organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Amino-1-phenyl-3-tri­fluoro­methyl-1H-pyrazole-4-carboxylic acid

aIstituto Chimica Biomolecolare CNR, Ple Aldo Moro 5, 00185 Rome, Italy, bDipartimento Chimica e Tecnologie Farmaceutiche, Universita di Palermo, Via Archirafi 32 90123, Palermo, Italy, cDipartimento Chimica, Universita di Camerino, Via Sant'Agostino 1, 62032 MC, Italy, and dDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604-0484, USA
*Correspondence e-mail: caruso@vassar.edu

(Received 15 June 2009; accepted 13 August 2009; online 15 August 2009)

In the title compound, C11H8F3N3O2, there are two mol­ecules in the asymmetric unit wherein the phenyl rings make dihedral angles of 65.3 (2) and 85.6 (2)° with the pyrazole rings. In the crystal, pairs of mol­ecules are held together by O—H⋯O hydrogen bonds between the carboxyl groups, forming a centrosymmetric dimer with an R22(8) motif. Intra­molecular N—H⋯O inter­actions are also present.

Related literature

For general background, see: Caruso & Rossi (2004[Caruso, F. & Rossi, M. (2004). Mini Rev. Med. Chem. 4, 49-60.]); Maggio et al., (2008[Maggio, B., Raffa, D., Raimondi, M. V., Cascioferro, S., Plescia, F., Tolomeo, M., Barbusca, E., Cannizzo, G., Mancuso, S. & Daidone, G. (2008). Eur. J. Med. Chem. 43, 2386-2394.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H8F3N3O2

  • Mr = 271.20

  • Monoclinic, P 21 /n

  • a = 9.757 (3) Å

  • b = 10.740 (3) Å

  • c = 21.277 (6) Å

  • β = 93.716 (3)°

  • V = 2225 (1) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 125 K

  • 0.30 × 0.18 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.993

  • 20692 measured reflections

  • 3772 independent reflections

  • 2737 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.140

  • S = 1.01

  • 3772 reflections

  • 368 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N53—H531⋯O52 0.85 (4) 2.20 (4) 2.808 (3) 128 (3)
O51—H51⋯O2i 0.94 (4) 1.75 (4) 2.687 (3) 177 (4)
N3—H31⋯O2 0.90 (4) 2.20 (4) 2.873 (3) 132 (3)
O1—H1⋯O52ii 0.91 (4) 1.67 (4) 2.580 (3) 176 (4)
Symmetry codes: (i) x, y-1, z-1; (ii) x, y+1, z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We report here the structure of the title compound (I), isolated during attempts to synthesize Ti(C5H5)2(C11H7F3N3O2)2. In the title compound C11H8F3N3O2, there are two molecules in the asymmetric unit that differ in the dihedral angle formed between the phenyl and pyrazole rings, 65.3 (2) and 85.6 (2)°. The pairs of molecules are held together by O—H···O hydrogen bonds between the carboxyl groups, forming a centrosymmetric dimer with an R22 (8) motif, Fig. 2. (Bernstein et al., 1995) . Related compounds of this ligand show antiproliferative and apoptotic effects against K562, K562-R (imatinib mesilate resistant), HL60 and multidrug resistant HL60 cell lines (Maggio et al., 2008).

Related literature top

For general background, see: Caruso & Rossi (2004); Maggio et al., (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The synthesis of title compound has been described by Maggio et al., 2008. The title compound was reacted with titanocene dichloride, (C5H5)2TiCl2. Elemental analysis {C, 53.50, H, 3.37, N, 11.70%. Found: C, 53.66, H, 3.45, N, 11.54%} indicated formation of Cp2Ti(ligand)2,= Ti(C5H5)2(C11H7F3N3O2)2, ligand = 5-amino-1-phenyl-3- (trifluoromethyl)-1H-pyrazole-4-carboxylate. Melting point 190–195°C. IR(nujol, cm-1): 3439w, 3332w (N—H), 3049w (Carom-H), 1661 s, 1611 s (COO), 1537 s, 1486 s (C=N + C=C). 1H NMR (CDCl3): 5.59br (10H, Ti—C5H5), 6.40br, 6.60br (6H, –NH2), 7.55 mbr (10H, Carom-H). Good solubility in chloroform, methanol, dimethylsulfoxide; lower solubilty in acetonitrile; insoluble in water. Upon recrystallization flat needles were obtained, they were studied to determine its crystal and molecular structure and revealed only the ligand. Ligand cleavage is a non unusual feature for Ti complexes that show a marked tendency to evolve towards titanium dioxide (Caruso & Rossi, 2004). The title compound synthesis has been described (Maggio et al.). Related compounds of this ligand show antiproliferative and apoptotic effects against K562, K562—R (imatinib mesilate resistant), HL60 and multidrug resistant HL60 cell lines (Maggio et al., 2008).

Refinement top

H atoms bonded to C atoms were located from difference maps and treated as riding model, with C—H distance of 0.95 Å and with Uiso(H) = 1.2Ueq(C). O and N-bound H atoms were freely refined, giving distances and Uiso in the ranges O-H = [ 0.91 (4)-0.94 (4) ]Å, N-H = [0.85 (4)-0.95 (4)] Å and Uiso(H) = [0.067 (12)-0.076 (14)] Å2 Ueq(O) and Uiso(H) = [0.041 (9)-0.066 (12)] Å2 Ueq(N).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii and the intramolecular hydrogen bond is shown as dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of a cyclic R22(8) pattern. [Symmetry code: (i) x, y + 1, z + 1].
5-Amino-1-phenyl-3-trifluoromethyl-1H-pyrazole-4-carboxylic acid top
Crystal data top
C11H8F3N3O2F(000) = 1104
Mr = 271.20Dx = 1.619 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3829 reflections
a = 9.757 (3) Åθ = 2.2–22.3°
b = 10.740 (3) ŵ = 0.15 mm1
c = 21.277 (6) ÅT = 125 K
β = 93.716 (3)°Flat needle, pale yellow
V = 2225 (1) Å30.30 × 0.18 × 0.05 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
3772 independent reflections
Radiation source: fine-focus sealed tube2737 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ and ω scansθmax = 24.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1111
Tmin = 0.957, Tmax = 0.993k = 1212
20692 measured reflectionsl = 2524
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0233P)2 + 1.9621P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3772 reflectionsΔρmax = 0.43 e Å3
368 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0099 (12)
Crystal data top
C11H8F3N3O2V = 2225 (1) Å3
Mr = 271.20Z = 8
Monoclinic, P21/nMo Kα radiation
a = 9.757 (3) ŵ = 0.15 mm1
b = 10.740 (3) ÅT = 125 K
c = 21.277 (6) Å0.30 × 0.18 × 0.05 mm
β = 93.716 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3772 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2737 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.993Rint = 0.072
20692 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.43 e Å3
3772 reflectionsΔρmin = 0.32 e Å3
368 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.0029 (2)0.57631 (18)0.86748 (8)0.0449 (5)
F20.88145 (19)0.61681 (17)0.94547 (8)0.0402 (5)
F31.03719 (18)0.74508 (17)0.91981 (8)0.0410 (5)
F510.5059 (2)0.47366 (17)0.12944 (8)0.0417 (5)
F520.62681 (18)0.41822 (16)0.05332 (8)0.0380 (5)
F530.43613 (17)0.32665 (16)0.06739 (7)0.0361 (5)
O10.8071 (2)0.8727 (2)0.96933 (9)0.0323 (5)
O20.6443 (2)0.98989 (19)0.91963 (9)0.0295 (5)
O510.6194 (2)0.1440 (2)0.01774 (9)0.0312 (5)
O520.7542 (2)0.00154 (19)0.06715 (9)0.0343 (5)
N10.7329 (2)0.7741 (2)0.76427 (10)0.0268 (6)
N20.8258 (2)0.6935 (2)0.79385 (10)0.0283 (6)
N30.5911 (3)0.9467 (2)0.78704 (13)0.0301 (6)
N510.7186 (2)0.2162 (2)0.22548 (10)0.0263 (6)
N520.6454 (3)0.3151 (2)0.19957 (10)0.0274 (6)
N530.8148 (3)0.0243 (3)0.19747 (13)0.0334 (7)
C10.6874 (3)0.7528 (3)0.70017 (12)0.0280 (7)
C20.6161 (3)0.6448 (3)0.68442 (13)0.0307 (7)
H20.59710.58590.71600.037*
C30.5730 (3)0.6233 (3)0.62231 (13)0.0340 (8)
H30.52440.54910.61110.041*
C40.6001 (3)0.7086 (3)0.57672 (14)0.0385 (8)
H40.57020.69320.53400.046*
C50.6705 (4)0.8163 (3)0.59258 (14)0.0412 (8)
H50.68860.87510.56080.049*
C60.7154 (3)0.8395 (3)0.65493 (13)0.0350 (8)
H60.76430.91350.66610.042*
C70.8382 (3)0.7328 (3)0.85250 (13)0.0269 (7)
C80.7540 (3)0.8365 (3)0.86272 (12)0.0258 (7)
C90.6881 (3)0.8604 (3)0.80423 (12)0.0253 (6)
C100.7303 (3)0.9061 (3)0.91922 (13)0.0265 (7)
C110.9388 (3)0.6684 (3)0.89644 (14)0.0333 (7)
C510.7711 (3)0.2189 (3)0.28986 (12)0.0258 (7)
C520.6897 (3)0.1791 (3)0.33664 (13)0.0303 (7)
H520.59970.14850.32640.036*
C530.7412 (3)0.1847 (3)0.39859 (14)0.0341 (7)
H530.68650.15720.43130.041*
C540.8717 (3)0.2301 (3)0.41322 (13)0.0344 (8)
H540.90600.23520.45600.041*
C550.9524 (3)0.2681 (3)0.36596 (14)0.0343 (7)
H551.04290.29760.37610.041*
C560.9021 (3)0.2632 (3)0.30386 (14)0.0319 (7)
H560.95700.29010.27120.038*
C570.6225 (3)0.2847 (3)0.13997 (12)0.0253 (6)
C580.6793 (3)0.1676 (3)0.12543 (12)0.0256 (7)
C590.7408 (3)0.1272 (3)0.18279 (12)0.0262 (7)
C600.6867 (3)0.0985 (3)0.06813 (13)0.0277 (7)
C610.5484 (3)0.3755 (3)0.09757 (13)0.0286 (7)
H10.792 (4)0.918 (4)1.004 (2)0.076 (14)*
H300.597 (4)0.987 (4)0.748 (2)0.066 (12)*
H310.579 (4)1.000 (3)0.8190 (17)0.047 (10)*
H510.628 (4)0.087 (4)0.0156 (19)0.067 (12)*
H5300.830 (3)0.001 (3)0.2381 (17)0.041 (9)*
H5310.807 (4)0.029 (3)0.1682 (18)0.047 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0527 (12)0.0511 (12)0.0302 (10)0.0212 (10)0.0019 (8)0.0080 (8)
F20.0541 (12)0.0421 (11)0.0240 (9)0.0044 (9)0.0002 (8)0.0061 (8)
F30.0383 (11)0.0534 (12)0.0302 (10)0.0014 (9)0.0061 (8)0.0047 (8)
F510.0600 (12)0.0355 (11)0.0290 (10)0.0142 (9)0.0017 (9)0.0026 (8)
F520.0473 (11)0.0392 (11)0.0280 (9)0.0021 (9)0.0055 (8)0.0098 (8)
F530.0368 (10)0.0450 (11)0.0255 (9)0.0005 (8)0.0054 (8)0.0025 (8)
O10.0468 (13)0.0355 (13)0.0141 (10)0.0050 (10)0.0018 (9)0.0034 (9)
O20.0381 (12)0.0312 (12)0.0191 (10)0.0040 (10)0.0009 (8)0.0016 (8)
O510.0446 (13)0.0341 (12)0.0145 (10)0.0059 (10)0.0013 (9)0.0016 (9)
O520.0547 (14)0.0304 (12)0.0171 (10)0.0095 (11)0.0016 (9)0.0027 (8)
N10.0323 (14)0.0339 (14)0.0140 (11)0.0015 (11)0.0012 (10)0.0020 (10)
N20.0310 (14)0.0353 (15)0.0184 (12)0.0013 (11)0.0004 (10)0.0021 (10)
N30.0386 (15)0.0329 (15)0.0187 (13)0.0037 (12)0.0008 (11)0.0015 (12)
N510.0364 (14)0.0264 (13)0.0158 (12)0.0009 (11)0.0012 (10)0.0018 (10)
N520.0363 (14)0.0285 (14)0.0169 (12)0.0022 (11)0.0016 (10)0.0004 (10)
N530.0501 (17)0.0324 (16)0.0170 (14)0.0067 (13)0.0026 (12)0.0009 (12)
C10.0320 (16)0.0357 (18)0.0162 (14)0.0050 (14)0.0012 (12)0.0017 (12)
C20.0316 (16)0.0389 (19)0.0212 (15)0.0045 (14)0.0010 (12)0.0017 (13)
C30.0328 (17)0.042 (2)0.0268 (16)0.0037 (15)0.0016 (13)0.0096 (14)
C40.0422 (19)0.051 (2)0.0219 (16)0.0123 (16)0.0039 (14)0.0082 (15)
C50.052 (2)0.050 (2)0.0224 (16)0.0114 (17)0.0047 (14)0.0059 (15)
C60.0403 (18)0.0407 (19)0.0243 (16)0.0009 (15)0.0036 (13)0.0014 (14)
C70.0329 (16)0.0304 (17)0.0172 (14)0.0030 (13)0.0007 (12)0.0010 (12)
C80.0346 (16)0.0274 (16)0.0153 (14)0.0040 (13)0.0015 (12)0.0009 (12)
C90.0300 (16)0.0262 (16)0.0200 (14)0.0032 (13)0.0029 (12)0.0019 (12)
C100.0352 (17)0.0258 (16)0.0183 (14)0.0067 (14)0.0000 (12)0.0012 (12)
C110.0389 (18)0.0370 (18)0.0236 (16)0.0012 (15)0.0002 (13)0.0021 (14)
C510.0333 (16)0.0267 (16)0.0169 (14)0.0001 (13)0.0028 (12)0.0021 (12)
C520.0317 (16)0.0367 (18)0.0227 (15)0.0003 (14)0.0030 (12)0.0007 (13)
C530.0415 (19)0.0408 (19)0.0205 (15)0.0057 (15)0.0055 (13)0.0016 (13)
C540.0443 (19)0.0393 (19)0.0185 (15)0.0069 (15)0.0074 (13)0.0042 (13)
C550.0364 (18)0.0350 (19)0.0307 (17)0.0008 (14)0.0047 (14)0.0044 (14)
C560.0370 (18)0.0348 (18)0.0242 (16)0.0050 (14)0.0049 (13)0.0027 (13)
C570.0336 (16)0.0254 (16)0.0168 (14)0.0027 (13)0.0006 (12)0.0002 (12)
C580.0360 (17)0.0243 (16)0.0164 (14)0.0035 (13)0.0021 (12)0.0008 (11)
C590.0318 (16)0.0280 (17)0.0191 (14)0.0014 (13)0.0036 (12)0.0015 (12)
C600.0362 (17)0.0297 (18)0.0170 (15)0.0045 (14)0.0001 (12)0.0013 (12)
C610.0359 (17)0.0289 (17)0.0209 (15)0.0004 (13)0.0015 (13)0.0048 (12)
Geometric parameters (Å, º) top
F1—C111.341 (3)C2—C31.380 (4)
F2—C111.336 (3)C2—H20.9500
F3—C111.336 (4)C3—C41.372 (5)
F51—C611.335 (3)C3—H30.9500
F52—C611.333 (3)C4—C51.376 (5)
F53—C611.340 (3)C4—H40.9500
O1—C101.313 (3)C5—C61.392 (4)
O1—H10.91 (4)C5—H50.9500
O2—C101.231 (3)C6—H60.9500
O51—C601.315 (3)C7—C81.410 (4)
O51—H510.94 (4)C7—C111.482 (4)
O52—C601.232 (4)C8—C91.387 (4)
N1—C91.350 (4)C8—C101.447 (4)
N1—N21.376 (3)C51—C561.379 (4)
N1—C11.425 (3)C51—C521.380 (4)
N2—C71.316 (4)C52—C531.381 (4)
N3—C91.358 (4)C52—H520.9500
N3—H300.95 (4)C53—C541.381 (5)
N3—H310.90 (4)C53—H530.9500
N51—C591.346 (4)C54—C551.378 (4)
N51—N521.376 (3)C54—H540.9500
N51—C511.431 (3)C55—C561.380 (4)
N52—C571.315 (3)C55—H550.9500
N53—C591.346 (4)C56—H560.9500
N53—H5300.90 (3)C57—C581.416 (4)
N53—H5310.85 (4)C57—C611.484 (4)
C1—C61.379 (4)C58—C591.393 (4)
C1—C21.383 (4)C58—C601.433 (4)
C10—O1—H1114 (3)O2—C10—C8121.9 (3)
C60—O51—H51108 (2)O1—C10—C8114.9 (3)
C9—N1—N2112.0 (2)F2—C11—F3107.0 (2)
C9—N1—C1128.2 (2)F2—C11—F1106.6 (2)
N2—N1—C1119.5 (2)F3—C11—F1106.3 (2)
C7—N2—N1104.4 (2)F2—C11—C7113.1 (3)
C9—N3—H30118 (2)F3—C11—C7112.2 (3)
C9—N3—H31110 (2)F1—C11—C7111.3 (2)
H30—N3—H31114 (3)C56—C51—C52121.3 (3)
C59—N51—N52112.3 (2)C56—C51—N51118.9 (3)
C59—N51—C51126.7 (2)C52—C51—N51119.8 (3)
N52—N51—C51120.8 (2)C51—C52—C53119.0 (3)
C57—N52—N51104.2 (2)C51—C52—H52120.5
C59—N53—H530120 (2)C53—C52—H52120.5
C59—N53—H531111 (2)C54—C53—C52120.2 (3)
H530—N53—H531121 (3)C54—C53—H53119.9
C6—C1—C2121.1 (3)C52—C53—H53119.9
C6—C1—N1119.8 (3)C55—C54—C53120.2 (3)
C2—C1—N1119.1 (3)C55—C54—H54119.9
C3—C2—C1119.3 (3)C53—C54—H54119.9
C3—C2—H2120.3C54—C55—C56120.2 (3)
C1—C2—H2120.3C54—C55—H55119.9
C4—C3—C2120.3 (3)C56—C55—H55119.9
C4—C3—H3119.9C51—C56—C55119.2 (3)
C2—C3—H3119.9C51—C56—H56120.4
C3—C4—C5120.3 (3)C55—C56—H56120.4
C3—C4—H4119.9N52—C57—C58112.8 (2)
C5—C4—H4119.9N52—C57—C61117.9 (2)
C4—C5—C6120.3 (3)C58—C57—C61129.2 (2)
C4—C5—H5119.8C59—C58—C57103.7 (2)
C6—C5—H5119.8C59—C58—C60122.8 (3)
C1—C6—C5118.7 (3)C57—C58—C60133.5 (3)
C1—C6—H6120.6N51—C59—N53122.3 (3)
C5—C6—H6120.6N51—C59—C58107.0 (2)
N2—C7—C8112.4 (2)N53—C59—C58130.7 (3)
N2—C7—C11117.7 (3)O52—C60—O51122.6 (3)
C8—C7—C11129.8 (3)O52—C60—C58120.5 (3)
C9—C8—C7104.4 (2)O51—C60—C58116.8 (3)
C9—C8—C10124.1 (3)F52—C61—F51107.4 (2)
C7—C8—C10131.5 (3)F52—C61—F53106.6 (2)
N1—C9—N3123.2 (3)F51—C61—F53106.3 (2)
N1—C9—C8106.7 (2)F52—C61—C57112.1 (2)
N3—C9—C8130.0 (3)F51—C61—C57111.5 (2)
O2—C10—O1123.2 (3)F53—C61—C57112.7 (2)
C9—N1—N2—C70.7 (3)N2—C7—C11—F10.1 (4)
C1—N1—N2—C7175.4 (2)C8—C7—C11—F1177.2 (3)
C59—N51—N52—C570.2 (3)C59—N51—C51—C5683.1 (4)
C51—N51—N52—C57175.8 (2)N52—N51—C51—C5691.7 (3)
C9—N1—C1—C669.0 (4)C59—N51—C51—C5297.9 (4)
N2—N1—C1—C6117.2 (3)N52—N51—C51—C5287.3 (3)
C9—N1—C1—C2111.3 (3)C56—C51—C52—C530.3 (5)
N2—N1—C1—C262.5 (4)N51—C51—C52—C53178.7 (3)
C6—C1—C2—C30.3 (4)C51—C52—C53—C540.4 (5)
N1—C1—C2—C3179.4 (3)C52—C53—C54—C551.2 (5)
C1—C2—C3—C40.3 (4)C53—C54—C55—C561.3 (5)
C2—C3—C4—C50.0 (5)C52—C51—C56—C550.1 (5)
C3—C4—C5—C60.3 (5)N51—C51—C56—C55178.9 (3)
C2—C1—C6—C50.0 (5)C54—C55—C56—C510.6 (5)
N1—C1—C6—C5179.6 (3)N51—N52—C57—C580.2 (3)
C4—C5—C6—C10.3 (5)N51—N52—C57—C61177.9 (2)
N1—N2—C7—C80.9 (3)N52—C57—C58—C590.1 (3)
N1—N2—C7—C11176.6 (2)C61—C57—C58—C59177.5 (3)
N2—C7—C8—C90.8 (3)N52—C57—C58—C60176.8 (3)
C11—C7—C8—C9176.3 (3)C61—C57—C58—C600.6 (5)
N2—C7—C8—C10177.1 (3)N52—N51—C59—N53177.5 (3)
C11—C7—C8—C105.7 (5)C51—N51—C59—N532.2 (5)
N2—N1—C9—N3176.8 (3)N52—N51—C59—C580.2 (3)
C1—N1—C9—N32.6 (5)C51—N51—C59—C58175.4 (3)
N2—N1—C9—C80.2 (3)C57—C58—C59—N510.1 (3)
C1—N1—C9—C8174.3 (3)C60—C58—C59—N51177.4 (3)
C7—C8—C9—N10.4 (3)C57—C58—C59—N53177.3 (3)
C10—C8—C9—N1177.8 (3)C60—C58—C59—N530.0 (5)
C7—C8—C9—N3177.0 (3)C59—C58—C60—O523.2 (5)
C10—C8—C9—N31.1 (5)C57—C58—C60—O52173.2 (3)
C9—C8—C10—O22.9 (5)C59—C58—C60—O51177.1 (3)
C7—C8—C10—O2174.7 (3)C57—C58—C60—O516.4 (5)
C9—C8—C10—O1177.2 (3)N52—C57—C61—F52115.3 (3)
C7—C8—C10—O15.2 (5)C58—C57—C61—F5262.0 (4)
N2—C7—C11—F2120.1 (3)N52—C57—C61—F515.1 (4)
C8—C7—C11—F262.9 (4)C58—C57—C61—F51177.6 (3)
N2—C7—C11—F3118.8 (3)N52—C57—C61—F53124.5 (3)
C8—C7—C11—F358.2 (4)C58—C57—C61—F5358.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N53—H531···O520.85 (4)2.20 (4)2.808 (3)128 (3)
O51—H51···O2i0.94 (4)1.75 (4)2.687 (3)177 (4)
N3—H31···O20.90 (4)2.20 (4)2.873 (3)132 (3)
O1—H1···O52ii0.91 (4)1.67 (4)2.580 (3)176 (4)
Symmetry codes: (i) x, y1, z1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H8F3N3O2
Mr271.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)125
a, b, c (Å)9.757 (3), 10.740 (3), 21.277 (6)
β (°) 93.716 (3)
V3)2225 (1)
Z8
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.30 × 0.18 × 0.05
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.957, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
20692, 3772, 2737
Rint0.072
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.140, 1.01
No. of reflections3772
No. of parameters368
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.32

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N53—H531···O520.85 (4)2.20 (4)2.808 (3)128 (3)
O51—H51···O2i0.94 (4)1.75 (4)2.687 (3)177 (4)
N3—H31···O20.90 (4)2.20 (4)2.873 (3)132 (3)
O1—H1···O52ii0.91 (4)1.67 (4)2.580 (3)176 (4)
Symmetry codes: (i) x, y1, z1; (ii) x, y+1, z+1.
 

Acknowledgements

We acknowkledge US NSF grant No. 0521237 for the X-ray diffractometer.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaruso, F. & Rossi, M. (2004). Mini Rev. Med. Chem. 4, 49–60.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMaggio, B., Raffa, D., Raimondi, M. V., Cascioferro, S., Plescia, F., Tolomeo, M., Barbusca, E., Cannizzo, G., Mancuso, S. & Daidone, G. (2008). Eur. J. Med. Chem. 43, 2386–2394.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds