inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The lanthanum(III) molybdate(VI) La4Mo7O27

aInstitute of Crystallography, University of Cologne, 50674 Cologne, Germany
*Correspondence e-mail: bvdwolf@uni-koeln.de

(Received 22 June 2009; accepted 7 July 2009; online 11 July 2009)

Crystals of the ortho­rhom­bic phase La4Mo7O27 (lanthanum molybdenum oxide) were obtained from a non-stoichiometric melt in the pseudo-ternary system La2O3–MoO3–B2O3. In the crystal structure, distorted square-anti­prismatic [LaO8] and monocapped square-anti­prismatic [LaO9] polyhedra are connected via common edges and faces into chains along [010]. These chains are arranged in layers that alternate with layers of [MoO4] and [MoO5] polyhedra parallel to (001). In the molybdate layers, a distorted [MoO5] trigonal bipyramid is axially connected to two [MoO4] tetra­hedra, forming a [Mo3O11] unit.

Related literature

The isoformular compounds Eu4Mo7O27 (Naruke & Yamase, 2001[Naruke, H. & Yamase, T. (2001). J. Solid State Chem. 161, 85-92.]) and Gd4Mo7O27 (Naruke & Yamase, 2002[Naruke, H. & Yamase, T. (2002). Acta Cryst. E58, i62-i64.]) have a similar structure, but have monoclinic symmetry. Parameters needed to calculate bond-valence sums from bond lengths were taken from Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]).

Experimental

Crystal data
  • La4Mo7O27

  • Mr = 1659.22

  • Orthorhombic, P c a 21

  • a = 14.1443 (14) Å

  • b = 7.2931 (4) Å

  • c = 22.9916 (13) Å

  • V = 2371.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.71 mm−1

  • T = 295 K

  • 0.25 × 0.23 × 0.22 mm

Data collection
  • Nonius MACH3 diffractometer

  • Absorption correction: ψ scan (MolEN; Fair, 1990[Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.]) Tmin = 0.841, Tmax = 0.999 (expected range = 0.080–0.095)

  • 17773 measured reflections

  • 7202 independent reflections

  • 6225 reflections with I > 2σ(I)

  • Rint = 0.042

  • 3 standard reflections every 100 reflections intensity decay: −4.1%

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.076

  • S = 1.05

  • 7202 reflections

  • 345 parameters

  • 1 restraint

  • Δρmax = 2.27 e Å−3

  • Δρmin = −1.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3515 Friedel pairs

  • Flack parameter: 0.039 (14)

Data collection: MACH3 (Enraf–Nonius, 1993[Enraf-Nonius (1993). MACH3 Server Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: MACH3; data reduction: MolEN (Fair, 1990[Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The framework structure of La4Mo7O27 (Fig. 1) can be described as a layered arrangement of alternating [LaO8] and [LaO9] polyhedra and of [MoO4] and [MoO5] polyhedra parallel to (001). Perpendicular to this layered arrangement the [LaO8] and [LaO9] polyhedra are connected via edge- and face-sharing to form chains along [010]. The chains are interconnected via [MoO4] tetrahedra with an interchain distance of 1/2a = 7.072 Å. A similar layered arrangement of alternating [REO7] and [REO8] (RE = Eu, Gd) and of [MoO4] and [MoO5] polyhedra is present in the crystal strucures of Eu4Mo7O27 (Naruke & Yamase, 2001) and Gd4Mo7O27 (Naruke & Yamase, 2002). However, in the latter structures the rare earth oxygen polyhedra dimerize to [RE2O12] and [RE2O13] (RE = Eu, Gd) groups instead of forming chains. All four lanthanum atoms in La4Mo7O27 are found with a square-antiprismatic [LaO8] oxygen surrounding. In case of La1 and La3, this unit is monocapped to form a [LaO9] polyhedron, in case of La2 a more irregular but also monocapped (with O33) [LaO9] polyhedron may still be recognized, while La4 has a square-antiprismatic environment with two axial oxygen atoms O11 (La—O = 3.317 (6) Å) and O53 (La— O = 3.423 (7) Å) which we have not considered to be part of the La4 coordination polyhedron. Thereby, O53 is the only terminal oxygen atom connected to Mo5 only, but calculations of the bond valence sums (Brown & Altermatt, 1985) with 1.73 v.u. for the O53—Mo5 bond indicate no discrepancies and it can be assumed that the remaining bond charge is smeared out over farther atoms. The four molybdenum atoms Mo1, Mo4, Mo3, Mo6 are tetrahedrally surrounded by oxygen atoms resulting in [MoO4] tetrahedra with Mo—O distances ranging from 1.723 (7) to 1.805 (6) Å. These polyhedra are connected to [LaO8] or [LaO9] polyhedra via corner- or edge-sharing. This is also the case for Mo5 and Mo7, which are tetrahedrally surrounded and connected to [LaO8] or [LaO9] via corner-sharing only, but connected to Mo2 as well, which is fivefold surrounded to form a distorted trigonal bipyramid. Overall, this results in a [Mo3O11] unit (Fig. 2) with a corner-shared connection of the three equatorial oxygen atoms in the trigonal bipyramid to [LaO8] or [LaO9] polyhedra. In the trigonal bipyramid, the axial oxygen atom O52 has the longest Mo—O distance of 2.100 (6) Å in the structure, but bond valence sum calculations do suggest a trigonal-bipyramidal Mo2 surrounding with a resulting bond valence sum for the bonds Mo2—O21, O22, O23, O24 of 5.44 v.u., and when including also O52 of 6.04 v.u. In both Eu4Mo7O27 and Gd4Mo7O27 structures a similar [Mo3O11] unit is present, but here the two tetrahedrally surrounded molybdenum atoms are connected via one axial and one equatorial oxygen atom of the trigonal bipyramidal coordination polyhedron of the central molybdenum atom.

Related literature top

The isoformular compounds Eu4Mo7O27 (Naruke & Yamase, 2001) and Gd4Mo7O27 (Naruke & Yamase, 2002) have a similar structure, but have monoclinic symmetry. Parameters needed to calculate bond-valence sums from bond lengths were taken from Brown & Altermatt (1985).

Experimental top

Single crystals of La4Mo7O27 of ca 0.01 mm3 in volume were synthesized by heating a homogenized powder mixture of La2O3 (99.99%, Chempur), H3BO3 (99.8%, Merck) and MoO3 (99.95%, Alfa Aesar) in a molar ratio of 0.16: 0.16: 0.68 in a covered platinum crucible in air atmosphere to 1023 K. After 95 h at this temperature the sample was quenched in air, washed with water, heated to 1100 K, cooled with 0.0013 K/min to 1093 K and quenched again in air. After a further similar heating-cooling cycle, colourless clear crystals of La4Mo7O27 were obtained and separated mechanically from the solidified melt.

Refinement top

In the final difference Fourier map the highest peak is 0.98 Å from atom O61 and the deepest hole is 0.78 Å from atom Mo7.

Computing details top

Data collection: MACH3 (Enraf–Nonius, 1993); cell refinement: MACH3 (Enraf–Nonius, 1993); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Fragment of the crystal structure of La4Mo7O27. Atoms are indicated as ellipsoids with probability regions of 50%. [Symmetry codes: (i) -x+1,-y,z+1/2; (ii) -x+1, -y-1, z+1/2; (iii) -x+3/2, y, z+1/2; (iv) x, y+1, z; (v) x, y-1, z; (vi) x-1/2, -y-1, z; (vii) x-1/2, -y, z; (viii) -x+3/2, y-1, z+1/2; (ix) x+1/2, -y, z; (x) x+1/2, -y-1, z.]
[Figure 2] Fig. 2. The trigonal-bipyramidal oxygen surrounding of Mo2. The two apical oxygen atoms are linked via corner-sharing to the tetrahedrally surrounded Mo5 and Mo7 atoms, forming a [Mo3O11] unit. Ellipsoid probability regions of 50% are given.
Lanthanum molybdate oxide top
Crystal data top
La4Mo7O27F(000) = 2952
Mr = 1659.22Dx = 4.647 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 25 reflections
a = 14.1443 (14) Åθ = 20.8–27.4°
b = 7.2931 (4) ŵ = 10.71 mm1
c = 22.9916 (13) ÅT = 295 K
V = 2371.7 (3) Å3Prism, colourless
Z = 40.25 × 0.23 × 0.22 mm
Data collection top
Nonius MACH3
diffractometer
6225 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.042
Graphite monochromatorθmax = 30.4°, θmin = 2.8°
ω/2θ scansh = 2020
Absorption correction: ψ scan
(MolEN; Fair, 1990)
k = 1010
Tmin = 0.841, Tmax = 0.999l = 3232
17773 measured reflections3 standard reflections every 100 reflections
7202 independent reflections intensity decay: 4.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.04P)2 + 3.1563P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.028(Δ/σ)max = 0.001
wR(F2) = 0.076Δρmax = 2.27 e Å3
S = 1.05Δρmin = 1.35 e Å3
7202 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
345 parametersExtinction coefficient: 0.00021 (2)
1 restraintAbsolute structure: Flack (1983), 3515 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.039 (14)
Crystal data top
La4Mo7O27V = 2371.7 (3) Å3
Mr = 1659.22Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 14.1443 (14) ŵ = 10.71 mm1
b = 7.2931 (4) ÅT = 295 K
c = 22.9916 (13) Å0.25 × 0.23 × 0.22 mm
Data collection top
Nonius MACH3
diffractometer
6225 reflections with I > 2σ(I)
Absorption correction: ψ scan
(MolEN; Fair, 1990)
Rint = 0.042
Tmin = 0.841, Tmax = 0.9993 standard reflections every 100 reflections
17773 measured reflections intensity decay: 4.1%
7202 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0281 restraint
wR(F2) = 0.076Δρmax = 2.27 e Å3
S = 1.05Δρmin = 1.35 e Å3
7202 reflectionsAbsolute structure: Flack (1983), 3515 Friedel pairs
345 parametersAbsolute structure parameter: 0.039 (14)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.66087 (3)0.01728 (6)0.111991 (17)0.00665 (9)
La20.53737 (3)0.51499 (6)0.346670 (18)0.00663 (8)
La30.40385 (3)0.00377 (6)0.348693 (18)0.00607 (8)
La40.79779 (3)0.49072 (6)0.105332 (18)0.00796 (9)
Mo10.56718 (5)0.50458 (8)0.17097 (3)0.00648 (12)
Mo20.52350 (5)0.21023 (9)0.48626 (3)0.00797 (12)
Mo30.63252 (5)0.01478 (9)0.28977 (3)0.00647 (12)
Mo40.88677 (5)0.00727 (8)0.16706 (3)0.00596 (12)
Mo50.42705 (5)0.67540 (9)0.50044 (3)0.00924 (12)
Mo60.80799 (5)0.48959 (8)0.29088 (3)0.00678 (12)
Mo70.69027 (5)0.18663 (9)0.46606 (3)0.00880 (12)
O110.6097 (5)0.2827 (9)0.1607 (3)0.0194 (13)
O120.5618 (5)0.5645 (9)0.2443 (2)0.0153 (12)
O130.9529 (4)0.4730 (10)0.1422 (3)0.0217 (15)
O140.6456 (4)0.3508 (8)0.1297 (2)0.0112 (11)
O210.6007 (4)0.3416 (9)0.5274 (3)0.0157 (12)
O220.4384 (4)0.0813 (9)0.5225 (3)0.0158 (12)
O230.5073 (4)0.2372 (8)0.4093 (2)0.0120 (11)
O240.6147 (5)0.0175 (8)0.4721 (3)0.0155 (12)
O310.6554 (5)0.0575 (9)0.2186 (2)0.0148 (12)
O320.5662 (4)0.8518 (8)0.3325 (2)0.0118 (11)
O330.5583 (4)0.2059 (8)0.2937 (3)0.0131 (12)
O340.2400 (4)0.0632 (9)0.3232 (3)0.0169 (13)
O410.4954 (5)0.0377 (10)0.1345 (3)0.0185 (13)
O420.4018 (5)0.0247 (10)0.2425 (3)0.0198 (14)
O430.8293 (5)0.1988 (9)0.1478 (3)0.0193 (14)
O440.8030 (4)0.1691 (8)0.1377 (3)0.0120 (11)
O510.4290 (5)0.7789 (10)0.4302 (3)0.0236 (15)
O520.4298 (4)0.4333 (8)0.4899 (3)0.0189 (13)
O530.5258 (5)0.7338 (9)0.5387 (3)0.0191 (13)
O540.3242 (5)0.7323 (8)0.5428 (3)0.0137 (12)
O610.7039 (5)0.4836 (9)0.3311 (3)0.0166 (13)
O620.7826 (5)0.4752 (9)0.2169 (3)0.0153 (13)
O630.3730 (5)0.3124 (9)0.3092 (3)0.0215 (14)
O640.3901 (5)0.6789 (9)0.3162 (3)0.0173 (13)
O710.6315 (5)0.3739 (8)0.4350 (3)0.0164 (13)
O720.7380 (4)0.2446 (8)0.5355 (3)0.0141 (12)
O730.7859 (5)0.1294 (9)0.4229 (3)0.0189 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.00731 (18)0.00518 (17)0.00747 (19)0.00098 (14)0.00029 (15)0.00006 (17)
La20.00777 (18)0.00519 (18)0.00694 (18)0.00041 (14)0.00001 (15)0.00120 (17)
La30.00763 (18)0.00497 (18)0.00560 (17)0.00037 (14)0.00081 (15)0.00027 (15)
La40.0102 (2)0.00603 (19)0.00765 (19)0.00306 (15)0.00111 (15)0.00116 (16)
Mo10.0075 (3)0.0049 (3)0.0070 (3)0.0002 (2)0.0010 (2)0.0005 (2)
Mo20.0105 (3)0.0084 (3)0.0050 (3)0.0013 (2)0.0007 (2)0.0003 (2)
Mo30.0072 (3)0.0059 (3)0.0063 (3)0.0004 (2)0.0009 (2)0.0008 (2)
Mo40.0063 (3)0.0051 (3)0.0065 (3)0.0005 (2)0.0011 (2)0.0000 (2)
Mo50.0138 (3)0.0077 (3)0.0062 (3)0.0019 (2)0.0017 (2)0.0001 (2)
Mo60.0069 (3)0.0061 (3)0.0073 (3)0.0007 (2)0.0006 (2)0.0009 (2)
Mo70.0104 (3)0.0103 (3)0.0058 (2)0.0017 (2)0.0001 (2)0.0017 (2)
O110.031 (4)0.013 (3)0.014 (3)0.004 (3)0.003 (3)0.002 (2)
O120.030 (4)0.012 (3)0.004 (2)0.004 (3)0.003 (2)0.002 (2)
O130.006 (3)0.031 (4)0.028 (4)0.001 (3)0.005 (3)0.000 (3)
O140.009 (3)0.011 (3)0.014 (3)0.000 (2)0.002 (2)0.002 (2)
O210.012 (3)0.015 (3)0.020 (3)0.001 (2)0.008 (2)0.007 (2)
O220.012 (3)0.021 (3)0.015 (3)0.002 (2)0.006 (2)0.004 (2)
O230.018 (3)0.010 (3)0.008 (3)0.004 (2)0.002 (2)0.001 (2)
O240.014 (3)0.015 (3)0.018 (3)0.007 (2)0.000 (3)0.001 (2)
O310.024 (3)0.015 (3)0.006 (2)0.001 (3)0.006 (2)0.000 (2)
O320.012 (3)0.009 (3)0.015 (3)0.004 (2)0.005 (2)0.002 (2)
O330.014 (3)0.011 (3)0.014 (3)0.006 (2)0.001 (2)0.000 (2)
O340.008 (3)0.023 (3)0.020 (3)0.000 (2)0.003 (2)0.002 (3)
O410.012 (3)0.025 (3)0.018 (3)0.005 (3)0.004 (2)0.000 (3)
O420.028 (4)0.023 (3)0.009 (3)0.001 (3)0.001 (2)0.001 (2)
O430.026 (4)0.013 (3)0.019 (3)0.002 (3)0.004 (3)0.010 (2)
O440.011 (3)0.008 (2)0.017 (3)0.001 (2)0.005 (2)0.004 (2)
O510.029 (4)0.031 (4)0.011 (3)0.000 (3)0.001 (3)0.010 (3)
O520.015 (3)0.008 (3)0.034 (4)0.003 (2)0.005 (3)0.006 (3)
O530.025 (4)0.016 (3)0.015 (3)0.004 (3)0.003 (3)0.006 (2)
O540.015 (3)0.014 (3)0.011 (3)0.002 (2)0.006 (2)0.000 (2)
O610.010 (3)0.027 (4)0.012 (3)0.000 (3)0.005 (2)0.001 (2)
O620.022 (3)0.018 (3)0.006 (2)0.004 (3)0.002 (2)0.000 (2)
O630.028 (4)0.015 (3)0.021 (3)0.004 (3)0.003 (3)0.007 (3)
O640.013 (3)0.009 (3)0.029 (3)0.000 (2)0.001 (3)0.004 (3)
O710.021 (3)0.015 (3)0.014 (3)0.003 (2)0.002 (2)0.005 (2)
O720.012 (3)0.021 (3)0.010 (3)0.003 (2)0.001 (2)0.003 (2)
O730.015 (3)0.024 (3)0.018 (3)0.003 (3)0.004 (2)0.008 (3)
Geometric parameters (Å, º) top
La1—O412.402 (7)La4—O14v2.506 (6)
La1—O312.470 (6)La4—O21iii2.540 (6)
La1—O142.476 (6)La4—O72viii2.561 (6)
La1—O442.498 (6)La4—O622.578 (6)
La1—O22i2.535 (6)La4—O54ii2.773 (6)
La1—O112.562 (6)La4—Mo13.5955 (9)
La1—O54ii2.625 (6)La4—La1v4.0804 (6)
La1—O72iii2.809 (6)Mo1—O111.742 (6)
La1—O432.847 (7)Mo1—O121.742 (6)
La1—Mo43.4416 (9)Mo1—O13vi1.754 (6)
La1—La4iv4.0804 (6)Mo1—O14v1.801 (6)
La1—La44.1834 (7)Mo2—O211.734 (6)
La2—O612.394 (6)Mo2—O221.740 (6)
La2—O122.407 (6)Mo2—O231.796 (6)
La2—O642.502 (7)Mo2—O241.936 (6)
La2—O322.511 (6)Mo2—O522.100 (6)
La2—O232.521 (6)Mo3—O34ix1.740 (6)
La2—O71v2.559 (6)Mo3—O331.747 (6)
La2—O332.579 (6)Mo3—O311.749 (6)
La2—O632.886 (7)Mo3—O32iv1.805 (6)
La2—O513.121 (7)Mo4—O41ix1.723 (7)
La2—Mo6vi3.4889 (9)Mo4—O42ix1.753 (6)
La2—La3v4.0344 (6)Mo4—O431.765 (6)
La2—La34.1797 (6)Mo4—O441.804 (6)
La3—O342.439 (6)Mo5—O531.704 (7)
La3—O422.450 (6)Mo5—O521.782 (6)
La3—O632.466 (6)Mo5—O511.784 (6)
La3—O64iv2.492 (6)Mo5—O541.799 (6)
La3—O51iv2.515 (6)Mo6—O611.739 (6)
La3—O73vii2.557 (6)Mo6—O621.741 (6)
La3—O32iv2.577 (6)Mo6—O63x1.763 (7)
La3—O232.642 (6)Mo6—O64x1.788 (6)
La3—O332.923 (6)Mo6—La2x3.4889 (9)
La3—Mo33.5076 (9)Mo7—O731.728 (6)
La3—La2iv4.0344 (6)Mo7—O711.752 (6)
La4—O132.356 (6)Mo7—O721.784 (6)
La4—O442.462 (6)Mo7—O241.838 (6)
La4—O43v2.505 (6)
O41—La1—O3175.5 (2)O51iv—La3—O32iv72.6 (2)
O41—La1—O1479.6 (2)O73vii—La3—O32iv146.4 (2)
O31—La1—O1473.56 (19)O34—La3—O23141.4 (2)
O41—La1—O44140.1 (2)O42—La3—O23125.9 (2)
O31—La1—O4481.7 (2)O63—La3—O2372.8 (2)
O14—La1—O44124.46 (19)O64iv—La3—O23144.5 (2)
O41—La1—O22i67.9 (2)O51iv—La3—O2387.1 (2)
O31—La1—O22i140.0 (2)O73vii—La3—O2377.2 (2)
O14—La1—O22i84.5 (2)O32iv—La3—O2381.95 (19)
O44—La1—O22i137.6 (2)O34—La3—O33135.00 (19)
O41—La1—O1171.6 (2)O42—La3—O3367.7 (2)
O31—La1—O1170.1 (2)O63—La3—O3360.8 (2)
O14—La1—O11137.9 (2)O64iv—La3—O33114.10 (19)
O44—La1—O1170.1 (2)O51iv—La3—O33123.0 (2)
O22i—La1—O11110.8 (2)O73vii—La3—O33126.56 (19)
O41—La1—O54ii104.9 (2)O32iv—La3—O3359.22 (17)
O31—La1—O54ii134.2 (2)O23—La3—O3359.25 (17)
O14—La1—O54ii152.20 (19)O13—La4—O4479.1 (2)
O44—La1—O54ii69.36 (19)O13—La4—O43v75.1 (2)
O22i—La1—O54ii72.5 (2)O44—La4—O43v137.6 (2)
O11—La1—O54ii67.1 (2)O13—La4—O14v138.1 (2)
O41—La1—O72iii126.5 (2)O44—La4—O14v113.4 (2)
O31—La1—O72iii124.6 (2)O43v—La4—O14v69.5 (2)
O14—La1—O72iii64.38 (18)O13—La4—O21iii72.8 (2)
O44—La1—O72iii93.38 (19)O44—La4—O21iii77.8 (2)
O22i—La1—O72iii70.44 (19)O43v—La4—O21iii124.1 (2)
O11—La1—O72iii157.2 (2)O14v—La4—O21iii147.2 (2)
O54ii—La1—O72iii92.70 (18)O13—La4—O72viii116.8 (2)
O41—La1—O43136.4 (2)O44—La4—O72viii155.97 (19)
O31—La1—O4371.6 (2)O43v—La4—O72viii66.3 (2)
O14—La1—O4364.43 (19)O14v—La4—O72viii67.87 (19)
O44—La1—O4360.74 (19)O21iii—La4—O72viii89.5 (2)
O22i—La1—O43127.78 (19)O13—La4—O6273.5 (2)
O11—La1—O43120.5 (2)O44—La4—O6270.1 (2)
O54ii—La1—O43118.4 (2)O43v—La4—O6270.5 (2)
O72iii—La1—O4358.68 (17)O14v—La4—O6274.1 (2)
O61—La2—O1274.2 (2)O21iii—La4—O62136.9 (2)
O61—La2—O64145.4 (2)O72viii—La4—O62129.9 (2)
O12—La2—O6476.9 (2)O13—La4—O54ii137.2 (2)
O61—La2—O3285.1 (2)O44—La4—O54ii67.43 (18)
O12—La2—O3272.7 (2)O43v—La4—O54ii147.4 (2)
O64—La2—O3268.4 (2)O14v—La4—O54ii81.49 (19)
O61—La2—O23100.1 (2)O21iii—La4—O54ii74.64 (19)
O12—La2—O23134.7 (2)O72viii—La4—O54ii89.67 (18)
O64—La2—O23113.8 (2)O62—La4—O54ii115.98 (19)
O32—La2—O23152.58 (19)O11—Mo1—O12112.3 (3)
O61—La2—O71v68.7 (2)O11—Mo1—O13vi110.7 (3)
O12—La2—O71v130.8 (2)O12—Mo1—O13vi107.5 (3)
O64—La2—O71v120.3 (2)O11—Mo1—O14v105.1 (3)
O32—La2—O71v73.1 (2)O12—Mo1—O14v112.9 (3)
O23—La2—O71v83.65 (19)O13vi—Mo1—O14v108.4 (3)
O61—La2—O3374.5 (2)O21—Mo2—O22118.2 (3)
O12—La2—O3369.7 (2)O21—Mo2—O23123.9 (3)
O64—La2—O33112.4 (2)O22—Mo2—O23116.3 (3)
O32—La2—O33140.80 (18)O21—Mo2—O2494.2 (3)
O23—La2—O3365.57 (19)O22—Mo2—O2498.6 (3)
O71v—La2—O33126.2 (2)O23—Mo2—O2490.0 (3)
O61—La2—O63134.4 (2)O21—Mo2—O5287.0 (3)
O12—La2—O6384.3 (2)O22—Mo2—O5287.9 (3)
O64—La2—O6359.4 (2)O23—Mo2—O5282.8 (3)
O32—La2—O63126.34 (19)O24—Mo2—O52171.9 (3)
O23—La2—O6367.86 (18)O34ix—Mo3—O33109.9 (3)
O71v—La2—O63144.88 (19)O34ix—Mo3—O31108.2 (3)
O33—La2—O6360.28 (19)O33—Mo3—O31113.6 (3)
O61—La2—O51129.4 (2)O34ix—Mo3—O32iv110.3 (3)
O12—La2—O51125.4 (2)O33—Mo3—O32iv100.7 (3)
O64—La2—O5157.9 (2)O31—Mo3—O32iv114.0 (3)
O32—La2—O5163.67 (18)O41ix—Mo4—O42ix108.2 (3)
O23—La2—O5193.53 (18)O41ix—Mo4—O43114.2 (3)
O71v—La2—O5164.7 (2)O42ix—Mo4—O43111.5 (3)
O33—La2—O51152.36 (19)O41ix—Mo4—O44109.7 (3)
O63—La2—O5196.0 (2)O42ix—Mo4—O44113.8 (3)
O34—La3—O4274.5 (2)O43—Mo4—O4499.3 (3)
O34—La3—O6385.8 (2)O53—Mo5—O52107.4 (3)
O42—La3—O6373.0 (2)O53—Mo5—O51110.4 (3)
O34—La3—O64iv70.3 (2)O52—Mo5—O51107.2 (3)
O42—La3—O64iv67.6 (2)O53—Mo5—O54109.0 (3)
O63—La3—O64iv138.0 (2)O52—Mo5—O54108.6 (3)
O34—La3—O51iv100.5 (2)O51—Mo5—O54113.9 (3)
O42—La3—O51iv133.5 (2)O61—Mo6—O62110.1 (3)
O63—La3—O51iv153.4 (2)O61—Mo6—O63x109.6 (3)
O64iv—La3—O51iv67.3 (2)O62—Mo6—O63x113.0 (3)
O34—La3—O73vii67.2 (2)O61—Mo6—O64x111.1 (3)
O42—La3—O73vii133.4 (2)O62—Mo6—O64x114.2 (3)
O63—La3—O73vii78.7 (2)O63x—Mo6—O64x98.4 (3)
O64iv—La3—O73vii119.3 (2)O73—Mo7—O71109.0 (3)
O51iv—La3—O73vii80.2 (2)O73—Mo7—O72106.0 (3)
O34—La3—O32iv136.5 (2)O71—Mo7—O72111.1 (3)
O42—La3—O32iv80.2 (2)O73—Mo7—O24107.6 (3)
O63—La3—O32iv119.8 (2)O71—Mo7—O24112.8 (3)
O64iv—La3—O32iv67.5 (2)O72—Mo7—O24110.1 (3)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y1, z+1/2; (iii) x+3/2, y, z+1/2; (iv) x, y+1, z; (v) x, y1, z; (vi) x1/2, y1, z; (vii) x1/2, y, z; (viii) x+3/2, y1, z+1/2; (ix) x+1/2, y, z; (x) x+1/2, y1, z.

Experimental details

Crystal data
Chemical formulaLa4Mo7O27
Mr1659.22
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)295
a, b, c (Å)14.1443 (14), 7.2931 (4), 22.9916 (13)
V3)2371.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)10.71
Crystal size (mm)0.25 × 0.23 × 0.22
Data collection
DiffractometerNonius MACH3
diffractometer
Absorption correctionψ scan
(MolEN; Fair, 1990)
Tmin, Tmax0.841, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
17773, 7202, 6225
Rint0.042
(sin θ/λ)max1)0.713
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.076, 1.05
No. of reflections7202
No. of parameters345
No. of restraints1
Δρmax, Δρmin (e Å3)2.27, 1.35
Absolute structureFlack (1983), 3515 Friedel pairs
Absolute structure parameter0.039 (14)

Computer programs: MACH3 (Enraf–Nonius, 1993), MolEN (Fair, 1990), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005).

 

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under project BE 2147/6–1&2.

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEnraf–Nonius (1993). MACH3 Server Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFair, C. K. (1990). MolEN. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNaruke, H. & Yamase, T. (2001). J. Solid State Chem. 161, 85–92.  Web of Science CrossRef CAS Google Scholar
First citationNaruke, H. & Yamase, T. (2002). Acta Cryst. E58, i62–i64.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds