Neighbouring layers stack into the 3-D crystal structure (Fig. 4) by π-π interactions between pyridyl rings. (CgCg(-x + 1,-y + 2,-z) with distance = 3.640 (1) Å).

Related literature top

For the preparation of bis(4-pyridylmethyl)piperazine, see: Pocic et al. (2005). For a cadmium fumarate coordination polymer containing bis(4-pyridylmethyl)piperazine, see: Martin et al. (2009).

Experimental top

Cadmium perchlorate hexahydrate and fumaric acid were obtained commercially. N,N'-Di(4-pyridylmethyl)piperazine (bpmp) was prepared via a published procedure (Pocic et al., 2005). Cadmium perchlorate hexahydrate (0.0175 g, 0.0562 mmol) and fumaric acid (0.0065 g, 0.056 mmol) were placed in water (1.5 ml) in a glass vial along with 1.0 M NaOH (0.2 ml). This solution was heated to 373 K to dissolve the fumaric acid. An aliquot (0.75 ml) of a 1:1 water:ethanol solution was carefully layered on top. Then 0.075 M ethanolic solution (1.5 ml) of bpmp (0.11 mmol) was carefully layered on top. Colourless blocks of (I) were deposited after standing for one week at 293 K.

Refinement top

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å for sp2 hybridized C atoms and C—H = 0.99 Å for sp3 hybridized C atoms, and refined in riding mode with Uiso = 1.2Ueq(C). The H atoms bound to O and the H atoms bound to the piperazinyl-N were found via Fourier difference map, and refined with Uiso = 1.2 times the Ueq(O, N).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Crystal Maker (Palmer, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of (I), showing 50% probability ellipsoids and atom numbering scheme. Hydrogen atoms positions are marked as gray sticks. A complete fumaric acid moiety is shown. Symmetry code: i -x + 1, -y + 1, -z + 1.
[Figure 2] Fig. 2. A [(Hbpmp)2(H2fumarate)]2+ trimolecular aggregration in (I). Hydrogen bonding is shown as dashed lines.
[Figure 3] Fig. 3. A hydrogen-bonded ribbon motif consisting of [(Hbpmp)2(H2fumarate)]2+ trimolecular aggregration. Hydrogen bonding is shown as dashed lines.
[Figure 4] Fig. 4. Packing diagram for (I).
Bis[1,4-bis(4-pyridylmethyl)piperazin-1-ium] bis(perchlorate) fumaric acid solvate top
Crystal data top
C16H21N4+·ClO4·0.5C4H4O4Z = 2
Mr = 426.85F(000) = 448
Triclinic, P1Dx = 1.452 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7287 (9) ÅCell parameters from 14571 reflections
b = 9.6415 (11) Åθ = 2.3–25.4°
c = 14.3440 (17) ŵ = 0.24 mm1
α = 88.691 (2)°T = 173 K
β = 83.785 (2)°Block, colourless
γ = 66.749 (2)°0.41 × 0.21 × 0.13 mm
V = 976.0 (2) Å3
Data collection top
Bruker APEXII
diffractometer
3593 independent reflections
Radiation source: fine-focus sealed tube3178 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ωψ scansθmax = 25.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.908, Tmax = 0.969k = 1111
14571 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.5777P]
where P = (Fo2 + 2Fc2)/3
3593 reflections(Δ/σ)max < 0.001
268 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C16H21N4+·ClO4·0.5C4H4O4γ = 66.749 (2)°
Mr = 426.85V = 976.0 (2) Å3
Triclinic, P1Z = 2
a = 7.7287 (9) ÅMo Kα radiation
b = 9.6415 (11) ŵ = 0.24 mm1
c = 14.3440 (17) ÅT = 173 K
α = 88.691 (2)°0.41 × 0.21 × 0.13 mm
β = 83.785 (2)°
Data collection top
Bruker APEXII
diffractometer
3593 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3178 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.969Rint = 0.031
14571 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.36 e Å3
3593 reflectionsΔρmin = 0.38 e Å3
268 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Supramolecular interactions were calculated using PLATON (Spek, 2009).

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.14315 (19)0.60021 (15)0.29972 (9)0.0221 (3)
N30.12885 (19)0.80520 (15)0.14915 (9)0.0195 (3)
H3N0.005 (3)0.828 (2)0.1385 (13)0.023*
C70.1416 (2)0.55727 (19)0.20264 (12)0.0251 (4)
H7A0.00940.58410.18920.030*
H7B0.21080.44670.19360.030*
N10.3877 (2)0.04563 (16)0.39116 (10)0.0283 (3)
C20.0899 (3)0.2558 (2)0.39796 (12)0.0284 (4)
H20.04420.29290.41020.034*
C100.1253 (2)0.84885 (18)0.24896 (11)0.0226 (3)
H10A0.05150.95880.25860.027*
H10B0.25610.82540.26370.027*
C80.2342 (2)0.63786 (18)0.13586 (12)0.0241 (4)
H8A0.36760.60880.14800.029*
H8B0.23330.60810.07040.029*
C30.1772 (2)0.35304 (18)0.36903 (11)0.0234 (4)
N40.76043 (19)0.86552 (17)0.10634 (10)0.0261 (3)
C110.1980 (2)0.89600 (18)0.07906 (12)0.0224 (3)
H11A0.19510.86150.01500.027*
H11B0.10991.00340.08620.027*
C90.0361 (2)0.76287 (18)0.31339 (12)0.0238 (4)
H9A0.03390.79170.37940.029*
H9B0.09620.78960.30020.029*
C40.3730 (2)0.29139 (19)0.34948 (11)0.0244 (4)
H40.43820.35340.32800.029*
C150.4238 (2)0.99776 (19)0.13418 (12)0.0249 (4)
H150.31881.08390.16000.030*
C160.6071 (2)0.9846 (2)0.14065 (12)0.0268 (4)
H160.62481.06390.17090.032*
C50.4719 (3)0.13881 (19)0.36167 (12)0.0273 (4)
H50.60600.09810.34850.033*
C140.3955 (2)0.88367 (18)0.08945 (11)0.0202 (3)
C60.0591 (2)0.51999 (19)0.36533 (13)0.0282 (4)
H6A0.06680.53460.34720.034*
H6B0.03980.56520.42890.034*
C10.1992 (3)0.1050 (2)0.40882 (12)0.0300 (4)
H10.13750.04030.42980.036*
C120.7322 (2)0.7561 (2)0.06285 (12)0.0261 (4)
H120.83970.67060.03830.031*
O10.55138 (19)0.75287 (15)0.40307 (10)0.0365 (3)
H1A0.496 (3)0.857 (3)0.3980 (15)0.044*
C170.4406 (2)0.70070 (19)0.45469 (12)0.0261 (4)
Cl10.78159 (6)0.33434 (5)0.16421 (3)0.02773 (13)
O50.7247 (2)0.45702 (18)0.22864 (11)0.0539 (4)
O60.9359 (3)0.3305 (3)0.10017 (15)0.0877 (7)
C180.5308 (2)0.53460 (19)0.46587 (13)0.0281 (4)
H180.63560.47640.42280.034*
O20.28278 (17)0.77780 (14)0.49090 (10)0.0342 (3)
O30.8334 (3)0.19613 (18)0.21367 (14)0.0673 (5)
O40.6259 (2)0.34683 (18)0.11388 (11)0.0555 (4)
C130.5544 (2)0.76136 (19)0.05197 (12)0.0243 (4)
H130.54080.68230.01920.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0246 (7)0.0196 (7)0.0218 (7)0.0091 (6)0.0001 (6)0.0040 (5)
N30.0152 (6)0.0221 (7)0.0233 (7)0.0091 (6)0.0048 (5)0.0053 (5)
C70.0299 (9)0.0217 (8)0.0265 (9)0.0128 (7)0.0051 (7)0.0032 (7)
N10.0347 (8)0.0221 (7)0.0273 (8)0.0110 (6)0.0015 (6)0.0027 (6)
C20.0277 (9)0.0285 (9)0.0300 (9)0.0131 (7)0.0002 (7)0.0046 (7)
C100.0253 (8)0.0197 (8)0.0240 (8)0.0097 (7)0.0050 (7)0.0023 (6)
C80.0258 (9)0.0217 (8)0.0236 (8)0.0083 (7)0.0022 (7)0.0011 (6)
C30.0288 (9)0.0235 (8)0.0187 (8)0.0118 (7)0.0010 (7)0.0033 (6)
N40.0213 (7)0.0348 (8)0.0265 (7)0.0152 (6)0.0046 (6)0.0054 (6)
C110.0182 (8)0.0253 (8)0.0252 (8)0.0097 (7)0.0055 (6)0.0093 (7)
C90.0233 (8)0.0220 (8)0.0242 (8)0.0077 (7)0.0001 (7)0.0022 (7)
C40.0286 (9)0.0251 (9)0.0229 (8)0.0147 (7)0.0011 (7)0.0020 (7)
C150.0222 (8)0.0239 (8)0.0288 (9)0.0102 (7)0.0002 (7)0.0022 (7)
C160.0285 (9)0.0305 (9)0.0277 (9)0.0185 (8)0.0032 (7)0.0021 (7)
C50.0270 (9)0.0264 (9)0.0277 (9)0.0101 (7)0.0019 (7)0.0014 (7)
C140.0184 (8)0.0242 (8)0.0201 (8)0.0105 (7)0.0044 (6)0.0084 (6)
C60.0271 (9)0.0245 (9)0.0298 (9)0.0091 (7)0.0051 (7)0.0054 (7)
C10.0371 (10)0.0262 (9)0.0317 (9)0.0183 (8)0.0017 (8)0.0048 (7)
C120.0195 (8)0.0299 (9)0.0273 (9)0.0088 (7)0.0007 (7)0.0019 (7)
O10.0351 (7)0.0220 (7)0.0471 (8)0.0093 (6)0.0085 (6)0.0065 (6)
C170.0285 (9)0.0253 (9)0.0269 (9)0.0127 (7)0.0054 (7)0.0042 (7)
Cl10.0276 (2)0.0264 (2)0.0286 (2)0.01057 (17)0.00035 (17)0.00359 (17)
O50.0618 (10)0.0491 (9)0.0518 (9)0.0238 (8)0.0021 (8)0.0249 (7)
O60.0777 (14)0.1239 (18)0.0735 (13)0.0640 (14)0.0431 (11)0.0279 (12)
C180.0270 (9)0.0237 (9)0.0335 (9)0.0101 (7)0.0030 (7)0.0012 (7)
O20.0263 (7)0.0255 (7)0.0473 (8)0.0082 (5)0.0007 (6)0.0072 (6)
O30.0694 (12)0.0396 (9)0.0948 (14)0.0176 (8)0.0373 (10)0.0257 (9)
O40.0474 (9)0.0555 (10)0.0560 (10)0.0064 (8)0.0259 (8)0.0122 (8)
C130.0228 (8)0.0276 (9)0.0252 (9)0.0127 (7)0.0032 (7)0.0011 (7)
Geometric parameters (Å, º) top
N2—C61.462 (2)C9—H9A0.9900
N2—C91.462 (2)C9—H9B0.9900
N2—C71.464 (2)C4—C51.382 (2)
N3—C101.496 (2)C4—H40.9500
N3—C81.499 (2)C15—C161.385 (2)
N3—C111.5082 (19)C15—C141.386 (2)
N3—H3N0.925 (19)C15—H150.9500
C7—C81.513 (2)C16—H160.9500
C7—H7A0.9900C5—H50.9500
C7—H7B0.9900C14—C131.389 (2)
N1—C11.336 (2)C6—H6A0.9900
N1—C51.340 (2)C6—H6B0.9900
C2—C11.379 (2)C1—H10.9500
C2—C31.388 (2)C12—C131.381 (2)
C2—H20.9500C12—H120.9500
C10—C91.515 (2)O1—C171.312 (2)
C10—H10A0.9900O1—H1A0.93 (2)
C10—H10B0.9900C17—O21.214 (2)
C8—H8A0.9900C17—C181.486 (2)
C8—H8B0.9900Cl1—O61.4129 (17)
C3—C41.388 (2)Cl1—O51.4135 (14)
C3—C61.508 (2)Cl1—O31.4271 (16)
N4—C161.338 (2)Cl1—O41.4329 (15)
N4—C121.339 (2)C18—C18i1.323 (4)
C11—C141.507 (2)C18—H180.9500
C11—H11A0.9900C13—H130.9500
C11—H11B0.9900
C6—N2—C9109.37 (13)C10—C9—H9B109.6
C6—N2—C7110.81 (13)H9A—C9—H9B108.1
C9—N2—C7109.43 (13)C5—C4—C3119.24 (15)
C10—N3—C8109.52 (12)C5—C4—H4120.4
C10—N3—C11113.55 (12)C3—C4—H4120.4
C8—N3—C11113.77 (13)C16—C15—C14119.15 (16)
C10—N3—H3N107.0 (11)C16—C15—H15120.4
C8—N3—H3N107.2 (11)C14—C15—H15120.4
C11—N3—H3N105.2 (11)N4—C16—C15123.15 (16)
N2—C7—C8110.08 (13)N4—C16—H16118.4
N2—C7—H7A109.6C15—C16—H16118.4
C8—C7—H7A109.6N1—C5—C4123.06 (16)
N2—C7—H7B109.6N1—C5—H5118.5
C8—C7—H7B109.6C4—C5—H5118.5
H7A—C7—H7B108.2C15—C14—C13117.85 (15)
C1—N1—C5117.52 (15)C15—C14—C11120.58 (15)
C1—C2—C3119.45 (17)C13—C14—C11121.53 (15)
C1—C2—H2120.3N2—C6—C3113.82 (14)
C3—C2—H2120.3N2—C6—H6A108.8
N3—C10—C9109.59 (13)C3—C6—H6A108.8
N3—C10—H10A109.8N2—C6—H6B108.8
C9—C10—H10A109.8C3—C6—H6B108.8
N3—C10—H10B109.8H6A—C6—H6B107.7
C9—C10—H10B109.8N1—C1—C2123.08 (16)
H10A—C10—H10B108.2N1—C1—H1118.5
N3—C8—C7109.62 (13)C2—C1—H1118.5
N3—C8—H8A109.7N4—C12—C13123.18 (16)
C7—C8—H8A109.7N4—C12—H12118.4
N3—C8—H8B109.7C13—C12—H12118.4
C7—C8—H8B109.7C17—O1—H1A112.1 (14)
H8A—C8—H8B108.2O2—C17—O1124.70 (16)
C4—C3—C2117.62 (16)O2—C17—C18122.91 (16)
C4—C3—C6122.93 (15)O1—C17—C18112.39 (15)
C2—C3—C6119.36 (15)O6—Cl1—O5111.03 (11)
C16—N4—C12117.42 (14)O6—Cl1—O3109.67 (14)
C14—C11—N3113.66 (12)O5—Cl1—O3109.73 (11)
C14—C11—H11A108.8O6—Cl1—O4109.55 (12)
N3—C11—H11A108.8O5—Cl1—O4109.66 (10)
C14—C11—H11B108.8O3—Cl1—O4107.13 (10)
N3—C11—H11B108.8C18i—C18—C17121.9 (2)
H11A—C11—H11B107.7C18i—C18—H18119.1
N2—C9—C10110.42 (13)C17—C18—H18119.1
N2—C9—H9A109.6C12—C13—C14119.23 (15)
C10—C9—H9A109.6C12—C13—H13120.4
N2—C9—H9B109.6C14—C13—H13120.4
C6—N2—C7—C8178.35 (13)C1—N1—C5—C40.3 (3)
C9—N2—C7—C860.97 (17)C3—C4—C5—N10.5 (3)
C8—N3—C10—C957.20 (16)C16—C15—C14—C130.8 (2)
C11—N3—C10—C9174.41 (12)C16—C15—C14—C11178.52 (15)
C10—N3—C8—C757.58 (16)N3—C11—C14—C15101.07 (17)
C11—N3—C8—C7174.15 (12)N3—C11—C14—C1381.28 (19)
N2—C7—C8—N359.62 (17)C9—N2—C6—C3170.06 (14)
C1—C2—C3—C41.9 (3)C7—N2—C6—C369.22 (18)
C1—C2—C3—C6174.69 (16)C4—C3—C6—N228.0 (2)
C10—N3—C11—C1459.12 (18)C2—C3—C6—N2155.56 (16)
C8—N3—C11—C1467.06 (18)C5—N1—C1—C20.1 (3)
C6—N2—C9—C10177.63 (14)C3—C2—C1—N11.2 (3)
C7—N2—C9—C1060.81 (17)C16—N4—C12—C130.2 (2)
N3—C10—C9—N259.18 (17)O2—C17—C18—C18i18.1 (3)
C2—C3—C4—C51.6 (2)O1—C17—C18—C18i160.9 (2)
C6—C3—C4—C5174.91 (16)N4—C12—C13—C141.6 (3)
C12—N4—C16—C150.9 (2)C15—C14—C13—C121.8 (2)
C14—C15—C16—N40.6 (3)C11—C14—C13—C12179.51 (15)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N4ii0.925 (19)1.884 (19)2.8067 (19)175.0 (17)
O1—H1A···N1iii0.93 (2)1.68 (2)2.6081 (19)178 (2)
C10—H10A···O3iv0.992.373.281 (2)153 (2)
C12—H12···O6v0.952.493.138 (3)126 (2)
Symmetry codes: (ii) x1, y, z; (iii) x, y+1, z; (iv) x1, y+1, z; (v) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H21N4+·ClO4·0.5C4H4O4
Mr426.85
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.7287 (9), 9.6415 (11), 14.3440 (17)
α, β, γ (°)88.691 (2), 83.785 (2), 66.749 (2)
V3)976.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.41 × 0.21 × 0.13
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.908, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
14571, 3593, 3178
Rint0.031
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.092, 1.05
No. of reflections3593
No. of parameters268
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.38

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), Crystal Maker (Palmer, 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N4i0.925 (19)1.884 (19)2.8067 (19)175.0 (17)
O1—H1A···N1ii0.93 (2)1.68 (2)2.6081 (19)178 (2)
C10—H10A···O3iii0.992.373.281 (2)153 (2)
C12—H12···O6iv0.952.493.138 (3)126 (2)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x1, y+1, z; (iv) x+2, y+1, z.
 

Acknowledgements

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for funding this work.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMartin, D., Supkowski, R. M. & LaDuca, R. L. (2009). Dalton Trans. pp. 514–520.  Web of Science CSD CrossRef PubMed Google Scholar
First citationPalmer, D. (2005). Crystal Maker. Crystal Maker Software Ltd, Yarnton, England.  Google Scholar
First citationPocic, D., Planeix, J.-M., Kyritsakas, N., Jouaiti, A., Abdelaziz, H. & Wais, M. (2005). CrystEngComm, 7, 624–628.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds