organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A second ortho­rhom­bic polymorph of 3,5-di­phenyl-4H-1,2,4-triazol-4-amine

aDepartment of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 211189, People's Republic of China, and bDepartment of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: cep02chl@yahoo.com.cn

(Received 21 August 2009; accepted 24 August 2009; online 29 August 2009)

The present crystal structure is the second ortho­rhom­bic polymorph of the title compound, C14H12N4. Whereas the structure in Pnma with Z′ = 0.5 is already known [Ikemi et al. (2002[Ikemi, Y., Hayashi, N., Kakehi, A. & Matsumoto, K. (2002). Heterocycl. Commun. 8, 439-442.]). Heterocycl. Commun. 8, 439–442], the present structure crystallizes in the space group Pbca with Z′ = 1. The dihedral angle between the two phenyl rings is 23.5 (4)° and the dihedral angles between central ring and the phenyl rings are 41.0 (3) and 26.3 (5)°. In the 4-amino-1,2,4-trizole fragment, the C=N distances are 1.321 (3) and 1.315 (3) Å, which are much shorter than the C—N distances of 1.367 (3) and 1.357 (3) Å. In the crystal, adjacent mol­ecules are linked by N—H⋯N hydrogen bonds.

Related literature

For 4-amino-1,2,4-triazoles derivatives, see: Beckmann & Brooker (2003[Beckmann, U. & Brooker, S. (2003). Coord. Chem. Rev. 245, 17-29.]); Collin et al. (2003[Collin, X., Sauleau, A. & Coulon, J. (2003). Bioorg. Med. Chem. Lett. 13, 2601-2605.]). For the other polymorph, see: Ikemi et al. (2002[Ikemi, Y., Hayashi, N., Kakehi, A. & Matsumoto, K. (2002). Heterocycl. Commun. 8, 439-442.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N4

  • Mr = 236.28

  • Orthorhombic, P b c a

  • a = 7.5521 (9) Å

  • b = 11.2309 (14) Å

  • c = 28.278 (3) Å

  • V = 2398.4 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.28 × 0.25 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen Germany.]) Tmin = 0.976, Tmax = 0.980

  • 9495 measured reflections

  • 2307 independent reflections

  • 1613 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.161

  • S = 1.07

  • 2307 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯N2i 0.95 2.17 3.117 (2) 177
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The derivatives of 4-amino-1,2,4-triazoles have been extensively investigated in in medicinal chemistry and agricultural chemistry (Collin et al., 2003). They are a type of multidentate ligands in coordination chemistry (Beckmann et al. 2003). Herein, we report the crystal structure of 3,5-diphenyl-4H-1,2,4-triazol-4-amine.

The title compound, C14H12N4, is a 4-amino-3,5-disubstituted-1,2,4-trizole compound and with a dihedral angle between the two phenyl rings of 23.5 (4) °. In the 4-amino-1,2,4-trizole fragment, the C=N distance is 1.321 (3) and 1.315 (3) Å, which are much shorter than the C—N distances of 1.367 (3) and 1.357 (3) Å. In the crystal, adjacent molecules are linked by N—H···N hydrogen bonds into a one-dimensional chain with N···N distance 3.117 (3) Å. The crystal structure of the title compound is a second orthorhombic polymorph. Whereas the structure in Pnma with Z'=0.5 is already known(Ikemi et al. 2002), the present structure has the space group Pbca with Z'=1.

Related literature top

For 4-amino-1,2,4-triazoles derivatives, see: Beckmann & Brooker (2003); Collin et al. (2003). For the other polymorph, see: Ikemi et al. (2002).

Experimental top

A mixture solution of the benzonitrile (0.103 g, 1.0 mmol), 50% NH2NH2.H2O (3 ml) and ethanol (2 ml) was heated in a 15 ml Teflon-lined autoclave at 100 ° for 3 days, followed by slow cooling (5 ° h-1) to room temperature. The colorless block crystals were collected by filtration washed with water, then dried and collected in 11.9% yield (0.014 g) based on benzonitrile.

Refinement top

H atoms bonded to N atoms were located in a difference map with the restraint of N—H = 0.95 Å. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and with Uiso(H) = 1.2 Uiso(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the title compound with 30% thermal ellipsoids.
[Figure 2] Fig. 2. The one-dimensional hydrogen bonding network of the title compound.
3,5-diphenyl-4H-1,2,4-triazol-4-amine top
Crystal data top
C14H12N4F(000) = 992
Mr = 236.28Dx = 1.309 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1617 reflections
a = 7.5521 (9) Åθ = 2.9–27.7°
b = 11.2309 (14) ŵ = 0.08 mm1
c = 28.278 (3) ÅT = 293 K
V = 2398.4 (5) Å3Block, colorless
Z = 80.30 × 0.28 × 0.25 mm
Data collection top
Bruker SMART CCD
diffractometer
2307 independent reflections
Radiation source: fine-focus sealed tube1613 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 26.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 88
Tmin = 0.976, Tmax = 0.980k = 813
9495 measured reflectionsl = 3434
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.075P)2 + 0.3879P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2307 reflectionsΔρmax = 0.16 e Å3
164 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0018 (7)
Crystal data top
C14H12N4V = 2398.4 (5) Å3
Mr = 236.28Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.5521 (9) ŵ = 0.08 mm1
b = 11.2309 (14) ÅT = 293 K
c = 28.278 (3) Å0.30 × 0.28 × 0.25 mm
Data collection top
Bruker SMART CCD
diffractometer
2307 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1613 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.980Rint = 0.029
9495 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.07Δρmax = 0.16 e Å3
2307 reflectionsΔρmin = 0.18 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1186 (4)0.1019 (2)0.34391 (9)0.0903 (8)
H1A0.14950.04700.36710.108*
C20.0906 (5)0.0634 (3)0.29855 (10)0.1183 (11)
H2A0.10350.01680.29120.142*
C30.0438 (5)0.1425 (5)0.26392 (13)0.1355 (13)
H3A0.02150.11660.23330.163*
C40.0307 (6)0.2600 (4)0.27534 (14)0.1452 (16)
H4A0.00200.31470.25190.174*
C50.0585 (5)0.2991 (3)0.32027 (12)0.1164 (11)
H5A0.04820.37990.32700.140*
C60.1018 (3)0.2208 (2)0.35588 (9)0.0750 (7)
C70.1304 (3)0.26686 (18)0.40343 (9)0.0672 (6)
C80.1462 (2)0.28566 (15)0.48031 (9)0.0646 (6)
C90.1367 (2)0.26276 (16)0.53087 (8)0.0623 (6)
C100.0670 (3)0.35010 (19)0.56046 (10)0.0766 (7)
H10A0.02380.42060.54760.092*
C110.0618 (3)0.3326 (2)0.60841 (11)0.0893 (8)
H11A0.01590.39140.62800.107*
C120.1239 (3)0.2287 (2)0.62747 (10)0.0901 (8)
H12A0.11970.21710.66000.108*
C130.1924 (3)0.1416 (2)0.59877 (10)0.0839 (7)
H13A0.23390.07110.61200.101*
C140.1998 (3)0.15788 (18)0.55063 (9)0.0694 (6)
H14A0.24710.09880.53130.083*
N10.1804 (3)0.37701 (15)0.41296 (9)0.0858 (7)
N20.1900 (3)0.38864 (15)0.46152 (9)0.0816 (6)
N30.1098 (2)0.20701 (13)0.44473 (6)0.0597 (5)
N40.0340 (2)0.09288 (13)0.44985 (6)0.0639 (5)
H4B0.12140.03270.45330.077*
H4C0.04670.09330.47560.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.109 (2)0.0712 (17)0.0906 (18)0.0055 (14)0.0115 (14)0.0118 (13)
C20.157 (3)0.103 (2)0.095 (2)0.014 (2)0.0136 (18)0.0066 (18)
C30.147 (3)0.166 (4)0.094 (2)0.000 (3)0.009 (2)0.014 (2)
C40.180 (4)0.142 (4)0.114 (3)0.052 (3)0.017 (2)0.053 (3)
C50.143 (3)0.094 (2)0.112 (2)0.0370 (19)0.033 (2)0.0354 (19)
C60.0566 (13)0.0589 (13)0.1096 (18)0.0088 (10)0.0127 (11)0.0270 (13)
C70.0547 (13)0.0442 (12)0.1026 (17)0.0067 (9)0.0109 (10)0.0087 (11)
C80.0410 (11)0.0299 (10)0.1228 (18)0.0006 (7)0.0057 (10)0.0089 (10)
C90.0407 (11)0.0405 (10)0.1057 (16)0.0069 (8)0.0007 (9)0.0121 (10)
C100.0526 (13)0.0444 (12)0.133 (2)0.0024 (9)0.0074 (12)0.0186 (12)
C110.0712 (16)0.0771 (18)0.120 (2)0.0073 (13)0.0126 (14)0.0343 (16)
C120.0805 (18)0.0828 (18)0.1069 (19)0.0079 (14)0.0000 (13)0.0208 (15)
C130.0754 (16)0.0659 (15)0.110 (2)0.0029 (12)0.0134 (13)0.0073 (13)
C140.0521 (13)0.0455 (12)0.1107 (19)0.0004 (9)0.0064 (11)0.0167 (11)
N10.0767 (14)0.0379 (10)0.143 (2)0.0021 (9)0.0250 (12)0.0139 (11)
N20.0750 (14)0.0409 (10)0.1290 (18)0.0081 (8)0.0187 (11)0.0036 (10)
N30.0452 (9)0.0324 (8)0.1015 (13)0.0009 (6)0.0045 (8)0.0037 (8)
N40.0606 (11)0.0310 (8)0.1000 (13)0.0052 (7)0.0100 (8)0.0013 (7)
Geometric parameters (Å, º) top
C1—C21.370 (4)C8—C91.454 (3)
C1—C61.383 (3)C9—C141.388 (3)
C1—H1A0.9300C9—C101.393 (3)
C2—C31.368 (5)C10—C111.371 (4)
C2—H2A0.9300C10—H10A0.9300
C3—C41.362 (5)C11—C121.368 (4)
C3—H3A0.9300C11—H11A0.9300
C4—C51.361 (5)C12—C131.373 (3)
C4—H4A0.9300C12—H12A0.9300
C5—C61.377 (3)C13—C141.375 (3)
C5—H5A0.9300C13—H13A0.9300
C6—C71.457 (3)C14—H14A0.9300
C7—N11.321 (3)N1—N21.381 (3)
C7—N31.356 (3)N3—N41.411 (2)
C8—N21.315 (2)N4—H4B0.9499
C8—N31.367 (3)N4—H4C0.9498
C2—C1—C6121.3 (3)C14—C9—C8121.92 (18)
C2—C1—H1A119.4C10—C9—C8119.0 (2)
C6—C1—H1A119.4C11—C10—C9120.3 (2)
C3—C2—C1120.4 (3)C11—C10—H10A119.9
C3—C2—H2A119.8C9—C10—H10A119.9
C1—C2—H2A119.8C12—C11—C10120.1 (2)
C4—C3—C2118.6 (4)C12—C11—H11A119.9
C4—C3—H3A120.7C10—C11—H11A119.9
C2—C3—H3A120.7C11—C12—C13120.3 (3)
C5—C4—C3121.5 (3)C11—C12—H12A119.9
C5—C4—H4A119.2C13—C12—H12A119.9
C3—C4—H4A119.2C12—C13—C14120.4 (2)
C4—C5—C6120.9 (3)C12—C13—H13A119.8
C4—C5—H5A119.6C14—C13—H13A119.8
C6—C5—H5A119.6C13—C14—C9119.8 (2)
C5—C6—C1117.4 (3)C13—C14—H14A120.1
C5—C6—C7118.9 (3)C9—C14—H14A120.1
C1—C6—C7123.7 (2)C7—N1—N2107.83 (19)
N1—C7—N3108.7 (2)C8—N2—N1107.78 (18)
N1—C7—C6124.3 (2)C7—N3—C8106.89 (17)
N3—C7—C6126.98 (19)C7—N3—N4125.81 (18)
N2—C8—N3108.8 (2)C8—N3—N4126.36 (17)
N2—C8—C9124.41 (19)N3—N4—H4B112.0
N3—C8—C9126.83 (17)N3—N4—H4C109.5
C14—C9—C10119.1 (2)H4B—N4—H4C111.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···N2i0.952.173.117 (2)177
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC14H12N4
Mr236.28
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)7.5521 (9), 11.2309 (14), 28.278 (3)
V3)2398.4 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.28 × 0.25
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.976, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
9495, 2307, 1613
Rint0.029
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.161, 1.07
No. of reflections2307
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···N2i0.952.173.117 (2)177.1
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

References

First citationBeckmann, U. & Brooker, S. (2003). Coord. Chem. Rev. 245, 17–29.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCollin, X., Sauleau, A. & Coulon, J. (2003). Bioorg. Med. Chem. Lett. 13, 2601–2605.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIkemi, Y., Hayashi, N., Kakehi, A. & Matsumoto, K. (2002). Heterocycl. Commun. 8, 439–442.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds