organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(1-Di­acetyl­amino-1H-tetra­zol-5-yl)acetamide

aState Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
*Correspondence e-mail: duzhiming430@sohu.com

(Received 6 July 2009; accepted 13 July 2009; online 18 July 2009)

In the crystal structure of the title compound, C7H10N6O3, there are N—H⋯O, N—H⋯N and C—H⋯O inter­actions, generating a three-dimensional supra­molecular network structure. A short intermolecular O⋯C contact of 2.8994 (18) Å is alsopresent in the crystal structure, but no ππ contacts are observed.

Related literature

For the preparation, see: Gaponnik & Karavai (1984[Gaponnik, P. N. & Karavai, V. P. (1984). Khim. Geterotsikl. Soedin. 12, 1683-1686.]). For general background to the use of 1, 5-diaminotetrazole as an intermediate in the preparation of tetrazole-containing compounds with prospective applications in energetic mater­ials, see: Galvez-Ruiz et al. (2005[Galvez-Ruiz, J. C., Holl, G., Karaghiosoff, K., Klapötke, T. M., Lohnwitz, K., Mayer, P., Noth, H., Polborn, K., Rohbogner, C. J., Suter, M. & Weigand, J. J. (2005). Inorg. Chem. 44, 4237-4253.]). For hydrogen-bond-length data, see: Desiraju & Steiner (1999[Desiraju, G. & Steiner, T. (1999). In The Weak Hydrogen Bond: Applications to Structural Chemistry and Biology. New York: Oxford University Press.]). For carbon­yl–carbonyl inter­actions, see: Allen et al. (1998[Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320-329.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10N6O3

  • Mr = 226.21

  • Monoclinic, P 21 /c

  • a = 6.973 (2) Å

  • b = 16.678 (5) Å

  • c = 8.871 (3) Å

  • β = 106.987 (4)°

  • V = 986.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 93 K

  • 0.60 × 0.25 × 0.18 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: none

  • 7848 measured reflections

  • 2255 independent reflections

  • 1898 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.089

  • S = 1.00

  • 2255 reflections

  • 152 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6N⋯O1i 0.902 (17) 1.955 (17) 2.7675 (16) 149.1 (14)
N6—H6N⋯N1i 0.902 (17) 2.473 (16) 3.1359 (18) 130.6 (13)
C3—H3A⋯O1ii 0.98 2.49 3.459 (2) 169
C7—H7C⋯O3iii 0.98 2.57 3.505 (2) 159
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

1, 5-Diaminotetrazole has been reported using as a valuable intermediate in preparation of tetrazole-containing compounds which might have prospective application in energetic materials (Gaponnik & Karavai, 1984; Galvez-Ruiz et al., 2005). The presence of three acetyl groups in the title compound may put itself as an intermediate for preparing derivatives which have a bigger molecule. The title compound had been prepared by Gaponnik & Karavai (1984). Herein we report its crystal structure.

The molecular structure of the title compound is presented in Fig. 1, the bond distances and bond angles in the title compound are as expected for a molecule of this kind. The molecules are linked to each other via N—H···O, N—H···N and C—H···O hydrogen bonds (Table 1). The range for the H···O distances agree with those found for weak C—H···O hydrogen bonds (Desiraju & Steiner, 1999). The O1···C4ii distance is 2.8994 (18) Å [symmetry code: (ii) x, 3/2-y, -1/2+z], this distance agrees with the disscusion of intermolecular C=O ···C=O interactions (Allen et al., 1998), which may contribute to the stabilization of crystal structure.

Related literature top

For the preparation, see: Gaponnik & Karavai (1984). For general background, see: Galvez-Ruiz et al. (2005). For hydrogen-bond-length data, see: Desiraju & Steiner (1999). For carbonyl–carbonyl interactions, see: Allen et al. (1998).

Experimental top

The title compound was prepared according to the literature method (Gaponnik & Karavai, 1984). 220 mg of obtained product was dissolved in the mixture solution of methanol (10 ml) and acetone (20 ml) and the solution was kept at room temperature to give suitable crystals for X-ray structure determination.

Refinement top

Amino H atoms were located in a difference Fourier maps and were refined isotropically. Methyl H-atoms were placed in calculated positions with C—H = 0.98 Å, and torsion angles were refined to fit the electron density with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
N-(1-Diacetylamino-1H-tetrazol-5-yl)acetamide top
Crystal data top
C7H10N6O3F(000) = 472
Mr = 226.21Dx = 1.523 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3214 reflections
a = 6.973 (2) Åθ = 3.1–27.5°
b = 16.678 (5) ŵ = 0.12 mm1
c = 8.871 (3) ÅT = 93 K
β = 106.987 (4)°Block, colourless
V = 986.6 (5) Å30.60 × 0.25 × 0.18 mm
Z = 4
Data collection top
Rigaku Saturn724+
diffractometer
1898 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.028
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
Detector resolution: 28.5714 pixels mm-1h = 98
Multi–scank = 2120
7848 measured reflectionsl = 1111
2255 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.046P)2 + 0.18P]
where P = (Fo2 + 2Fc2)/3
2255 reflections(Δ/σ)max < 0.001
152 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C7H10N6O3V = 986.6 (5) Å3
Mr = 226.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.973 (2) ŵ = 0.12 mm1
b = 16.678 (5) ÅT = 93 K
c = 8.871 (3) Å0.60 × 0.25 × 0.18 mm
β = 106.987 (4)°
Data collection top
Rigaku Saturn724+
diffractometer
1898 reflections with I > 2σ(I)
7848 measured reflectionsRint = 0.028
2255 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.27 e Å3
2255 reflectionsΔρmin = 0.31 e Å3
152 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle betweeex two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.98846 (13)0.79462 (5)0.37140 (10)0.0163 (2)
O20.33700 (14)0.66238 (7)0.56926 (11)0.0280 (3)
O30.77881 (14)0.53886 (6)0.89046 (10)0.0199 (2)
N10.71476 (16)0.66802 (7)0.30010 (12)0.0170 (2)
N20.60145 (16)0.59851 (7)0.26310 (12)0.0182 (3)
N30.56513 (16)0.56773 (6)0.38460 (12)0.0170 (2)
N40.65849 (16)0.61680 (6)0.50781 (12)0.0141 (2)
N50.64409 (15)0.60537 (6)0.65826 (12)0.0137 (2)
N60.85854 (15)0.73478 (6)0.55048 (12)0.0147 (2)
C10.74742 (18)0.67770 (7)0.45264 (14)0.0133 (3)
C20.46012 (19)0.63385 (8)0.68129 (15)0.0176 (3)
C30.4357 (2)0.62716 (9)0.84238 (15)0.0216 (3)
H3A0.31490.65620.84590.026*
H3B0.55310.65040.91950.026*
H3C0.42320.57050.86760.026*
C40.79059 (19)0.55442 (7)0.76155 (15)0.0153 (3)
C50.9522 (2)0.52400 (8)0.69584 (16)0.0206 (3)
H5A1.05700.49780.77980.025*
H5B1.01040.56900.65320.025*
H5C0.89490.48530.61160.025*
C60.98590 (18)0.78772 (7)0.50729 (14)0.0132 (3)
C71.1204 (2)0.83460 (8)0.63980 (15)0.0186 (3)
H7A1.24880.80660.67990.022*
H7B1.05720.84010.72450.022*
H7C1.14330.88790.60190.022*
H6N0.858 (2)0.7348 (10)0.652 (2)0.034 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0204 (5)0.0177 (5)0.0116 (4)0.0020 (4)0.0057 (4)0.0007 (4)
O20.0230 (5)0.0397 (6)0.0199 (5)0.0122 (5)0.0039 (4)0.0046 (4)
O30.0220 (5)0.0225 (5)0.0150 (5)0.0013 (4)0.0051 (4)0.0037 (4)
N10.0176 (6)0.0200 (6)0.0128 (5)0.0040 (4)0.0037 (4)0.0021 (4)
N20.0191 (6)0.0203 (6)0.0148 (5)0.0039 (4)0.0044 (4)0.0020 (4)
N30.0186 (6)0.0177 (6)0.0139 (5)0.0034 (4)0.0034 (4)0.0026 (4)
N40.0172 (5)0.0152 (5)0.0099 (5)0.0029 (4)0.0040 (4)0.0007 (4)
N50.0151 (5)0.0161 (5)0.0106 (5)0.0005 (4)0.0049 (4)0.0016 (4)
N60.0181 (5)0.0169 (6)0.0099 (5)0.0042 (4)0.0051 (4)0.0015 (4)
C10.0130 (6)0.0143 (6)0.0130 (6)0.0000 (5)0.0043 (5)0.0011 (5)
C20.0167 (7)0.0192 (7)0.0170 (6)0.0001 (5)0.0051 (5)0.0007 (5)
C30.0183 (7)0.0295 (8)0.0187 (7)0.0018 (5)0.0083 (6)0.0004 (6)
C40.0152 (7)0.0130 (6)0.0160 (6)0.0024 (5)0.0021 (5)0.0005 (5)
C50.0185 (7)0.0217 (7)0.0228 (7)0.0031 (5)0.0079 (6)0.0018 (6)
C60.0142 (6)0.0133 (6)0.0125 (6)0.0022 (5)0.0045 (5)0.0016 (5)
C70.0218 (7)0.0182 (7)0.0154 (6)0.0047 (5)0.0048 (5)0.0027 (5)
Geometric parameters (Å, º) top
O1—C61.2164 (15)N6—H6N0.900 (16)
O2—C21.2052 (16)C2—C31.4919 (18)
O3—C41.1987 (15)C3—H3A0.9800
N1—C11.3149 (16)C3—H3B0.9800
N1—N21.3871 (15)C3—H3C0.9800
N2—N31.2841 (15)C4—C51.5004 (18)
N3—N41.3684 (15)C5—H5A0.9800
N4—C11.3538 (16)C5—H5B0.9800
N4—N51.3806 (14)C5—H5C0.9800
N5—C41.4346 (16)C6—C71.4927 (17)
N5—C21.4374 (16)C7—H7A0.9800
N6—C11.3663 (16)C7—H7B0.9800
N6—C61.3834 (16)C7—H7C0.9800
C1—N1—N2105.16 (10)C2—C3—H3C109.5
N3—N2—N1111.96 (10)H3A—C3—H3C109.5
N2—N3—N4105.48 (10)H3B—C3—H3C109.5
C1—N4—N3108.73 (10)O3—C4—N5120.21 (12)
C1—N4—N5128.57 (10)O3—C4—C5124.47 (12)
N3—N4—N5122.52 (10)N5—C4—C5115.32 (11)
N4—N5—C4117.38 (10)C4—C5—H5A109.5
N4—N5—C2114.32 (10)C4—C5—H5B109.5
C4—N5—C2127.12 (10)H5A—C5—H5B109.5
C1—N6—C6124.02 (11)C4—C5—H5C109.5
C1—N6—H6N117.8 (11)H5A—C5—H5C109.5
C6—N6—H6N117.9 (11)H5B—C5—H5C109.5
N1—C1—N4108.66 (11)O1—C6—N6122.10 (12)
N1—C1—N6129.41 (11)O1—C6—C7122.90 (11)
N4—C1—N6121.84 (11)N6—C6—C7115.00 (11)
O2—C2—N5117.62 (12)C6—C7—H7A109.5
O2—C2—C3124.49 (12)C6—C7—H7B109.5
N5—C2—C3117.89 (11)H7A—C7—H7B109.5
C2—C3—H3A109.5C6—C7—H7C109.5
C2—C3—H3B109.5H7A—C7—H7C109.5
H3A—C3—H3B109.5H7B—C7—H7C109.5
C1—N1—N2—N30.53 (14)N5—N4—C1—N67.2 (2)
N1—N2—N3—N40.89 (14)C6—N6—C1—N110.5 (2)
N2—N3—N4—C10.93 (13)C6—N6—C1—N4165.81 (11)
N2—N3—N4—N5176.44 (11)N4—N5—C2—O21.79 (17)
C1—N4—N5—C496.01 (15)C4—N5—C2—O2165.32 (12)
N3—N4—N5—C489.42 (14)N4—N5—C2—C3177.37 (11)
C1—N4—N5—C295.54 (15)C4—N5—C2—C315.51 (18)
N3—N4—N5—C279.02 (14)N4—N5—C4—O3175.90 (11)
N2—N1—C1—N40.09 (14)C2—N5—C4—O39.13 (19)
N2—N1—C1—N6176.77 (12)N4—N5—C4—C54.14 (15)
N3—N4—C1—N10.63 (14)C2—N5—C4—C5170.91 (12)
N5—N4—C1—N1175.79 (11)C1—N6—C6—O110.13 (19)
N3—N4—C1—N6177.61 (11)C1—N6—C6—C7169.21 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6N···O1i0.902 (17)1.955 (17)2.7675 (16)149.1 (14)
N6—H6N···N1i0.902 (17)2.473 (16)3.1359 (18)130.6 (13)
C3—H3A···O1ii0.982.493.459 (2)169
C7—H7C···O3iii0.982.573.505 (2)159
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x1, y+3/2, z+1/2; (iii) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC7H10N6O3
Mr226.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)93
a, b, c (Å)6.973 (2), 16.678 (5), 8.871 (3)
β (°) 106.987 (4)
V3)986.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.60 × 0.25 × 0.18
Data collection
DiffractometerRigaku Saturn724+
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7848, 2255, 1898
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.089, 1.00
No. of reflections2255
No. of parameters152
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.31

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6N···O1i0.902 (17)1.955 (17)2.7675 (16)149.1 (14)
N6—H6N···N1i0.902 (17)2.473 (16)3.1359 (18)130.6 (13)
C3—H3A···O1ii0.982.49003.459 (2)169.00
C7—H7C···O3iii0.982.57003.505 (2)159.00
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x1, y+3/2, z+1/2; (iii) x+2, y+1/2, z+3/2.
 

Acknowledgements

This work was supported financially by the State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, China (No. ZDKT08–01).

References

First citationAllen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDesiraju, G. & Steiner, T. (1999). In The Weak Hydrogen Bond: Applications to Structural Chemistry and Biology. New York: Oxford University Press.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGalvez-Ruiz, J. C., Holl, G., Karaghiosoff, K., Klapötke, T. M., Lohnwitz, K., Mayer, P., Noth, H., Polborn, K., Rohbogner, C. J., Suter, M. & Weigand, J. J. (2005). Inorg. Chem. 44, 4237–4253.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGaponnik, P. N. & Karavai, V. P. (1984). Khim. Geterotsikl. Soedin. 12, 1683–1686.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds