organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(5-Methyl­sulfanyl-1,3,4-thia­diazol-2-yl)acetamide

aCollege of Chemistry and Life Science, Tianjin Normal University, Tianjin 300074, People's Republic of China
*Correspondence e-mail: hsxyzgy@mail.tjnu.edu.cn

(Received 21 July 2009; accepted 31 July 2009; online 12 August 2009)

In the title compound, C5H7N3OS2, inversion dimers linked by pairs of N—H⋯N hydrogen bonds occur, forming R22(8) ring motifs. These dimers are arranged into chains via inter­molecular C—H⋯O hydrogen bonds between the methylsulfanyl groups and the O atoms of the carbonyl groups. The acetamido-1,3,4-thio­diazole unit is essentially planar [r.m.s. deviation 0.045 (8) Å].

Related literature

For the applications of 1,3,4-thio­diazole and its derivatives in anti­microbial drugs and in the construction of metal-organic frameworks, see: Gardinier et al. (2007[Gardinier, J. R., Silva, R. M., Gwengo, C. & Lindeman, S. V. (2007). Chem. Commun. pp. 1524-1526.]); Mrozek et al. (2000[Mrozek, A., Karolak-Wojciechowska, J., Amiel, P. & Barbe, J. (2000). J. Mol. Struct. 524, 159-167.]); Xue et al. (2008[Xue, D.-X., Zhang, W.-X., Chen, X.-M. & Wang, H.-Z. (2008). Chem. Commun. pp. 1551-1553.]). For the synthesis, see: Clerici & Pocar (2001[Clerici, F. & Pocar, D. (2001). J. Med. Chem. 44, 931-936.]).

[Scheme 1]

Experimental

Crystal data
  • C5H7N3OS2

  • Mr = 189.26

  • Triclinic, [P \overline 1]

  • a = 5.0797 (10) Å

  • b = 7.9894 (16) Å

  • c = 10.081 (2) Å

  • α = 91.96 (3)°

  • β = 90.94 (3)°

  • γ = 105.27 (3)°

  • V = 394.32 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.62 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.836, Tmax = 0.941

  • 3437 measured reflections

  • 1382 independent reflections

  • 1259 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.078

  • S = 1.07

  • 1382 reflections

  • 106 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N2i 0.77 (2) 2.12 (2) 2.881 (2) 173 (2)
C1—H1B⋯O1ii 0.96 2.58 3.289 (3) 131 (2)
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,3,4-Thiodiazole is important for biological systems, and its derivatives have attracted widespread interest due to their further expanded application in antimicrobial drugs and in the construction of some interesting metal-organic frameworks (Gardinier et al., 2007; Mrozek et al., 2000; Xue et al., 2008). Recently, we synthesized a new thiodiazole-ligand, namely 2-acetamido-5-methylmercapto-1,3,4-thiodiazole, (I). Herein we report the crystal structure of this ligand.

The molecular structure of (I) is shown in Fig. 1. The acetamido-1,3,4-thiodiazole moiety is essentially planar (r.m.s. deviation 0.045 (8) Å), forming a dihedral angle with the C1, S1 and C2 plane of atoms of 14.6 (9)°. In the crystal, inversion dimers linked by pairs of N—H···N hydrogen bonds occur, forming R22(8) ring motifs. These dimers are arranged into chains via intermolecular C—H···O hydrogen bonds between the methyl groups and the O atoms of the carbonyl groups (Fig. 2).

Related literature top

For the applications of 1,3,4-thiodiazole and its derivatives in antimicrobial drugs and in the construction of metal-organic frameworks, see: Gardinier et al. (2007); Mrozek et al. (2000); Xue et al. (2008). For the synthesis, see: Clerici et al. (2001).

Experimental top

The title compound was prepared according to the literature (Clerici et al., 2001). 5-Methylsulfanyl-1,3,4-thiadiazol-2-ylamine (3.239 g, 0.022 mol) was suspended in acetic anhydride (2.28 ml, 0.024 mol), and acetic acid (9 ml) was added under stirring. The reaction mixture was further stirred at 313 K for 20 min. After cooling, water (10 ml) was added to the mixture, and then the precipitate was recrystallized in EtOH, which gave single crystals suitable for X-ray diffraction analysis (yield: 3.331 g, 80%).

Refinement top

All H atoms bound to C atoms were geometrically positioned and refined using a riding model, with C—H = 0.96 Å and Uiso(H) = Ueq(C). H atom on amino N was located from difference Fourier map and its position was refined freely, with Uiso(H) = Ueq(N). The refined N—H distance is 0.77 (2) Å.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The chain structure linked by N—H···N (pink) and C—H···O (blue) hydrogen bonds in (I).
N-(5-Methylsulfanyl-1,3,4-thiadiazol-2-yl)acetamide top
Crystal data top
C5H7N3OS2Z = 2
Mr = 189.26F(000) = 196
Triclinic, P1Dx = 1.594 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.0797 (10) ÅCell parameters from 3437 reflections
b = 7.9894 (16) Åθ = 3.3–27.6°
c = 10.081 (2) ŵ = 0.62 mm1
α = 91.96 (3)°T = 293 K
β = 90.94 (3)°Block, yellow
γ = 105.27 (3)°0.30 × 0.30 × 0.10 mm
V = 394.32 (14) Å3
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
1382 independent reflections
Radiation source: fine-focus sealed tube1259 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 25.0°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 66
Tmin = 0.836, Tmax = 0.941k = 99
3437 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0418P)2 + 0.1675P]
where P = (Fo2 + 2Fc2)/3
1382 reflections(Δ/σ)max = 0.001
106 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C5H7N3OS2γ = 105.27 (3)°
Mr = 189.26V = 394.32 (14) Å3
Triclinic, P1Z = 2
a = 5.0797 (10) ÅMo Kα radiation
b = 7.9894 (16) ŵ = 0.62 mm1
c = 10.081 (2) ÅT = 293 K
α = 91.96 (3)°0.30 × 0.30 × 0.10 mm
β = 90.94 (3)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
1382 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1259 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 0.941Rint = 0.016
3437 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.25 e Å3
1382 reflectionsΔρmin = 0.24 e Å3
106 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8654 (4)0.6728 (3)0.3920 (2)0.0434 (5)
H1A0.80550.56320.43330.065*
H1B0.90040.65340.30020.065*
H1C0.72610.73360.39840.065*
C21.0570 (4)0.8285 (2)0.63353 (18)0.0267 (4)
C30.8380 (4)0.8321 (2)0.83774 (18)0.0260 (4)
C40.4332 (4)0.6973 (2)0.95823 (19)0.0282 (4)
C50.2992 (4)0.7042 (3)1.0889 (2)0.0358 (5)
H5A0.10620.65391.07800.054*
H5B0.33270.82291.12050.054*
H5C0.37300.64041.15210.054*
H30.732 (5)0.878 (3)1.008 (2)0.039 (7)*
N11.2055 (3)0.9415 (2)0.71786 (16)0.0324 (4)
N21.0764 (3)0.9425 (2)0.83800 (16)0.0312 (4)
N30.6785 (3)0.8170 (2)0.94718 (17)0.0300 (4)
O10.3383 (3)0.59336 (19)0.86769 (14)0.0406 (4)
S11.17277 (10)0.80015 (7)0.47435 (5)0.03824 (18)
S20.74395 (9)0.71212 (6)0.69103 (5)0.02978 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0426 (13)0.0547 (14)0.0290 (11)0.0073 (11)0.0009 (9)0.0095 (10)
C20.0247 (9)0.0298 (10)0.0247 (9)0.0057 (7)0.0016 (7)0.0004 (7)
C30.0256 (10)0.0268 (9)0.0237 (10)0.0041 (8)0.0004 (7)0.0039 (7)
C40.0253 (10)0.0280 (10)0.0298 (10)0.0046 (8)0.0011 (8)0.0005 (8)
C50.0328 (11)0.0379 (11)0.0336 (11)0.0036 (9)0.0085 (9)0.0009 (9)
N10.0286 (9)0.0358 (9)0.0290 (9)0.0021 (7)0.0051 (7)0.0041 (7)
N20.0264 (9)0.0336 (9)0.0279 (9)0.0012 (7)0.0038 (7)0.0062 (7)
N30.0266 (9)0.0327 (9)0.0246 (9)0.0017 (7)0.0023 (7)0.0087 (7)
O10.0339 (8)0.0409 (8)0.0369 (8)0.0064 (6)0.0029 (6)0.0117 (7)
S10.0323 (3)0.0532 (4)0.0271 (3)0.0080 (2)0.0066 (2)0.0043 (2)
S20.0256 (3)0.0336 (3)0.0247 (3)0.0007 (2)0.00124 (19)0.00701 (19)
Geometric parameters (Å, º) top
C1—S11.796 (2)C3—S21.7244 (19)
C1—H1A0.9600C4—O11.216 (2)
C1—H1B0.9600C4—N31.365 (3)
C1—H1C0.9600C4—C51.499 (3)
C2—N11.294 (3)C5—H5A0.9600
C2—S21.737 (2)C5—H5B0.9600
C2—S11.7457 (19)C5—H5C0.9600
C3—N21.297 (2)N1—N21.387 (2)
C3—N31.369 (3)N3—H30.77 (2)
S1—C1—H1A109.5N3—C4—C5114.83 (17)
S1—C1—H1B109.5C4—C5—H5A109.5
H1A—C1—H1B109.5C4—C5—H5B109.5
S1—C1—H1C109.5H5A—C5—H5B109.5
H1A—C1—H1C109.5C4—C5—H5C109.5
H1B—C1—H1C109.5H5A—C5—H5C109.5
N1—C2—S2115.25 (14)H5B—C5—H5C109.5
N1—C2—S1120.67 (15)C2—N1—N2111.35 (16)
S2—C2—S1124.08 (11)C3—N2—N1112.70 (15)
N2—C3—N3120.95 (17)C4—N3—C3124.71 (17)
N2—C3—S2114.78 (14)C4—N3—H3117.4 (18)
N3—C3—S2124.27 (14)C3—N3—H3117.8 (18)
O1—C4—N3121.00 (18)C2—S1—C1101.30 (10)
O1—C4—C5124.16 (18)C3—S2—C285.91 (9)
S2—C2—N1—N20.3 (2)S2—C3—N3—C44.8 (3)
S1—C2—N1—N2179.74 (13)N1—C2—S1—C1166.91 (17)
N3—C3—N2—N1178.87 (17)S2—C2—S1—C113.04 (15)
S2—C3—N2—N10.6 (2)N2—C3—S2—C20.35 (15)
C2—N1—N2—C30.6 (2)N3—C3—S2—C2179.09 (17)
O1—C4—N3—C30.2 (3)N1—C2—S2—C30.01 (16)
C5—C4—N3—C3178.85 (18)S1—C2—S2—C3179.95 (13)
N2—C3—N3—C4175.77 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N2i0.77 (2)2.12 (2)2.881 (2)173 (2)
C1—H1B···O1ii0.962.583.289 (3)131 (2)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC5H7N3OS2
Mr189.26
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.0797 (10), 7.9894 (16), 10.081 (2)
α, β, γ (°)91.96 (3), 90.94 (3), 105.27 (3)
V3)394.32 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.30 × 0.30 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID-S
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.836, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
3437, 1382, 1259
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.078, 1.07
No. of reflections1382
No. of parameters106
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.24

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N2i0.77 (2)2.12 (2)2.881 (2)173 (2)
C1—H1B···O1ii0.962.583.289 (3)131 (2)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y+1, z+1.
 

Acknowledgements

We are grateful for financial support from the Program for Excellent Introduced Talents of Tianjin Normal University in China (No. 5RL052).

References

First citationBruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationClerici, F. & Pocar, D. (2001). J. Med. Chem. 44, 931–936.  Web of Science CrossRef PubMed CAS
First citationGardinier, J. R., Silva, R. M., Gwengo, C. & Lindeman, S. V. (2007). Chem. Commun. pp. 1524–1526.  Web of Science CSD CrossRef
First citationMrozek, A., Karolak-Wojciechowska, J., Amiel, P. & Barbe, J. (2000). J. Mol. Struct. 524, 159–167.  Web of Science CSD CrossRef CAS
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationXue, D.-X., Zhang, W.-X., Chen, X.-M. & Wang, H.-Z. (2008). Chem. Commun. pp. 1551–1553.  Web of Science CSD CrossRef

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds