metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis(2-di­methyl­amino-1,10-phenanthroline)cadmium(II)

aDepartment of Chemistry, Dezhou University, Dezhou 253023, People's Republic of China
*Correspondence e-mail: hongliangl1968@yahoo.com.cn

(Received 10 August 2009; accepted 15 August 2009; online 29 August 2009)

In the title complex, [CdCl2(C14H13N3)2], the CdII ion lies on a twofold rotation axis and assumes a distorted octa­hedral CdN4Cl2 coordination geometry. There is a ππ stacking inter­action between the symmetry-related 1,10-phenanthroline ligands with a centroid–centroid distance of 3.5578 (16) Å and a perpendicular distance of 3.445 (su?) Å between the relevant rings.

Related literature

For background to the use of 1,10-phenanthroline derivatives in coordination chemistry, see: Liu et al. (2008[Liu, Q. S., Liu, L. D. & Shi, J. M. (2008). Acta Cryst. C64, m58-m60.]). For a related structure, see: Zhang et al. (2008[Zhang, S. G., Hu, T. Q. & Li, H. (2008). Acta Cryst. E64, m769.]).

[Scheme 1]

Experimental

Crystal data
  • [CdCl2(C14H13N3)2]

  • Mr = 629.85

  • Monoclinic, C 2/c

  • a = 17.161 (2) Å

  • b = 9.3572 (12) Å

  • c = 16.805 (2) Å

  • β = 110.343 (2)°

  • V = 2530.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 298 K

  • 0.36 × 0.19 × 0.17 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.692, Tmax = 0.834

  • 7147 measured reflections

  • 2741 independent reflections

  • 2512 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.078

  • S = 1.04

  • 2741 reflections

  • 170 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Derivatives of 1,10-phenanthroline play an important role in modern coordination chemistry (Liu et al., 2008), and only one complex with 2-(dimethyl)amine-1,10-phenanthroline as ligand has been published (Zhang et al., 2008) so far. Now the crystal structure of title complex, which is the second complex dealing with 2-(dimethyl)amine-1,10-phenanthroline as ligand, is reported.

Fig. 1 and Table 1 show the coordination structure, with the Cd centre located on a crystallographic twofold axis. It is in a distorted octahedral geometry. There is a π-π stacking interaction involving symmetry related 1,10-phenanthroline ligands, with the relevant distances being Cg1···Cg2i = 3.5578 (16) Å and Cg1···Cg2iperp = 3.445 Å and α = 3.82° [symmetry code: (i) 1-X, -Y, -Z; Cg1 and Cg2 are the centroids of C1C2C5-C7/N2 ring and C6—C11 ring, respectively; Cg1···Cg21perp is the perpendicular distance from ring Cg1 to ring Cg2i; α is the dihedral between ring plane Cg1 and ring plane Cg2i].

Related literature top

For background to the use of 1,10-phenanthroline derivatives in coordination chemistry, see: Liu et al. (2008). For a related structure, see: Zhang et al. (2008).

Experimental top

10 ml me thanol solution of 2-(dimethyl)amine-1,10-phenanthroline (0.1438 g, 0.644 mmol) was added into 5 ml H2O solution of cadmium chloride (0.1485 g, 0.650 mmol), and the mixed solution was stirred for a few minutes. The yellow single crystals were obtained after the filtrate had been allowed to stand at room temperature for two weeks.

Refinement top

All H atoms were placed in calculated positions and refined as riding with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl groups, and C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Coordination diagram of title complex with atom-numbering scheme for only asymmetric unit, and displacement ellipsoids being at the 30% probability level
Dichloridobis(2-dimethylamino-1,10-phenanthroline)cadmium(II) top
Crystal data top
[CdCl2(C14H13N3)2]F(000) = 1272
Mr = 629.85Dx = 1.653 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3730 reflections
a = 17.161 (2) Åθ = 2.5–27.9°
b = 9.3572 (12) ŵ = 1.11 mm1
c = 16.805 (2) ÅT = 298 K
β = 110.343 (2)°Block, yellow
V = 2530.2 (6) Å30.36 × 0.19 × 0.17 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2741 independent reflections
Radiation source: fine-focus sealed tube2512 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 2121
Tmin = 0.692, Tmax = 0.834k = 611
7147 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.8626P]
where P = (Fo2 + 2Fc2)/3
2741 reflections(Δ/σ)max = 0.002
170 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[CdCl2(C14H13N3)2]V = 2530.2 (6) Å3
Mr = 629.85Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.161 (2) ŵ = 1.11 mm1
b = 9.3572 (12) ÅT = 298 K
c = 16.805 (2) Å0.36 × 0.19 × 0.17 mm
β = 110.343 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2741 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2512 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 0.834Rint = 0.026
7147 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.04Δρmax = 0.67 e Å3
2741 reflectionsΔρmin = 0.32 e Å3
170 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.53071 (18)0.2662 (3)0.14483 (19)0.0453 (6)
H10.55610.35190.16800.054*
C20.55652 (14)0.1339 (3)0.18970 (16)0.0366 (5)
C30.6672 (2)0.2607 (3)0.3007 (2)0.0597 (8)
H3A0.62750.33710.28990.090*
H3B0.69160.24510.36080.090*
H3C0.70990.28550.27850.090*
C40.67199 (15)0.0021 (3)0.29048 (17)0.0442 (6)
H4A0.64950.07340.25030.066*
H4B0.72930.01690.29720.066*
H4C0.66790.02370.34420.066*
C50.46892 (18)0.2641 (3)0.0683 (2)0.0468 (6)
H50.45290.34840.03770.056*
C60.42857 (14)0.1347 (3)0.03479 (15)0.0378 (5)
C70.45301 (13)0.0134 (2)0.08600 (14)0.0324 (5)
C80.36608 (16)0.1257 (3)0.04727 (16)0.0483 (7)
H80.35090.20770.08040.058*
C90.32884 (17)0.0021 (3)0.07762 (17)0.0507 (7)
H90.28840.00100.13150.061*
C100.35021 (14)0.1243 (3)0.02876 (15)0.0410 (6)
C110.40983 (14)0.1189 (3)0.05419 (14)0.0346 (5)
C120.39202 (17)0.3585 (3)0.07410 (18)0.0488 (6)
H120.40490.43810.10940.059*
C130.31509 (18)0.2587 (4)0.05904 (18)0.0499 (7)
H130.27660.26710.11370.060*
C140.33721 (18)0.3755 (3)0.00872 (18)0.0531 (7)
H140.31630.46520.02900.064*
Cd10.50000.20663 (2)0.25000.03387 (10)
Cl10.61434 (4)0.36432 (7)0.22647 (5)0.05136 (18)
N10.62589 (13)0.1317 (2)0.26011 (15)0.0465 (5)
N20.51504 (11)0.0126 (2)0.16313 (12)0.0339 (4)
N30.42685 (13)0.2347 (2)0.10524 (14)0.0396 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0450 (15)0.0335 (13)0.0594 (17)0.0015 (11)0.0208 (13)0.0007 (12)
C20.0310 (11)0.0353 (12)0.0446 (13)0.0017 (9)0.0144 (10)0.0014 (10)
C30.0533 (18)0.0496 (16)0.068 (2)0.0181 (14)0.0110 (16)0.0104 (15)
C40.0343 (12)0.0454 (14)0.0472 (14)0.0030 (11)0.0069 (11)0.0062 (12)
C50.0462 (15)0.0371 (13)0.0596 (17)0.0105 (11)0.0216 (14)0.0121 (12)
C60.0340 (12)0.0406 (13)0.0390 (12)0.0075 (10)0.0130 (10)0.0056 (11)
C70.0285 (11)0.0375 (12)0.0322 (11)0.0063 (9)0.0117 (9)0.0011 (9)
C80.0455 (14)0.0565 (17)0.0404 (14)0.0104 (13)0.0118 (12)0.0146 (13)
C90.0451 (15)0.0664 (19)0.0334 (13)0.0081 (13)0.0045 (11)0.0037 (13)
C100.0317 (12)0.0576 (16)0.0340 (12)0.0023 (11)0.0117 (10)0.0045 (12)
C110.0303 (11)0.0406 (13)0.0340 (11)0.0070 (10)0.0124 (9)0.0019 (10)
C120.0505 (15)0.0382 (14)0.0493 (15)0.0040 (12)0.0066 (12)0.0062 (12)
C130.0396 (14)0.0670 (18)0.0368 (14)0.0022 (13)0.0053 (11)0.0113 (13)
C140.0520 (16)0.0485 (16)0.0535 (16)0.0080 (13)0.0115 (13)0.0168 (14)
Cd10.03261 (15)0.02812 (14)0.03351 (15)0.0000.00217 (10)0.000
Cl10.0486 (4)0.0394 (4)0.0652 (4)0.0099 (3)0.0188 (3)0.0034 (3)
N10.0360 (11)0.0370 (12)0.0562 (13)0.0051 (9)0.0029 (10)0.0034 (10)
N20.0299 (9)0.0336 (10)0.0356 (10)0.0019 (8)0.0080 (8)0.0006 (8)
N30.0395 (11)0.0342 (10)0.0406 (12)0.0013 (9)0.0083 (9)0.0032 (9)
Geometric parameters (Å, º) top
C1—C51.353 (4)C8—C91.334 (4)
C1—C21.437 (4)C8—H80.9300
C1—H10.9300C9—C101.413 (4)
C2—N21.332 (3)C9—H90.9300
C2—N11.356 (3)C10—C131.412 (4)
C3—N11.445 (4)C10—C111.415 (3)
C3—H3A0.9600C11—N31.349 (3)
C3—H3B0.9600C12—N31.325 (3)
C3—H3C0.9600C12—C141.392 (4)
C4—N11.441 (3)C12—H120.9300
C4—H4A0.9600C13—C141.353 (4)
C4—H4B0.9600C13—H130.9300
C4—H4C0.9600C14—H140.9300
C5—C61.411 (4)Cd1—N3i2.332 (2)
C5—H50.9300Cd1—N32.332 (2)
C6—C71.398 (3)Cd1—N2i2.582 (2)
C6—C81.425 (3)Cd1—N22.582 (2)
C7—N21.362 (3)Cd1—Cl12.5928 (7)
C7—C111.446 (3)Cd1—Cl1i2.5928 (7)
C5—C1—C2118.9 (3)N3—C11—C10121.4 (2)
C5—C1—H1120.6N3—C11—C7118.8 (2)
C2—C1—H1120.6C10—C11—C7119.8 (2)
N2—C2—N1118.9 (2)N3—C12—C14123.4 (3)
N2—C2—C1121.8 (2)N3—C12—H12118.3
N1—C2—C1119.2 (2)C14—C12—H12118.3
N1—C3—H3A109.5C14—C13—C10120.2 (2)
N1—C3—H3B109.5C14—C13—H13119.9
H3A—C3—H3B109.5C10—C13—H13119.9
N1—C3—H3C109.5C13—C14—C12118.6 (3)
H3A—C3—H3C109.5C13—C14—H14120.7
H3B—C3—H3C109.5C12—C14—H14120.7
N1—C4—H4A109.5N3i—Cd1—N3167.08 (10)
N1—C4—H4B109.5N3i—Cd1—N2i67.85 (7)
H4A—C4—H4B109.5N3—Cd1—N2i123.76 (7)
N1—C4—H4C109.5N3i—Cd1—N2123.76 (7)
H4A—C4—H4C109.5N3—Cd1—N267.85 (7)
H4B—C4—H4C109.5N2i—Cd1—N274.81 (9)
C1—C5—C6120.4 (3)N3i—Cd1—Cl186.19 (6)
C1—C5—H5119.8N3—Cd1—Cl186.47 (6)
C6—C5—H5119.8N2i—Cd1—Cl1140.17 (4)
C7—C6—C5116.8 (2)N2—Cd1—Cl197.82 (5)
C7—C6—C8120.8 (2)N3i—Cd1—Cl1i86.47 (6)
C5—C6—C8122.5 (2)N3—Cd1—Cl1i86.19 (6)
N2—C7—C6123.9 (2)N2i—Cd1—Cl1i97.82 (5)
N2—C7—C11118.5 (2)N2—Cd1—Cl1i140.17 (4)
C6—C7—C11117.5 (2)Cl1—Cd1—Cl1i110.63 (3)
C9—C8—C6121.4 (3)C2—N1—C4122.0 (2)
C9—C8—H8119.3C2—N1—C3122.5 (2)
C6—C8—H8119.3C4—N1—C3114.6 (2)
C8—C9—C10120.7 (2)C2—N2—C7117.7 (2)
C8—C9—H9119.7C2—N2—Cd1129.38 (16)
C10—C9—H9119.7C7—N2—Cd1110.11 (14)
C13—C10—C11117.3 (3)C12—N3—C11118.9 (2)
C13—C10—C9123.0 (2)C12—N3—Cd1121.04 (18)
C11—C10—C9119.7 (2)C11—N3—Cd1119.46 (16)
C5—C1—C2—N28.2 (4)N1—C2—N2—Cd130.5 (3)
C5—C1—C2—N1170.5 (3)C1—C2—N2—Cd1150.79 (19)
C2—C1—C5—C62.3 (4)C6—C7—N2—C22.4 (3)
C1—C5—C6—C72.9 (4)C11—C7—N2—C2177.1 (2)
C1—C5—C6—C8176.8 (3)C6—C7—N2—Cd1160.33 (18)
C5—C6—C7—N23.1 (3)C11—C7—N2—Cd120.2 (2)
C8—C6—C7—N2176.6 (2)N3i—Cd1—N2—C27.3 (2)
C5—C6—C7—C11177.4 (2)N3—Cd1—N2—C2179.2 (2)
C8—C6—C7—C112.9 (3)N2i—Cd1—N2—C242.08 (16)
C7—C6—C8—C90.3 (4)Cl1—Cd1—N2—C297.91 (18)
C5—C6—C8—C9180.0 (3)Cl1i—Cd1—N2—C2126.03 (17)
C6—C8—C9—C100.3 (4)N3i—Cd1—N2—C7167.33 (14)
C8—C9—C10—C13177.5 (3)N3—Cd1—N2—C719.10 (14)
C8—C9—C10—C112.0 (4)N2i—Cd1—N2—C7117.98 (17)
C13—C10—C11—N36.0 (3)Cl1—Cd1—N2—C7102.02 (14)
C9—C10—C11—N3174.5 (2)Cl1i—Cd1—N2—C734.03 (18)
C13—C10—C11—C7174.8 (2)C14—C12—N3—C111.1 (4)
C9—C10—C11—C74.7 (4)C14—C12—N3—Cd1169.7 (2)
N2—C7—C11—N36.3 (3)C10—C11—N3—C125.8 (4)
C6—C7—C11—N3174.1 (2)C7—C11—N3—C12175.0 (2)
N2—C7—C11—C10174.5 (2)C10—C11—N3—Cd1165.14 (17)
C6—C7—C11—C105.1 (3)C7—C11—N3—Cd114.1 (3)
C11—C10—C13—C141.5 (4)N3i—Cd1—N3—C1216.5 (2)
C9—C10—C13—C14179.0 (3)N2i—Cd1—N3—C12135.9 (2)
C10—C13—C14—C122.9 (4)N2—Cd1—N3—C12171.9 (2)
N3—C12—C14—C133.2 (5)Cl1—Cd1—N3—C1272.0 (2)
N2—C2—N1—C421.3 (4)Cl1i—Cd1—N3—C1239.0 (2)
C1—C2—N1—C4157.4 (2)N3i—Cd1—N3—C11172.75 (18)
N2—C2—N1—C3170.2 (3)N2i—Cd1—N3—C1134.9 (2)
C1—C2—N1—C311.0 (4)N2—Cd1—N3—C1117.35 (17)
N1—C2—N2—C7170.7 (2)Cl1—Cd1—N3—C11117.28 (18)
C1—C2—N2—C78.0 (3)Cl1i—Cd1—N3—C11131.75 (18)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[CdCl2(C14H13N3)2]
Mr629.85
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)17.161 (2), 9.3572 (12), 16.805 (2)
β (°) 110.343 (2)
V3)2530.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.36 × 0.19 × 0.17
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.692, 0.834
No. of measured, independent and
observed [I > 2σ(I)] reflections
7147, 2741, 2512
Rint0.026
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.078, 1.04
No. of reflections2741
No. of parameters170
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.32

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and local programs.

 

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, Q. S., Liu, L. D. & Shi, J. M. (2008). Acta Cryst. C64, m58–m60.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S. G., Hu, T. Q. & Li, H. (2008). Acta Cryst. E64, m769.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds