organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1768-o1769

(R,R)-Disynephrine ether bis­­(hydrogen sulfate)

aSchering-Plough Research Institute, Newhouse, Motherwell ML1 5SH, Scotland, and bDepartment of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: a.r.kennedy@strath.ac.uk

(Received 24 June 2009; accepted 30 June 2009; online 4 July 2009)

The asymmetric unit of the title compound [systematic name: (R,R)-2,4-bis­(4-hydroxy­phen­yl)-N,N′-dimethyl-3-oxapentane-1,5-diammonium bis­(hydrogen sulfate)], C18H26N2O32+·2HSO4, contains one half-cation and one hydrogen sulfate anion. The cation has crystallographically imposed twofold symmetry with the rotation axis passing through the central ether O atom. Hydrogen bonds between the hydr­oxy group and amine H atoms of the cation to two hydrogen sulfate anions link the three ions in a ring motif. A three-dimensional network is accomplished by additional O—H⋯O hydrogen bonds between the anions and by N—H⋯O hydrogen bonds between the cations. Disorder with equally occupied sites affects the H-atom position in the anion.

Related literature

For the preparation and structure of the equivalent bromide salt, see: Mukhopadhyay & Dattagupta (1984[Mukhopadhyay, B. P. & Dattagupta, J. K. (1984). Acta Cryst. A40, C283.], 1988[Mukhopadhyay, B. P. & Dattagupta, J. K. (1988). J. Crystallogr. Spectrosc. Res. 18, 509-516.]). For recent examples of synephrine use, see: Blanck et al. (2007[Blanck, H. M., Serdula, M. K., Gillespie, C., Galuska, D. A., Sharpe, P. A., Conway, J. M., Kettel, L. & Ainsworth, B. E. (2007). J. Am. Dietetic Assoc. 107, 441-447.]): Haller et al. (2008[Haller, C. A., Duan, M. J., Jacob, P. & Benowitz, I. (2008). Br. J. Clin. Pharm. 65, 833-840.]). For general background, see: Bruice (2007[Bruice, P. Y. (2007). Organic Chemistry, 5th ed., pp. 441-442. New Jersey: Pearson Prentice Hall.]); Jacques et al. (1981[Jacques, J., Collet, A. & Wilen, S. H. (1981). Enantiomers, Racemates and Resolutions. New York: Wiley,.]).

[Scheme 1]

Experimental

Crystal data
  • C18H26N2O32+·2HSO4

  • Mr = 512.54

  • Monoclinic, C 2

  • a = 13.7204 (9) Å

  • b = 11.5853 (5) Å

  • c = 7.6579 (5) Å

  • β = 116.413 (8)°

  • V = 1090.19 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 123 K

  • 0.23 × 0.15 × 0.11 mm

Data collection
  • Oxford Diffraction Gemini S CCD diffractometer

  • Absorption correction: multi-scan (ABSPACK; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD, CrysAlis RED and ABSPACK. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.974, Tmax = 1.000 (expected range = 0.942–0.967)

  • 5888 measured reflections

  • 2401 independent reflections

  • 2034 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.111

  • S = 1.03

  • 2401 reflections

  • 161 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.43 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1032 Friedel pairs

  • Flack parameter: 0.08 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.84 1.95 2.739 (3) 155
N1—H1N⋯O4ii 0.83 (3) 1.93 (3) 2.700 (4) 153 (3)
N1—H2N⋯O1iii 0.82 (3) 2.27 (3) 2.999 (3) 149 (3)
O5—H1S⋯O5iv 0.91 1.65 2.502 (6) 155
O6—H2S⋯O6i 1.05 1.60 2.493 (5) 139
Symmetry codes: (i) -x, y, -z; (ii) -x+1, y, -z+1; (iii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+1]; (iv) -x, y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD, CrysAlis RED and ABSPACK. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD, CrysAlis RED and ABSPACK. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Synephrine (systematic name 2-hydroxy-2-(4-hydroxyphenyl)-N-methylethanamine) is a member of the phenylethylamine drug family and it is often found in products marketed as "traditional medicines" or "weight-loss" pills (Blanck et al., 2007; Haller et al., 2008). An attempt to prepare the sulfate salt of a racemic sample gave instead only the title compound, di-synephrine ether di-hydrogen sulfate, presumably via a variation of the well known SN2 condensation reaction (Mukhopadhyay & Dattagupta, 1988; Bruice, 2007).

The salt crystallizes in space group C2, with half a cation and one hydrogen sulfate anion in the asymmetric unit. The twofold rotation axis passes through O2, the etheric O atom (Fig. 1). The (R,R) conformation was assigned after refinement of the Flack parameter (0.08 (11)). The bulk sample is presumably thus a conglomerate (Jacques et al., 1981). Similar symmetry is seen in the molecular structure of the analogous bromide salt (Mukhopadhyay & Dattagupta, 1988). Despite the gross structural similarities imposed by the identical symmetries, the two salts do have somewhat different conformations. This is best illustrated by the C8—C7—C7*—C8* torsion angle (-28.7 (3) ° here and -11.3 ° in the Br salt). Disorder effects the H atom position in the [HSO4] anion, with equally occupied proton sites (50:50) associated with both O5 and O6.

Hydrogen bonds (Table 1) from the cation's hydroxy and amine H atoms to two [HSO4] anions link the three ions (one cation and two anions) in a ring motif (Fig. 2). Further anion to anion hydrogen bonded interactions give columns of [HSO4] lying along the c direction and complete a hydrogen bonded network in the ac plane (Fig. 3). A final, weaker cation to cation interaction between the NH2 and –OH links these planes in the b direction.

Related literature top

For the preparation and structure of the equivalent bromide salt, see: Mukhopadhyay & Dattagupta (1984, 1988). For recent examples of synephrine use, see: Blanck et al. (2007): Haller et al. (2008). For general background, see: Bruice (2007); Jacques et al. (1981).

Experimental top

The title compound was obtained on treating an aqueous solution of (+/-)synephrine with dilute sulfuric acid. Single-crystals were obtained by allowing the solvent of the reaction mixture to evaporate at 295 K. 1H NMR (DMSO-d6) 9.67 (2H, s br, OH); 8.40 (4H, s br, NH2); 7.07 (4H, d, sp2 CH); 6.80 (4H, d, sp2 CH); 4.20 (2H, dd, OCH); 3.32 (2H, m, CH2); 2.99 (2H, m, CH2); 2.57 (6H, t, Me).

Refinement top

Amine H atomes were found by difference synthesis and refined isotropically. All other H atoms of the cation were positioned geometrically at distances of 0.95, 1.00, 0.99, 0.98 and 0.84 Å from the parent atoms for CH(ar), CH(sp3), CH2, CH3 and ROH groups respectively. For these groups a riding model was used with Uiso(H) values constrained to be 1.2 times Ueq of the parent atom for CH and CH2 groups and 1.5 times Ueq of the parent atom for OH and CH3 groups. The anion's proton was found by difference synthesis to be disordered over two equally occupied sites. These were placed as found and constrained to ride on the parent O atoms with Uiso(H) equal to 1.5 times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis CCD (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and atomic labelling of the cation, showing 50% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The hydrogen-bonded ring motif between one cation and two anions in the structure of [C18H26N2O3][SO4H]2.
[Figure 3] Fig. 3. Packed structure viewed down the c-axis. S-atoms are pink and O-atoms are red. Hydrogen-bonding is shown as dashed lines.
(R,R)-2,4-bis(4-hydroxyphenyl)-N,N'-dimethyl- 3-oxapentane-1,5-diammonium bis(hydrogen sulfate) top
Crystal data top
C18H26N2O32+·2HSO4F(000) = 540
Mr = 512.54Dx = 1.561 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 3122 reflections
a = 13.7204 (9) Åθ = 2.4–29.1°
b = 11.5853 (5) ŵ = 0.31 mm1
c = 7.6579 (5) ÅT = 123 K
β = 116.413 (8)°Prism, colourless
V = 1090.19 (13) Å30.23 × 0.15 × 0.11 mm
Z = 2
Data collection top
Oxford Diffraction Gemini S CCD
diffractometer
2401 independent reflections
Radiation source: fine-focus sealed tube2034 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 28.0°, θmin = 2.4°
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2007)
h = 1716
Tmin = 0.974, Tmax = 1.000k = 1414
5888 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.071P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2401 reflectionsΔρmax = 0.57 e Å3
161 parametersΔρmin = 0.43 e Å3
1 restraintAbsolute structure: Flack (1983), 1032 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (11)
Crystal data top
C18H26N2O32+·2HSO4V = 1090.19 (13) Å3
Mr = 512.54Z = 2
Monoclinic, C2Mo Kα radiation
a = 13.7204 (9) ŵ = 0.31 mm1
b = 11.5853 (5) ÅT = 123 K
c = 7.6579 (5) Å0.23 × 0.15 × 0.11 mm
β = 116.413 (8)°
Data collection top
Oxford Diffraction Gemini S CCD
diffractometer
2401 independent reflections
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2007)
2034 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 1.000Rint = 0.027
5888 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111Δρmax = 0.57 e Å3
S = 1.03Δρmin = 0.43 e Å3
2401 reflectionsAbsolute structure: Flack (1983), 1032 Friedel pairs
161 parametersAbsolute structure parameter: 0.08 (11)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.08291 (6)0.20896 (7)0.33257 (10)0.0289 (2)
O10.17446 (14)0.40319 (17)0.2357 (3)0.0181 (4)
H10.11850.36160.27960.027*
O20.50000.1062 (2)0.50000.0128 (5)
O30.02688 (19)0.31541 (19)0.3192 (4)0.0304 (6)
O40.19286 (16)0.2108 (3)0.4864 (3)0.0395 (6)
O50.0193 (2)0.1104 (2)0.3550 (4)0.0456 (7)
H1S0.02040.12550.47240.068*0.50
O60.0896 (2)0.1834 (3)0.1477 (4)0.0519 (8)
H2S0.02950.21600.01490.078*0.50
N10.6712 (2)0.0279 (2)0.4186 (4)0.0191 (5)
C10.4315 (2)0.2368 (2)0.2158 (3)0.0135 (6)
C20.3329 (2)0.1795 (2)0.1126 (4)0.0156 (6)
H20.32470.10250.14700.019*
C30.2473 (2)0.2329 (2)0.0382 (4)0.0166 (6)
H30.18070.19270.10780.020*
C40.2581 (2)0.3458 (2)0.0891 (4)0.0139 (5)
C50.3554 (2)0.4041 (3)0.0124 (4)0.0182 (6)
H50.36330.48120.02170.022*
C60.4414 (2)0.3491 (2)0.1646 (4)0.0173 (6)
H60.50790.38930.23460.021*
C70.5277 (2)0.1742 (2)0.3714 (4)0.0136 (5)
H70.58510.23150.44950.016*
C80.5734 (2)0.0900 (3)0.2748 (4)0.0172 (6)
H8A0.51650.03290.19890.021*
H8B0.59280.13260.18270.021*
C90.7267 (3)0.0381 (3)0.3240 (5)0.0302 (7)
H9A0.78370.08640.42120.045*
H9B0.75950.01550.26620.045*
H9C0.67380.08730.22160.045*
H1N0.711 (2)0.082 (3)0.482 (4)0.013 (8)*
H2N0.648 (3)0.011 (3)0.480 (4)0.012 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0228 (4)0.0289 (4)0.0312 (4)0.0004 (4)0.0086 (3)0.0031 (4)
O10.0142 (9)0.0149 (9)0.0191 (10)0.0002 (8)0.0019 (8)0.0039 (8)
O20.0139 (12)0.0143 (13)0.0101 (11)0.0000.0053 (10)0.000
O30.0196 (11)0.0272 (12)0.0420 (13)0.0024 (9)0.0117 (10)0.0016 (10)
O40.0275 (11)0.0363 (12)0.0388 (12)0.0082 (14)0.0005 (9)0.0003 (14)
O50.0485 (16)0.0330 (14)0.0552 (17)0.0104 (13)0.0231 (14)0.0060 (13)
O60.0427 (15)0.072 (2)0.0398 (14)0.0081 (15)0.0172 (13)0.0090 (13)
N10.0160 (12)0.0187 (13)0.0244 (12)0.0036 (10)0.0106 (11)0.0065 (11)
C10.0139 (13)0.0157 (15)0.0108 (11)0.0032 (9)0.0054 (10)0.0027 (9)
C20.0190 (13)0.0106 (13)0.0178 (12)0.0004 (10)0.0088 (11)0.0009 (9)
C30.0134 (13)0.0172 (16)0.0178 (12)0.0026 (10)0.0057 (10)0.0019 (10)
C40.0164 (13)0.0118 (12)0.0125 (12)0.0040 (10)0.0055 (11)0.0010 (10)
C50.0184 (14)0.0138 (12)0.0217 (14)0.0003 (12)0.0082 (12)0.0044 (11)
C60.0135 (13)0.0140 (13)0.0224 (13)0.0030 (11)0.0063 (11)0.0010 (11)
C70.0143 (12)0.0120 (12)0.0133 (12)0.0016 (9)0.0053 (10)0.0011 (9)
C80.0145 (13)0.0239 (15)0.0148 (12)0.0049 (11)0.0079 (10)0.0031 (11)
C90.0292 (18)0.0236 (17)0.047 (2)0.0087 (13)0.0251 (16)0.0051 (14)
Geometric parameters (Å, º) top
S1—O31.433 (2)C1—C71.513 (3)
S1—O41.443 (2)C2—C31.375 (4)
S1—O61.488 (3)C2—H20.9500
S1—O51.492 (3)C3—C41.392 (4)
O1—C41.368 (3)C3—H30.9500
O1—H10.8400C4—C51.386 (4)
O2—C71.438 (3)C5—C61.390 (4)
O2—C7i1.438 (3)C5—H50.9500
O5—H1S0.9095C6—H60.9500
O6—H2S1.0540C7—C81.517 (4)
N1—C91.477 (4)C7—H71.0000
N1—C81.489 (3)C8—H8A0.9900
N1—H1N0.83 (3)C8—H8B0.9900
N1—H2N0.82 (3)C9—H9A0.9800
C1—C61.383 (4)C9—H9B0.9800
C1—C21.395 (4)C9—H9C0.9800
O3—S1—O4112.25 (15)O1—C4—C3122.1 (2)
O3—S1—O6111.20 (16)C5—C4—C3119.8 (2)
O4—S1—O6107.16 (15)C4—C5—C6119.6 (3)
O3—S1—O5110.11 (14)C4—C5—H5120.2
O4—S1—O5111.70 (16)C6—C5—H5120.2
O6—S1—O5104.10 (17)C1—C6—C5121.0 (2)
C4—O1—H1109.5C1—C6—H6119.5
C7—O2—C7i113.6 (3)C5—C6—H6119.5
S1—O5—H1S102.3O2—C7—C1113.45 (19)
S1—O6—H2S119.6O2—C7—C8105.9 (2)
C9—N1—C8112.3 (2)C1—C7—C8109.2 (2)
C9—N1—H1N109 (2)O2—C7—H7109.4
C8—N1—H1N102 (2)C1—C7—H7109.4
C9—N1—H2N114 (2)C8—C7—H7109.4
C8—N1—H2N104 (2)N1—C8—C7112.5 (2)
H1N—N1—H2N114 (3)N1—C8—H8A109.1
C6—C1—C2118.7 (2)C7—C8—H8A109.1
C6—C1—C7120.9 (2)N1—C8—H8B109.1
C2—C1—C7120.3 (2)C7—C8—H8B109.1
C3—C2—C1120.8 (2)H8A—C8—H8B107.8
C3—C2—H2119.6N1—C9—H9A109.5
C1—C2—H2119.6N1—C9—H9B109.5
C2—C3—C4120.1 (2)H9A—C9—H9B109.5
C2—C3—H3120.0N1—C9—H9C109.5
C4—C3—H3120.0H9A—C9—H9C109.5
O1—C4—C5118.1 (2)H9B—C9—H9C109.5
C6—C1—C2—C30.6 (4)C7i—O2—C7—C170.07 (17)
C7—C1—C2—C3175.4 (2)C7i—O2—C7—C8170.1 (2)
C1—C2—C3—C40.4 (4)C6—C1—C7—O2139.0 (2)
C2—C3—C4—O1178.7 (2)C2—C1—C7—O245.1 (3)
C2—C3—C4—C50.2 (4)C6—C1—C7—C8103.1 (3)
O1—C4—C5—C6178.8 (2)C2—C1—C7—C872.8 (3)
C3—C4—C5—C60.1 (4)C9—N1—C8—C7169.9 (2)
C2—C1—C6—C50.5 (4)O2—C7—C8—N159.6 (3)
C7—C1—C6—C5175.4 (2)C1—C7—C8—N1177.9 (2)
C4—C5—C6—C10.3 (4)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3ii0.841.952.739 (3)155
N1—H1N···O4i0.83 (3)1.93 (3)2.700 (4)153 (3)
N1—H2N···O1iii0.82 (3)2.27 (3)2.999 (3)149 (3)
O5—H1S···O5iv0.911.652.502 (6)155
O6—H2S···O6ii1.051.602.493 (5)139
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z; (iii) x+1/2, y1/2, z+1; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC18H26N2O32+·2HSO4
Mr512.54
Crystal system, space groupMonoclinic, C2
Temperature (K)123
a, b, c (Å)13.7204 (9), 11.5853 (5), 7.6579 (5)
β (°) 116.413 (8)
V3)1090.19 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.23 × 0.15 × 0.11
Data collection
DiffractometerOxford Diffraction Gemini S CCD
diffractometer
Absorption correctionMulti-scan
(ABSPACK; Oxford Diffraction, 2007)
Tmin, Tmax0.974, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5888, 2401, 2034
Rint0.027
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.111, 1.03
No. of reflections2401
No. of parameters161
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.43
Absolute structureFlack (1983), 1032 Friedel pairs
Absolute structure parameter0.08 (11)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.841.952.739 (3)155.2
N1—H1N···O4ii0.83 (3)1.93 (3)2.700 (4)153 (3)
N1—H2N···O1iii0.82 (3)2.27 (3)2.999 (3)149 (3)
O5—H1S···O5iv0.911.652.502 (6)155.1
O6—H2S···O6i1.051.602.493 (5)139.2
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1; (iii) x+1/2, y1/2, z+1; (iv) x, y, z+1.
 

Acknowledgements

The authors thank Schering-Plough for funding towards a studentship (CAM).

References

First citationBlanck, H. M., Serdula, M. K., Gillespie, C., Galuska, D. A., Sharpe, P. A., Conway, J. M., Kettel, L. & Ainsworth, B. E. (2007). J. Am. Dietetic Assoc. 107, 441–447.  Web of Science CrossRef Google Scholar
First citationBruice, P. Y. (2007). Organic Chemistry, 5th ed., pp. 441–442. New Jersey: Pearson Prentice Hall.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHaller, C. A., Duan, M. J., Jacob, P. & Benowitz, I. (2008). Br. J. Clin. Pharm. 65, 833–840.  Web of Science CrossRef Google Scholar
First citationJacques, J., Collet, A. & Wilen, S. H. (1981). Enantiomers, Racemates and Resolutions. New York: Wiley,.  Google Scholar
First citationMukhopadhyay, B. P. & Dattagupta, J. K. (1984). Acta Cryst. A40, C283.  CrossRef IUCr Journals Google Scholar
First citationMukhopadhyay, B. P. & Dattagupta, J. K. (1988). J. Crystallogr. Spectrosc. Res. 18, 509–516.  CSD CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD, CrysAlis RED and ABSPACK. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1768-o1769
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds