organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(6-Bromo-2-meth­­oxy-3-quinol­yl)phenyl­meth­yl]-2-morpholino-N-(1-phenyl­ethyl)acetamide

aCollege of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China, and bLaboratory of Coordination Chemistry, Shenyang Institute of Chemical Technology, Shenyang 110142, People's Republic of China
*Correspondence e-mail: suntiemin@gmail.com

(Received 12 June 2009; accepted 10 July 2009; online 18 July 2009)

In the title compound, C31H32BrN3O3, the morpholine ring adopts a chair conformation, and the planar quinoline system is twisted with respect to the phenyl rings, with dihedral angles of 17.6 (4) and 75.1 (3)°. Intramolecular C—H⋯O and C—H⋯N hydrogen bonds are present. The crystal packing is stabilized by weak C—H⋯O hydrogen bonding and C—H⋯π interactions.

Related literature

For the synthesis of other phamaceutically active derivatives through conventional and other synthetic routes, see: Andries et al. (2005[Andries, K., Verhasselt, P., Guillemont, J., Göhlmann, H. W. H., Neefs, J. M., Winkler, H., Gestel, J. V., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N. & Jarlier, V. (2005). Science, 307, 223-227.]); Gaurrand et al. (2006[Gaurrand, S., Desjardins, S., Meyer, C., Bonnet, P., Argoullon, J.-M., Qulyadi, H. & Guillemont, J. (2006). Chem. Biol. Drug Des. 68, 77-84.]); Mao et al. (2007[Mao, J. L., Wang, Y. H., Wan, B. J., Kozikowski, A. P. & Franzblau, S. G. (2007). ChemMedChem, 2, 1624-1630.]); Dalla Via et al. (2008[Dalla Via, L., Gia, O., Gasparotto, V. & Ferlin, M. G. (2008). Eur. J. Med. Chem. 43, 429-434.]). For related structures, see: Petit et al. (2007[Petit, S., Coquerel, G., Meyer, C. & Guillemont, J. (2007). J. Mol. Struct. 837, 252-256.]); Rahmani et al. (2009[Rahmani, H., Pirelahi, H. & Ng, S. W. (2009). Acta Cryst. E65, o603.]).

[Scheme 1]

Experimental

Crystal data
  • C31H32BrN3O3

  • Mr = 574.50

  • Triclinic, P 1

  • a = 7.8696 (14) Å

  • b = 9.4558 (16) Å

  • c = 9.8018 (17) Å

  • α = 90.544 (2)°

  • β = 100.562 (3)°

  • γ = 104.618 (2)°

  • V = 692.6 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.52 mm−1

  • T = 298 K

  • 0.45 × 0.33 × 0.31 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.525, Tmax = 0.625

  • 4628 measured reflections

  • 3796 independent reflections

  • 2917 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.236

  • S = 1.02

  • 3796 reflections

  • 346 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.47 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1149 Friedel pairs

  • Flack parameter: 0.14 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯N3 0.98 2.55 3.105 (7) 116
C25—H25⋯O2 0.93 2.45 3.153 (7) 133
C30—H30⋯O2i 0.93 2.59 3.399 (10) 145
C7—H7BCg4ii 0.96 3.15 3.988 (8) 147
C23—H23⋯Cg5iii 0.93 2.79 3.662 (8) 157
Symmetry codes: (i) x-1, y, z; (ii) x, y, z+1; (iii) x+1, y, z. Cg4 and Cg5 are the centroids of the O3,C1,C2,N3,C3,C4 and C27–C32 rings, respectively.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The quinolines and their derivatives as a class of extremely important heterocyclic compounds are used in a wide array of synthetic and medcinal applications. Some quinoline derivatives can give effective and good quality drugs treating many cancers (Dalla Via et al., 2008), and also used as antifungals and antituberculostatics drugs (Andries et al., 2005; Mao et al., 2007; Gaurrand et al., 2006). We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the morpholine system exists in a chair conformation. The dihedral angles of aromatic rings are different from related structure TMC-207 (Petit et al., 2007; Rahmani et al., 2009), which has been completed Phase II clinical, and will be marked in 2012 as a kind of antituberculostatics drug. The dihedral angle between phenyl ring [C9—C14] and substituted quinolinyl groups is 17.6 (4)°, the dihedral angle between phenyl ring [C27—C32] and substituted quinolinyl groups is 75.1 (3)°, and the dihedral angle between phenyl ring [C9—C14] and phenyl ring[C27—C32] is 68.3 (4)°; while the dihedral angles between phenyl and substituted quinolinyl groups in related structure TMC-207 is 97.4°, and naphthalenyl and substituted quinolinyl groups is nearly coplanar. The distance of the centroids between the phenyl ring [C9—C14] and the ring containing N of the substituted quinolinyl groups is 3.598 Å. The results suggest that the differences between them are caused by steric three-dimensional space. The structural cohesion of the title compound is ensured by weaker contacts. The C—H···O and C—H···N hydrogen bonding is present in the crystal structure (Table 1).

Related literature top

For general background, see: Andries et al. (2005); Gaurrand et al. (2006); Mao et al. (2007); Dalla Via et al. (2008). For related crystal structures, see: Petit et al. (2007); Rahmani et al. (2009).

Experimental top

To a solution of N-((6-bromo-2-methoxyquinolin-3-yl)phenylmethyl)-2- chloro-N-(1-phenylethyl)acetamide (1 mmol) and potassium carbonate (5 mmol) in acetonitrile (50 ml), morpholine (1 mmol) was added. The mixture was stirred for 6 h below 353 K. The reaction mixture was left for 2 h and then diluted with water (50 ml). The resulting precipitate was collected by extraction, distillation and purified on silica gel column (30% ethyl acetate in hexane) to give white powder (91.2% yield). Crystals suitable for X-ray analysis were obtained from acetonitrile solution by slow evaporation.

Refinement top

All H atoms were geometrically positioned (C—H 0.93–0.98 Å) and treated as riding, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with all non-H atom-labeling scheme and ellipsoids drawn at the 30% probability level.
N-[(6-Bromo-2-methoxy-3-quinolyl)phenylmethyl]-2-morpholino- N-(1-phenylethyl)acetamide top
Crystal data top
C31H32BrN3O3Z = 1
Mr = 574.50F(000) = 298
Triclinic, P1Dx = 1.377 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8696 (14) ÅCell parameters from 3537 reflections
b = 9.4558 (16) Åθ = 2.1–25.9°
c = 9.8018 (17) ŵ = 1.52 mm1
α = 90.544 (2)°T = 298 K
β = 100.562 (3)°Prism, colorless
γ = 104.618 (2)°0.45 × 0.33 × 0.31 mm
V = 692.6 (2) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3796 independent reflections
Radiation source: fine-focus sealed tube2917 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.9°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 98
Tmin = 0.525, Tmax = 0.625k = 1111
4628 measured reflectionsl = 1012
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.076H-atom parameters constrained
wR(F2) = 0.236 w = 1/[σ2(Fo2) + (0.1743P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3796 reflectionsΔρmax = 0.66 e Å3
346 parametersΔρmin = 0.47 e Å3
4 restraintsAbsolute structure: Flack (1983), 1149 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.14 (2)
Crystal data top
C31H32BrN3O3γ = 104.618 (2)°
Mr = 574.50V = 692.6 (2) Å3
Triclinic, P1Z = 1
a = 7.8696 (14) ÅMo Kα radiation
b = 9.4558 (16) ŵ = 1.52 mm1
c = 9.8018 (17) ÅT = 298 K
α = 90.544 (2)°0.45 × 0.33 × 0.31 mm
β = 100.562 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3796 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2917 reflections with I > 2σ(I)
Tmin = 0.525, Tmax = 0.625Rint = 0.019
4628 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.076H-atom parameters constrained
wR(F2) = 0.236Δρmax = 0.66 e Å3
S = 1.02Δρmin = 0.47 e Å3
3796 reflectionsAbsolute structure: Flack (1983), 1149 Friedel pairs
346 parametersAbsolute structure parameter: 0.14 (2)
4 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.24839 (17)0.39015 (15)0.05433 (14)0.1036 (5)
C40.3479 (12)0.0267 (12)0.8340 (10)0.072 (2)
H4A0.33640.07120.85230.087*
H4B0.22880.08990.80160.087*
C30.4565 (11)0.0236 (10)0.7234 (9)0.0593 (19)
H3A0.46100.12230.69990.071*
H3B0.40070.01470.64040.071*
C10.5983 (15)0.0096 (16)1.0047 (11)0.093 (3)
H1A0.65130.02861.08890.111*
H1B0.59280.10831.02740.111*
C20.7147 (14)0.0142 (12)0.8971 (10)0.078 (3)
H2A0.83280.07770.93220.093*
H2B0.72730.08330.87880.093*
C50.7473 (10)0.0755 (8)0.6650 (7)0.0459 (16)
H5A0.75800.02180.64330.055*
H5B0.86640.13650.70200.055*
C60.6689 (8)0.1390 (6)0.5298 (6)0.0317 (12)
C70.5793 (12)0.4161 (8)0.7307 (9)0.060 (2)
H7A0.52320.48040.67450.090*
H7B0.63320.46320.82100.090*
H7C0.49110.32760.74000.090*
C80.7214 (9)0.3799 (6)0.6625 (6)0.0373 (14)
H80.79060.33060.73070.045*
C90.8530 (10)0.5077 (7)0.6180 (6)0.0398 (14)
C141.0104 (10)0.4857 (8)0.5883 (9)0.0508 (16)
H141.03860.39710.60650.061*
C131.1252 (11)0.5939 (9)0.5320 (10)0.059 (2)
H131.22870.57580.51120.070*
C121.0920 (12)0.7264 (8)0.5058 (10)0.063 (2)
H121.17410.79980.47210.076*
C110.9277 (13)0.7502 (8)0.5314 (11)0.066 (2)
H110.89440.83520.50580.079*
C100.8187 (11)0.6417 (7)0.5959 (9)0.0532 (18)
H100.72010.66090.62460.064*
C150.5369 (8)0.3306 (6)0.4201 (6)0.0350 (13)
H150.49950.41060.46000.042*
C170.6440 (8)0.4009 (6)0.3131 (6)0.0332 (13)
C180.6119 (8)0.5339 (6)0.2557 (6)0.0328 (12)
C190.8276 (8)0.5586 (6)0.1238 (6)0.0353 (13)
C200.9212 (10)0.6379 (8)0.0287 (7)0.0461 (16)
H200.89670.72520.00030.055*
C211.0491 (11)0.5886 (8)0.0229 (8)0.0540 (18)
H211.11070.64230.08590.065*
C221.0847 (9)0.4566 (8)0.0209 (7)0.0498 (17)
C230.9987 (10)0.3773 (7)0.1165 (7)0.0419 (14)
H231.02670.29120.14570.050*
C240.8690 (8)0.4261 (6)0.1699 (6)0.0357 (13)
C250.7735 (8)0.3516 (6)0.2667 (6)0.0323 (12)
H250.79920.26620.30040.039*
C260.4505 (13)0.7175 (8)0.2544 (10)0.067 (2)
H26A0.50930.79450.32450.101*
H26B0.32420.70920.23600.101*
H26C0.49660.73960.17070.101*
C310.2225 (10)0.1953 (8)0.4322 (9)0.0499 (17)
H310.23640.25110.51410.060*
C300.0646 (10)0.0914 (9)0.3835 (11)0.062 (2)
H300.02740.07710.43350.074*
C290.0405 (10)0.0078 (10)0.2614 (12)0.065 (2)
H290.06760.06080.22860.078*
C280.1781 (13)0.0275 (10)0.1892 (11)0.072 (3)
H280.16580.03030.10900.086*
C270.3378 (8)0.1360 (7)0.2379 (8)0.0468 (16)
H270.42870.15300.18670.056*
C320.3609 (9)0.2165 (7)0.3588 (7)0.0383 (14)
N10.7011 (8)0.6132 (5)0.1700 (6)0.0387 (12)
N20.6404 (7)0.2747 (5)0.5409 (5)0.0327 (10)
N30.6363 (7)0.0673 (5)0.7712 (6)0.0411 (12)
O10.4833 (7)0.5790 (4)0.3030 (5)0.0468 (12)
O20.6376 (6)0.0666 (4)0.4219 (5)0.0418 (10)
O30.4266 (10)0.0772 (9)0.9568 (7)0.088 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1037 (8)0.1453 (11)0.0862 (8)0.0497 (7)0.0549 (6)0.0297 (7)
C40.056 (5)0.088 (6)0.069 (6)0.001 (4)0.029 (4)0.021 (5)
C30.058 (5)0.071 (5)0.048 (4)0.009 (4)0.017 (3)0.017 (4)
C10.074 (7)0.142 (9)0.057 (6)0.010 (7)0.025 (5)0.039 (6)
C20.090 (7)0.089 (6)0.050 (5)0.011 (5)0.016 (5)0.042 (5)
C50.052 (4)0.058 (4)0.041 (4)0.028 (3)0.024 (3)0.021 (3)
C60.036 (3)0.029 (3)0.035 (3)0.010 (2)0.018 (2)0.012 (2)
C70.077 (5)0.050 (4)0.053 (5)0.005 (4)0.043 (4)0.015 (3)
C80.049 (4)0.035 (3)0.027 (3)0.005 (3)0.014 (3)0.004 (2)
C90.055 (4)0.037 (3)0.026 (3)0.008 (3)0.009 (3)0.001 (2)
C140.048 (4)0.049 (4)0.058 (5)0.011 (3)0.020 (3)0.012 (3)
C130.039 (4)0.071 (5)0.073 (6)0.015 (3)0.029 (4)0.024 (4)
C120.071 (5)0.049 (4)0.064 (5)0.002 (4)0.021 (4)0.004 (4)
C110.080 (6)0.039 (3)0.084 (6)0.006 (4)0.042 (5)0.015 (4)
C100.061 (4)0.041 (3)0.067 (5)0.015 (3)0.034 (4)0.001 (3)
C150.043 (3)0.033 (3)0.037 (3)0.017 (2)0.020 (3)0.014 (2)
C170.042 (3)0.028 (3)0.029 (3)0.005 (2)0.009 (2)0.005 (2)
C180.032 (3)0.032 (3)0.034 (3)0.007 (2)0.010 (2)0.007 (2)
C190.039 (3)0.039 (3)0.024 (3)0.001 (2)0.008 (2)0.008 (2)
C200.052 (4)0.048 (3)0.038 (4)0.005 (3)0.018 (3)0.019 (3)
C210.071 (5)0.058 (4)0.038 (4)0.009 (4)0.033 (3)0.026 (3)
C220.044 (4)0.071 (5)0.035 (4)0.010 (3)0.018 (3)0.008 (3)
C230.048 (4)0.051 (3)0.032 (3)0.016 (3)0.019 (3)0.014 (3)
C240.036 (3)0.040 (3)0.028 (3)0.005 (2)0.005 (2)0.005 (2)
C250.037 (3)0.035 (3)0.032 (3)0.011 (2)0.020 (2)0.017 (2)
C260.087 (6)0.051 (4)0.093 (7)0.046 (4)0.051 (5)0.045 (4)
C310.056 (4)0.052 (4)0.058 (4)0.029 (3)0.031 (3)0.023 (3)
C300.034 (4)0.061 (4)0.102 (7)0.017 (3)0.033 (4)0.048 (5)
C290.036 (4)0.064 (5)0.090 (7)0.003 (3)0.012 (4)0.031 (5)
C280.067 (6)0.066 (5)0.065 (6)0.002 (4)0.003 (5)0.000 (4)
C270.026 (3)0.058 (4)0.055 (4)0.000 (3)0.018 (3)0.003 (3)
C320.036 (3)0.044 (3)0.040 (4)0.014 (3)0.015 (3)0.017 (3)
N10.045 (3)0.037 (2)0.034 (3)0.005 (2)0.015 (2)0.009 (2)
N20.040 (3)0.035 (2)0.025 (2)0.009 (2)0.013 (2)0.0047 (19)
N30.047 (3)0.041 (3)0.038 (3)0.011 (2)0.014 (2)0.012 (2)
O10.062 (3)0.036 (2)0.055 (3)0.023 (2)0.030 (2)0.021 (2)
O20.049 (3)0.037 (2)0.044 (3)0.0130 (19)0.018 (2)0.0039 (19)
O30.090 (5)0.117 (5)0.062 (4)0.017 (4)0.036 (4)0.051 (4)
Geometric parameters (Å, º) top
Br1—C221.829 (8)C15—N21.490 (8)
C4—O31.396 (12)C15—C171.519 (9)
C4—C31.495 (13)C15—C321.540 (9)
C4—H4A0.9700C15—H150.9800
C4—H4B0.9700C17—C251.367 (9)
C3—N31.448 (10)C17—C181.444 (8)
C3—H3A0.9700C18—N11.313 (8)
C3—H3B0.9700C18—N11.313 (8)
C1—O31.386 (13)C18—O11.344 (8)
C1—C21.513 (16)C19—N11.372 (9)
C1—H1A0.9700C19—N11.372 (9)
C1—H1B0.9700C19—C201.400 (9)
C2—N31.430 (10)C19—C241.429 (8)
C2—H2A0.9700C20—C211.380 (11)
C2—H2B0.9700C20—H200.9300
C5—N31.468 (9)C21—C221.402 (11)
C5—C61.549 (8)C21—H210.9300
C5—H5A0.9700C22—C231.374 (10)
C5—H5B0.9700C23—C241.400 (10)
C6—O21.206 (8)C23—H230.9300
C6—O21.206 (8)C24—C251.403 (9)
C6—N21.364 (7)C25—H250.9300
C7—C81.509 (10)C26—O11.465 (7)
C7—H7A0.9600C26—H26A0.9600
C7—H7B0.9600C26—H26B0.9600
C7—H7C0.9600C26—H26C0.9600
C8—N21.482 (8)C31—C301.377 (12)
C8—C91.506 (9)C31—C321.387 (10)
C8—H80.9800C31—H310.9300
C9—C101.372 (9)C30—C291.384 (15)
C9—C141.387 (10)C30—H300.9300
C14—C131.376 (12)C29—C281.375 (14)
C14—H140.9300C29—H290.9300
C13—C121.361 (12)C28—C271.407 (11)
C13—H130.9300C28—H280.9300
C12—C111.431 (13)C27—C321.360 (11)
C12—H120.9300C27—H270.9300
C11—C101.398 (12)N1—N10.000
C11—H110.9300O2—O20.000
C10—H100.9300
O3—C4—C3111.4 (8)N2—C15—H15104.8
O3—C4—H4A109.3C17—C15—H15104.8
C3—C4—H4A109.3C32—C15—H15104.8
O3—C4—H4B109.3C25—C17—C18115.7 (5)
C3—C4—H4B109.3C25—C17—C15125.9 (5)
H4A—C4—H4B108.0C18—C17—C15118.4 (5)
N3—C3—C4110.2 (7)N1—C18—O1119.9 (5)
N3—C3—H3A109.6N1—C18—O1119.9 (5)
C4—C3—H3A109.6N1—C18—C17125.8 (6)
N3—C3—H3B109.6N1—C18—C17125.8 (6)
C4—C3—H3B109.6O1—C18—C17114.1 (5)
H3A—C3—H3B108.1N1—C19—C20118.1 (6)
O3—C1—C2111.4 (10)N1—C19—C20118.1 (6)
O3—C1—H1A109.4N1—C19—C24122.9 (6)
C2—C1—H1A109.4N1—C19—C24122.9 (6)
O3—C1—H1B109.4C20—C19—C24118.9 (6)
C2—C1—H1B109.4C21—C20—C19121.2 (6)
H1A—C1—H1B108.0C21—C20—H20119.4
N3—C2—C1110.1 (8)C19—C20—H20119.4
N3—C2—H2A109.6C20—C21—C22119.0 (6)
C1—C2—H2A109.6C20—C21—H21120.5
N3—C2—H2B109.6C22—C21—H21120.5
C1—C2—H2B109.6C23—C22—C21121.6 (7)
H2A—C2—H2B108.2C23—C22—Br1120.3 (6)
N3—C5—C6112.5 (5)C21—C22—Br1118.1 (5)
N3—C5—H5A109.1C22—C23—C24119.9 (6)
C6—C5—H5A109.1C22—C23—H23120.0
N3—C5—H5B109.1C24—C23—H23120.0
C6—C5—H5B109.1C23—C24—C25123.8 (5)
H5A—C5—H5B107.8C23—C24—C19119.3 (6)
O2—C6—N2124.1 (5)C25—C24—C19116.9 (6)
O2—C6—N2124.1 (5)C17—C25—C24121.9 (5)
O2—C6—C5118.5 (5)C17—C25—H25119.0
O2—C6—C5118.5 (5)C24—C25—H25119.0
N2—C6—C5117.4 (5)O1—C26—H26A109.5
C8—C7—H7A109.5O1—C26—H26B109.5
C8—C7—H7B109.5H26A—C26—H26B109.5
H7A—C7—H7B109.5O1—C26—H26C109.5
C8—C7—H7C109.5H26A—C26—H26C109.5
H7A—C7—H7C109.5H26B—C26—H26C109.5
H7B—C7—H7C109.5C30—C31—C32119.8 (8)
N2—C8—C9108.4 (5)C30—C31—H31120.1
N2—C8—C7111.1 (5)C32—C31—H31120.1
C9—C8—C7116.3 (5)C31—C30—C29121.1 (8)
N2—C8—H8106.9C31—C30—H30119.4
C9—C8—H8106.9C29—C30—H30119.4
C7—C8—H8106.9C28—C29—C30119.2 (8)
C10—C9—C14118.5 (7)C28—C29—H29120.4
C10—C9—C8123.0 (6)C30—C29—H29120.4
C14—C9—C8118.3 (6)C29—C28—C27119.4 (9)
C13—C14—C9120.5 (7)C29—C28—H28120.3
C13—C14—H14119.7C27—C28—H28120.3
C9—C14—H14119.7C32—C27—C28120.9 (8)
C12—C13—C14122.1 (8)C32—C27—H27119.5
C12—C13—H13119.0C28—C27—H27119.5
C14—C13—H13119.0C27—C32—C31119.5 (6)
C13—C12—C11118.4 (8)C27—C32—C15122.7 (6)
C13—C12—H12120.8C31—C32—C15117.7 (6)
C11—C12—H12120.8C18—N1—C19116.6 (5)
C10—C11—C12118.1 (7)C6—N2—C8124.1 (5)
C10—C11—H11121.0C6—N2—C15119.7 (5)
C12—C11—H11121.0C8—N2—C15115.9 (4)
C9—C10—C11121.9 (7)C2—N3—C3109.3 (6)
C9—C10—H10119.0C2—N3—C5111.6 (6)
C11—C10—H10119.0C3—N3—C5112.2 (6)
N2—C15—C17115.4 (5)C18—O1—C26116.8 (5)
N2—C15—C32111.3 (5)C1—O3—C4110.7 (7)
C17—C15—C32114.6 (5)
O3—C4—C3—N357.5 (10)C31—C30—C29—C281.2 (11)
O3—C1—C2—N357.8 (12)C30—C29—C28—C272.5 (12)
N3—C5—C6—O2123.0 (6)C29—C28—C27—C323.3 (12)
N3—C5—C6—O2123.0 (6)C28—C27—C32—C312.6 (10)
N3—C5—C6—N257.3 (8)C28—C27—C32—C15176.7 (7)
N2—C8—C9—C10104.9 (7)C30—C31—C32—C271.2 (9)
C7—C8—C9—C1021.1 (9)C30—C31—C32—C15178.1 (6)
N2—C8—C9—C1470.2 (7)N2—C15—C32—C27104.6 (7)
C7—C8—C9—C14163.8 (7)C17—C15—C32—C2728.5 (8)
C10—C9—C14—C132.9 (11)N2—C15—C32—C3174.7 (7)
C8—C9—C14—C13172.5 (8)C17—C15—C32—C31152.2 (5)
C9—C14—C13—C121.3 (13)O1—C18—N1—N10.0 (5)
C14—C13—C12—C113.3 (14)C17—C18—N1—N10.0 (6)
C13—C12—C11—C106.8 (13)N1—C18—N1—C190 (100)
C14—C9—C10—C116.7 (12)O1—C18—N1—C19178.6 (5)
C8—C9—C10—C11168.4 (7)C17—C18—N1—C194.8 (9)
C12—C11—C10—C98.7 (13)C20—C19—N1—N10.0 (6)
N2—C15—C17—C2540.5 (8)C24—C19—N1—N10.0 (5)
C32—C15—C17—C2590.7 (7)N1—C19—N1—C180 (100)
N2—C15—C17—C18137.9 (5)C20—C19—N1—C18177.9 (6)
C32—C15—C17—C1890.9 (6)C24—C19—N1—C182.9 (8)
C25—C17—C18—N13.5 (9)O2—C6—N2—C8162.8 (6)
C15—C17—C18—N1175.0 (6)O2—C6—N2—C8162.8 (6)
C25—C17—C18—N13.5 (9)C5—C6—N2—C816.9 (8)
C15—C17—C18—N1175.0 (6)O2—C6—N2—C1510.9 (9)
C25—C17—C18—O1179.7 (5)O2—C6—N2—C1510.9 (9)
C15—C17—C18—O11.7 (7)C5—C6—N2—C15169.4 (5)
N1—C19—C20—C21179.4 (6)C9—C8—N2—C6112.1 (6)
N1—C19—C20—C21179.4 (6)C7—C8—N2—C6119.0 (7)
C24—C19—C20—C211.3 (10)C9—C8—N2—C1561.8 (7)
C19—C20—C21—C220.2 (11)C7—C8—N2—C1567.2 (7)
C20—C21—C22—C231.7 (11)C17—C15—N2—C683.9 (6)
C20—C21—C22—Br1177.6 (6)C32—C15—N2—C648.9 (7)
C21—C22—C23—C241.6 (11)C17—C15—N2—C890.3 (6)
Br1—C22—C23—C24177.7 (5)C32—C15—N2—C8137.0 (5)
C22—C23—C24—C25179.4 (6)C1—C2—N3—C356.3 (11)
C22—C23—C24—C190.0 (9)C1—C2—N3—C5179.0 (8)
N1—C19—C24—C23179.4 (6)C4—C3—N3—C256.6 (10)
N1—C19—C24—C23179.4 (6)C4—C3—N3—C5179.1 (7)
C20—C19—C24—C231.4 (8)C6—C5—N3—C2177.6 (7)
N1—C19—C24—C250.1 (8)C6—C5—N3—C359.4 (7)
N1—C19—C24—C250.1 (8)N1—C18—O1—C260.0 (9)
C20—C19—C24—C25179.1 (6)N1—C18—O1—C260.0 (9)
C18—C17—C25—C240.1 (8)C17—C18—O1—C26176.9 (6)
C15—C17—C25—C24178.3 (6)N2—C6—O2—O20.0 (5)
C23—C24—C25—C17178.0 (6)C5—C6—O2—O20.0 (5)
C19—C24—C25—C171.4 (8)C2—C1—O3—C457.8 (13)
C32—C31—C30—C290.5 (10)C3—C4—O3—C158.1 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···N30.982.553.105 (7)116
C25—H25···O20.932.453.153 (7)133
C15—H15···O10.982.242.722 (8)109
C30—H30···O2i0.932.593.399 (10)145
C7—H7B···Cg4ii0.963.153.988 (8)147
C23—H23···Cg5iii0.932.793.662 (8)157
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC31H32BrN3O3
Mr574.50
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.8696 (14), 9.4558 (16), 9.8018 (17)
α, β, γ (°)90.544 (2), 100.562 (3), 104.618 (2)
V3)692.6 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.52
Crystal size (mm)0.45 × 0.33 × 0.31
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.525, 0.625
No. of measured, independent and
observed [I > 2σ(I)] reflections
4628, 3796, 2917
Rint0.019
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.236, 1.02
No. of reflections3796
No. of parameters346
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.47
Absolute structureFlack (1983), 1149 Friedel pairs
Absolute structure parameter0.14 (2)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···N30.982.553.105 (7)116
C25—H25···O20.932.453.153 (7)132.8
C15—H15···O10.98002.240002.722 (8)108.79
C30—H30···O2i0.932.593.399 (10)145
C7—H7B···Cg4ii0.963.153.988 (8)147
C23—H23···Cg5iii0.932.793.662 (8)157
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x+1, y, z.
 

Acknowledgements

The authors acknowledge the College of Chemical Science and Engineering of Liaoning University for the X-ray data collection.

References

First citationAndries, K., Verhasselt, P., Guillemont, J., Göhlmann, H. W. H., Neefs, J. M., Winkler, H., Gestel, J. V., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N. & Jarlier, V. (2005). Science, 307, 223–227.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDalla Via, L., Gia, O., Gasparotto, V. & Ferlin, M. G. (2008). Eur. J. Med. Chem. 43, 429–434.  Web of Science PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGaurrand, S., Desjardins, S., Meyer, C., Bonnet, P., Argoullon, J.-M., Qulyadi, H. & Guillemont, J. (2006). Chem. Biol. Drug Des. 68, 77–84.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMao, J. L., Wang, Y. H., Wan, B. J., Kozikowski, A. P. & Franzblau, S. G. (2007). ChemMedChem, 2, 1624–1630.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPetit, S., Coquerel, G., Meyer, C. & Guillemont, J. (2007). J. Mol. Struct. 837, 252–256.  Web of Science CSD CrossRef CAS Google Scholar
First citationRahmani, H., Pirelahi, H. & Ng, S. W. (2009). Acta Cryst. E65, o603.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds