organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Meth­­oxy-3-o-tolyl­bi­cyclo­[2.2.2]oct-5-ene-2,2-dicarbo­nitrile

aDepartment of Physics, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, bDepartment of Chemistry, Faculty of Arts & Science, Gazi University, Ankara, Turkey, and cChemical Technology Program, Denizli Higher Vocational School, Pamukkale University, TR-20159 Kınıklı, Denizli, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 31 July 2009; accepted 15 August 2009; online 22 August 2009)

In the title compound, C18H18N2O, the cyclo­hexene and cyclo­hexane rings of the bicyclo­[2.2.2]oct-5-ene unit adopt distorted boat conformations. In the crystal, mol­ecules exist as C—H⋯N hydrogen-bonded centrosymmetric R22(14) dimers, which are further linked by C—H⋯π inter­actions.

Related literature

For general background, see: Çete et al. (2007[Çete, S., Özkan, H., Arslan, F., Yıldırır, Y. & Yaşar, A. (2007). Asian J. Chem. 9, 550-554.]); Corey (2002[Corey, E. J. (2002). Angew. Chem. Int. Ed. Engl. 41, 1650-1667.]); Kurt & Anker (1998[Kurt, V. & Anker, G. J. (1998). Chem. Rev. 98, 863-909.]); Mamedov et al. (2007[Mamedov, E. G., Mamedov, G. F., Gadzhieva, O. B. & Nagiev, A. V. (2007). Russ. J. Appl. Chem. 80, 1376-1378.]); Özkan et al., (2007[Özkan, H., Yavuz, S., Dişli, A., Yıldırır, Y. & Türker, L. (2007). Heteroatom Chem. 18, 255-258.]); Potapov (1988[Potapov, V. M. (1988). Stereokhimiya (Stereochemistry), pp. 215-218, Moscow: Khimiya.]). For the synthesis, see: Zhang et al. (2006[Zhang, M., Zhang, A. Q., Chen, H. H., Chen, J. & Chen, H. Y. (2006). Synth. Commun. 36, 3441-3445.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18N2O

  • Mr = 278.34

  • Triclinic, [P \overline 1]

  • a = 7.5922 (6) Å

  • b = 9.5026 (8) Å

  • c = 11.5584 (9) Å

  • α = 91.201 (7)°

  • β = 107.206 (6)°

  • γ = 110.856 (6)°

  • V = 736.89 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.48 × 0.42 × 0.17 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.956, Tmax = 0.989

  • 8047 measured reflections

  • 3057 independent reflections

  • 2532 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 1.05

  • 3057 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯N1i 0.93 2.70 3.509 (3) 146
C7—H7CCg1ii 0.96 2.84 3.688 (2) 146
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z+1. Cg1 is the centroid of the C1–C6 ring.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The Diels-Alder reactions are among the most useful of all synthetic processes for the construction of complex molecules and, for this reason, they have been studied extensively (Kurt & Anker, 1998). The reaction is easy, rapid and is a key reaction in fundamental organic synthesis. Cycloadducts of asymmetric Diels-Alder reactions have attracted attention owing to their utility in the synthesis of natural compounds (Corey, 2002).

In the conventional Diels-Alder reaction a double bond adds 1,4 to a conjugated diene. The title compound, (I), was prepared by a cycloaddiction reaction from 2-(2-methylbenzylidene) malononitrile and 1-methoxycyclohexa-1,3-diene. Bicyclo[2.2.2]octane and bicycle[2.2.2]octane moieties are essential fragment of many important natural and synthetic biologically active compounds (Potapov, 1988). Both this type bicyclo compounds and many cyano group containing compounds show biological activity (Özkan et al. 2007; Çete et al. 2007). Therefore, synthesis of these compounds in the practically active form is of practical interest (Mamedov et al. 2007).

The overall view and atom-labeling of the molecule of (I) are displayed in Fig. 1. The hydrogen-bonding parameters are given in Table 1 and the packing arrangement of the molecules is illustrated in Fig. 2. In the molecule, cyclohexene rings A(C8/C9/C10/C11/C12/C13) and B(C10/C11/C12/C13/C17/C16), and the cyclohexane ring C(C8/C9/C10/C16/C17/C13) of the bicyclo[2.2.2]oct-5-ene unit all adopt distorted boat conformations. The Cremer and Pople (1975) puckering parameters Q, θ and ϕ are 0.810 (2) Å, 84.8 (1)° and 111.8 (1)°, respectively for ring A, 0.788 (2) Å, 86.7 (1)° and 186.3 (1)°, respectively for ring B, and 0.906 (2) Å, 88.4 (1)° and 310.3 (1)°, respectively for ring C.

The crystal structure is stabilized by intermolecular C—H···N hydrogen bonds and C—H···π interactions (Table 1). As shown in Fig. 2, the molecules exist as C12—H12···N1 hydrogen-bonded centrosymmetric R22(14) dimers (Bernstein et al., 1995; Etter, 1990). The dimers are linked through C7—H7C···π interactions.

Related literature top

For general background, see: Çete et al. (2007); Corey (2002); Kurt & Anker (1998); Mamedov et al. (2007); Özkan et al., (2007); Potapov (1988). For the synthesis, see: Zhang et al. (2006). For graph-set notation, see: Bernstein et al. (1995); Etter (1990). For ring conformations, see: Cremer & Pople (1975). Cg1 is the centroid of the C1–C6 ring.

Experimental top

2-(2-Methylbenzylidene)malononitrile was prepared from 2-methyl benzaldehyde, malononitrile and potassium carbonate according to the literature method (Zhang et al. 2006). For the preparation of the title compound, 1-methoxycyclohexa-1,3-diene (330 mg, 3 mmol) and 2-(2-methylbenzylidene) malononitrile (459 mg, 3 mmol) were dissolved in benzene (20 ml). The reaction mixture was refluxed for 4 h, and monitored by TLC. After evaporation of the solvent, the reaction mixture was separated by column chromatography, using the mixture of hexane-ethyl acetate (1:2) as the eluant. The title compound was recrystallized from methanol in 3 d (m.p. 431–432 K).

Refinement top

H atoms were positioned geometrically (C-H = 0.93–0.98 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). A rotating–group model was used for the methyl groups.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 15% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of R22(14) dimers and a C—H···π interaction. H atoms not involved in the interactions have been omitted for clarity. The dashed lines indicate hydrogen bonds. [Symmetry code: (i) 1 - x, 1 - y, -z; (ii) 2- x, 1 - y, 1 - z]. Cg1 is the centroid of the C1-C6 ring.
[Figure 3] Fig. 3. Preparation of the title compound.
1-Methoxy-3-o-tolylbicyclo[2.2.2]oct-5-ene-2,2-dicarbonitrile top
Crystal data top
C18H18N2OZ = 2
Mr = 278.34F(000) = 296
Triclinic, P1Dx = 1.254 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5922 (6) ÅCell parameters from 8047 reflections
b = 9.5026 (8) Åθ = 1.9–28.1°
c = 11.5584 (9) ŵ = 0.08 mm1
α = 91.201 (7)°T = 296 K
β = 107.206 (6)°Prism, colourless
γ = 110.856 (6)°0.48 × 0.42 × 0.17 mm
V = 736.89 (10) Å3
Data collection top
Stoe IPDS II
diffractometer
3057 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2532 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.034
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.9°
ω–scan rotation methodh = 99
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1111
Tmin = 0.956, Tmax = 0.989l = 1414
8047 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.127P]
where P = (Fo2 + 2Fc2)/3
3057 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C18H18N2Oγ = 110.856 (6)°
Mr = 278.34V = 736.89 (10) Å3
Triclinic, P1Z = 2
a = 7.5922 (6) ÅMo Kα radiation
b = 9.5026 (8) ŵ = 0.08 mm1
c = 11.5584 (9) ÅT = 296 K
α = 91.201 (7)°0.48 × 0.42 × 0.17 mm
β = 107.206 (6)°
Data collection top
Stoe IPDS II
diffractometer
3057 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2532 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.989Rint = 0.034
8047 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.05Δρmax = 0.21 e Å3
3057 reflectionsΔρmin = 0.16 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.76186 (18)0.53676 (14)0.34535 (12)0.0411 (3)
C20.75171 (19)0.51461 (15)0.46312 (12)0.0434 (3)
C30.6500 (2)0.36832 (17)0.48325 (14)0.0522 (4)
H30.64010.35300.56070.063*
C40.5636 (2)0.24556 (17)0.39194 (16)0.0584 (4)
H40.49790.14880.40810.070*
C50.5753 (2)0.26716 (17)0.27703 (16)0.0594 (4)
H50.51850.18480.21510.071*
C60.6717 (2)0.41157 (16)0.25353 (14)0.0526 (4)
H60.67660.42560.17500.063*
C70.8491 (2)0.64107 (17)0.56952 (13)0.0522 (3)
H7A0.81520.60310.63960.078*
H7B0.80310.72200.54860.078*
H7C0.99110.67870.58820.078*
C80.87437 (18)0.69280 (14)0.31871 (11)0.0390 (3)
H80.96800.75120.39770.047*
C90.74043 (18)0.78601 (14)0.26415 (11)0.0398 (3)
C100.8251 (2)0.88159 (16)0.16893 (12)0.0454 (3)
C110.7944 (2)0.76528 (19)0.06747 (13)0.0543 (4)
H110.72010.76190.01330.065*
C120.8816 (2)0.66815 (18)0.10214 (13)0.0528 (4)
H120.86910.58840.04830.063*
C131.00195 (19)0.69628 (15)0.23466 (12)0.0440 (3)
H131.06700.62320.25370.053*
C140.5290 (2)0.68754 (16)0.20146 (13)0.0473 (3)
C150.7433 (2)0.88992 (15)0.36219 (12)0.0438 (3)
C161.0492 (2)0.97044 (16)0.23344 (14)0.0487 (3)
H16A1.10331.04130.18200.058*
H16B1.06931.02830.30960.058*
C171.1581 (2)0.86011 (16)0.25968 (13)0.0475 (3)
H17A1.24390.88310.34430.057*
H17B1.24020.87070.20760.057*
C180.7764 (3)1.0878 (2)0.0652 (2)0.0806 (6)
H18A0.89491.16890.11570.121*
H18B0.67391.12640.03190.121*
H18C0.80451.04580.00040.121*
N10.3655 (2)0.61425 (17)0.15462 (14)0.0698 (4)
N20.7485 (2)0.96949 (16)0.43909 (13)0.0622 (4)
O10.71183 (17)0.97361 (13)0.13594 (10)0.0617 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0353 (6)0.0387 (7)0.0463 (7)0.0129 (5)0.0108 (5)0.0023 (5)
C20.0361 (6)0.0444 (7)0.0498 (7)0.0165 (5)0.0125 (5)0.0072 (6)
C30.0439 (7)0.0532 (8)0.0595 (9)0.0167 (6)0.0181 (6)0.0173 (7)
C40.0450 (8)0.0424 (8)0.0802 (11)0.0101 (6)0.0173 (7)0.0138 (7)
C50.0509 (8)0.0404 (7)0.0717 (10)0.0082 (6)0.0106 (7)0.0054 (7)
C60.0512 (8)0.0448 (7)0.0531 (8)0.0117 (6)0.0133 (6)0.0010 (6)
C70.0558 (8)0.0546 (8)0.0455 (8)0.0200 (7)0.0165 (6)0.0070 (6)
C80.0364 (6)0.0384 (6)0.0374 (6)0.0114 (5)0.0091 (5)0.0003 (5)
C90.0366 (6)0.0418 (7)0.0387 (6)0.0130 (5)0.0115 (5)0.0020 (5)
C100.0438 (7)0.0520 (8)0.0424 (7)0.0192 (6)0.0151 (6)0.0116 (6)
C110.0471 (8)0.0721 (10)0.0357 (7)0.0136 (7)0.0132 (6)0.0031 (7)
C120.0504 (8)0.0570 (8)0.0455 (8)0.0110 (7)0.0203 (6)0.0073 (6)
C130.0405 (7)0.0437 (7)0.0475 (7)0.0141 (6)0.0164 (6)0.0002 (6)
C140.0415 (7)0.0510 (8)0.0486 (7)0.0171 (6)0.0143 (6)0.0012 (6)
C150.0472 (7)0.0431 (7)0.0436 (7)0.0189 (6)0.0160 (6)0.0070 (6)
C160.0452 (7)0.0456 (7)0.0518 (8)0.0110 (6)0.0184 (6)0.0071 (6)
C170.0378 (7)0.0513 (8)0.0491 (7)0.0111 (6)0.0154 (6)0.0038 (6)
C180.0877 (14)0.0894 (13)0.0880 (13)0.0478 (11)0.0411 (11)0.0502 (11)
N10.0413 (7)0.0762 (9)0.0777 (10)0.0141 (7)0.0108 (6)0.0124 (8)
N20.0799 (9)0.0595 (8)0.0570 (8)0.0357 (7)0.0249 (7)0.0036 (6)
O10.0616 (7)0.0731 (7)0.0663 (7)0.0370 (6)0.0273 (5)0.0331 (6)
Geometric parameters (Å, º) top
C1—C61.3955 (19)C10—O11.4160 (17)
C1—C21.4019 (19)C10—C111.501 (2)
C1—C81.5153 (17)C10—C161.5372 (19)
C2—C31.3923 (19)C11—C121.321 (2)
C2—C71.5068 (19)C11—H110.93
C3—C41.378 (2)C12—C131.494 (2)
C3—H30.93C12—H120.93
C4—C51.372 (2)C13—C171.5417 (19)
C4—H40.93C13—H130.98
C5—C61.382 (2)C14—N11.1355 (19)
C5—H50.93C15—N21.1371 (18)
C6—H60.93C16—C171.535 (2)
C7—H7A0.96C16—H16A0.97
C7—H7B0.96C16—H16B0.97
C7—H7C0.96C17—H17A0.97
C8—C131.5551 (18)C17—H17B0.97
C8—C91.5816 (17)C18—O11.408 (2)
C8—H80.98C18—H18A0.96
C9—C151.4776 (18)C18—H18B0.96
C9—C141.4804 (18)C18—H18C0.96
C9—C101.5794 (18)
C6—C1—C2118.87 (12)C11—C10—C16109.89 (12)
C6—C1—C8120.32 (12)O1—C10—C9104.47 (10)
C2—C1—C8120.77 (11)C11—C10—C9104.90 (11)
C3—C2—C1118.44 (13)C16—C10—C9107.10 (11)
C3—C2—C7118.43 (13)C12—C11—C10114.56 (12)
C1—C2—C7123.11 (12)C12—C11—H11122.7
C4—C3—C2121.98 (14)C10—C11—H11122.7
C4—C3—H3119.0C11—C12—C13114.81 (13)
C2—C3—H3119.0C11—C12—H12122.6
C5—C4—C3119.50 (14)C13—C12—H12122.6
C5—C4—H4120.3C12—C13—C17106.54 (12)
C3—C4—H4120.3C12—C13—C8111.97 (11)
C4—C5—C6119.87 (14)C17—C13—C8105.91 (10)
C4—C5—H5120.1C12—C13—H13110.7
C6—C5—H5120.1C17—C13—H13110.7
C5—C6—C1121.31 (15)C8—C13—H13110.7
C5—C6—H6119.3N1—C14—C9178.43 (15)
C1—C6—H6119.3N2—C15—C9178.70 (15)
C2—C7—H7A109.5C17—C16—C10110.08 (11)
C2—C7—H7B109.5C17—C16—H16A109.6
H7A—C7—H7B109.5C10—C16—H16A109.6
C2—C7—H7C109.5C17—C16—H16B109.6
H7A—C7—H7C109.5C10—C16—H16B109.6
H7B—C7—H7C109.5H16A—C16—H16B108.2
C1—C8—C13115.60 (10)C16—C17—C13108.74 (11)
C1—C8—C9114.62 (10)C16—C17—H17A109.9
C13—C8—C9107.25 (10)C13—C17—H17A109.9
C1—C8—H8106.2C16—C17—H17B109.9
C13—C8—H8106.2C13—C17—H17B109.9
C9—C8—H8106.2H17A—C17—H17B108.3
C15—C9—C14106.69 (11)O1—C18—H18A109.5
C15—C9—C10109.45 (11)O1—C18—H18B109.5
C14—C9—C10108.55 (11)H18A—C18—H18B109.5
C15—C9—C8110.69 (10)O1—C18—H18C109.5
C14—C9—C8112.91 (11)H18A—C18—H18C109.5
C10—C9—C8108.49 (10)H18B—C18—H18C109.5
O1—C10—C11114.96 (12)C18—O1—C10116.48 (12)
O1—C10—C16114.58 (12)
C6—C1—C2—C30.63 (19)C14—C9—C10—C1157.83 (14)
C8—C1—C2—C3178.64 (12)C8—C9—C10—C1165.22 (13)
C6—C1—C2—C7178.11 (13)C15—C9—C10—C1669.33 (14)
C8—C1—C2—C70.10 (19)C14—C9—C10—C16174.58 (11)
C1—C2—C3—C41.4 (2)C8—C9—C10—C1651.54 (13)
C7—C2—C3—C4177.44 (13)O1—C10—C11—C12172.24 (12)
C2—C3—C4—C50.8 (2)C16—C10—C11—C1256.73 (16)
C3—C4—C5—C60.6 (2)C9—C10—C11—C1258.09 (15)
C4—C5—C6—C11.3 (2)C10—C11—C12—C132.60 (18)
C2—C1—C6—C50.7 (2)C11—C12—C13—C1757.14 (16)
C8—C1—C6—C5177.32 (13)C11—C12—C13—C858.22 (17)
C6—C1—C8—C1339.45 (17)C1—C8—C13—C1285.22 (14)
C2—C1—C8—C13138.53 (12)C9—C8—C13—C1244.02 (14)
C6—C1—C8—C986.10 (15)C1—C8—C13—C17159.04 (11)
C2—C1—C8—C995.92 (14)C9—C8—C13—C1771.72 (12)
C1—C8—C9—C1595.40 (13)O1—C10—C16—C17177.48 (11)
C13—C8—C9—C15134.81 (11)C11—C10—C16—C1746.25 (15)
C1—C8—C9—C1424.13 (15)C9—C10—C16—C1767.16 (14)
C13—C8—C9—C14105.66 (12)C10—C16—C17—C1310.53 (15)
C1—C8—C9—C10144.50 (11)C12—C13—C17—C1661.71 (14)
C13—C8—C9—C1014.70 (13)C8—C13—C17—C1657.67 (14)
C15—C9—C10—O152.60 (13)C11—C10—O1—C1874.84 (18)
C14—C9—C10—O163.49 (13)C16—C10—O1—C1853.89 (18)
C8—C9—C10—O1173.47 (10)C9—C10—O1—C18170.76 (14)
C15—C9—C10—C11173.91 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N1i0.932.703.509 (3)146
C7—H7C···Cg1ii0.962.843.688 (2)146
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H18N2O
Mr278.34
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.5922 (6), 9.5026 (8), 11.5584 (9)
α, β, γ (°)91.201 (7), 107.206 (6), 110.856 (6)
V3)736.89 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.48 × 0.42 × 0.17
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.956, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
8047, 3057, 2532
Rint0.034
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 1.05
No. of reflections3057
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.16

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N1i0.932.703.509 (3)146
C7—H7C···Cg1ii0.962.843.688 (2)146
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z+1.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Scientific and Technical Research Council of Turkey (TUBITAK, Project No. 107 T676). We also thank the Turkish Grain Board (TMO) for the supply of thebaine.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationÇete, S., Özkan, H., Arslan, F., Yıldırır, Y. & Yaşar, A. (2007). Asian J. Chem. 9, 550–554.  Google Scholar
First citationCorey, E. J. (2002). Angew. Chem. Int. Ed. Engl. 41, 1650–1667.  CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKurt, V. & Anker, G. J. (1998). Chem. Rev. 98, 863–909.  PubMed Google Scholar
First citationMamedov, E. G., Mamedov, G. F., Gadzhieva, O. B. & Nagiev, A. V. (2007). Russ. J. Appl. Chem. 80, 1376–1378.  Web of Science CrossRef CAS Google Scholar
First citationÖzkan, H., Yavuz, S., Dişli, A., Yıldırır, Y. & Türker, L. (2007). Heteroatom Chem. 18, 255–258.  Google Scholar
First citationPotapov, V. M. (1988). Stereokhimiya (Stereochemistry), pp. 215–218, Moscow: Khimiya.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationZhang, M., Zhang, A. Q., Chen, H. H., Chen, J. & Chen, H. Y. (2006). Synth. Commun. 36, 3441–3445.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds