organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-2-(4-Methyl­benzene­sulfonamido)ethyl­iminiometh­yl]-4-nitro­phenolate

aDepartment of Physics, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit–Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts & Science, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: gokhana@omu.edu.tr

(Received 7 August 2009; accepted 10 August 2009; online 15 August 2009)

The mol­ecule of the title compound, C16H17N3O5S, crystallizes in a zwitterionic form, with a strong intra­molecular N—H⋯O hydrogen bond. The dihedral angle between the two benzene rings is 7.06 (9)°. In the crystal, mol­ecules are linked into chains along the c axis by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For general background to Schiff bases, see: Calligaris et al. (1972[Calligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385-403.]); Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.]); Hadjoudis et al. (1987[Hadjoudis, E., Vitterakis, M., Moustakali, I. & Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.]); Karabıyık et al. (2008[Karabıyık, H., Ocak İskeleli, N., Petek, H., Albayrak, Ç. & Ağar, E. (2008). J. Mol. Struct. 873, 130-136.]). For the crystal structure of 2-[2-(1H-indol-3-yl)ethyl­iminiometh­yl]-4-nitro­phenolate, see: Ali et al. (2008[Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, o913.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17N3O5S

  • Mr = 363.39

  • Monoclinic, P 21 /c

  • a = 17.915 (5) Å

  • b = 7.342 (5) Å

  • c = 13.055 (5) Å

  • β = 103.928 (5)°

  • V = 1666.7 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.68 × 0.50 × 0.26 mm

Data collection
  • Stoe IPDS-II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.887, Tmax = 0.956

  • 22908 measured reflections

  • 3272 independent reflections

  • 2845 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.094

  • S = 1.07

  • 3272 reflections

  • 236 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯O3i 0.78 (2) 2.06 (2) 2.833 (2) 170 (2)
N2—H1A⋯O3 0.87 (2) 1.94 (2) 2.648 (2) 137 (2)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff bases have been extensively used as ligands in the field of coordination chemistry (Calligaris et al., 1972). Schiff base compounds can be classified by their photochromic and thermochromic characteristics (Cohen et al., 1964). These properties result from a proton transfer from the hydroxyl O atom to the imine N atom (Hadjoudis et al., 1987). Schiff bases exhibit two well known tautomeric forms viz. OH and NH tautomers, and they also exist in zwitterionic form (Karabıyık et al., 2008). Our investigations show that the title compund has a zwitterionic form with a strong intramolecular N—H···O hydrogen bond (Fig. 1).

The C7N2 [1.292 (2) Å] and C6—03 [1.272 (2) Å] bond distances in the title compound are comparable to those [1.292 (2) and 1.264 (2) Å] observed in a related zwitterionic structure (Ali et al., 2008). The molecule adopts a folded conformation. The dihedral angle between the two benzene rings is 7.06 (9)°.

The intramolecular N2—H1A···O3 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). The molecules are linked into chains (Fig. 2) along the c axis by intermolecular N—H···O hydrogen bonds (Table 1).

Related literature top

For general background to Schiff bases, see: Calligaris et al. (1972); Cohen et al. (1964); Hadjoudis et al. (1987); Karabıyık et al. (2008). For the crystal structure of 2-[2-(1H-indol-3-yl)ethyliminiomethyl]-4-nitrophenolate, see: Ali et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

2-Hydroxy-5-nitrobenzaldehyde (10 mg, 5.98× 10-2 mmol) in ethanol (20 ml) was added to a solution of N-p-tolyl-sulfonylethylenediamine (12.7 mg, 5.98× 10-2 mmol) in ethanol (20 ml). The reaction mixture was stirred for 1 h under reflux. Single crystals of the title compound were obtained by slow evaporation of an ethylacetate solution (yield 55%; m.p. 446–447 K).

Refinement top

Atoms H1 and H1A were located in a difference map and were refined freely. The remaining H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. A packing diagram for (I). H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
2-[(E)-2-(4-Methylbenzenesulfonamido)ethyliminiomethyl]-4-nitrophenolate top
Crystal data top
C16H17N3O5SF(000) = 760
Mr = 363.39Dx = 1.448 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 37649 reflections
a = 17.915 (5) Åθ = 1.6–28.0°
b = 7.342 (5) ŵ = 0.23 mm1
c = 13.055 (5) ÅT = 296 K
β = 103.928 (5)°Block, yellow
V = 1666.7 (14) Å30.68 × 0.50 × 0.26 mm
Z = 4
Data collection top
Stoe IPDS-II
diffractometer
3272 independent reflections
Radiation source: fine-focus sealed tube2845 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.3°
ω scansh = 2222
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 99
Tmin = 0.887, Tmax = 0.956l = 1615
22908 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.2378P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.004
3272 reflectionsΔρmax = 0.26 e Å3
236 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0025 (8)
Crystal data top
C16H17N3O5SV = 1666.7 (14) Å3
Mr = 363.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.915 (5) ŵ = 0.23 mm1
b = 7.342 (5) ÅT = 296 K
c = 13.055 (5) Å0.68 × 0.50 × 0.26 mm
β = 103.928 (5)°
Data collection top
Stoe IPDS-II
diffractometer
3272 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2845 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 0.956Rint = 0.024
22908 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.26 e Å3
3272 reflectionsΔρmin = 0.27 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.73857 (9)0.1439 (2)0.58535 (12)0.0464 (3)
C20.81399 (10)0.1345 (2)0.64584 (14)0.0559 (4)
H20.82380.14050.71900.067*
C30.87338 (10)0.1163 (3)0.59823 (15)0.0604 (4)
C40.86008 (11)0.1075 (3)0.48830 (16)0.0648 (5)
H40.90120.09580.45670.078*
C50.78743 (11)0.1160 (3)0.42812 (15)0.0642 (5)
H50.77960.10930.35520.077*
C60.72214 (10)0.1346 (2)0.47198 (13)0.0523 (4)
C70.67882 (9)0.1617 (2)0.63841 (13)0.0463 (3)
H70.69250.16480.71180.056*
C80.54749 (9)0.1973 (2)0.65034 (13)0.0466 (4)
H8A0.56610.15050.72140.056*
H8B0.50240.12750.61620.056*
C90.52559 (8)0.3947 (2)0.65549 (12)0.0438 (3)
H9A0.50850.44190.58430.053*
H9B0.48290.40350.68890.053*
C100.69671 (8)0.65737 (19)0.62312 (11)0.0400 (3)
C110.69016 (9)0.6244 (2)0.51721 (12)0.0495 (4)
H110.64200.61820.47050.059*
C120.75608 (10)0.6008 (3)0.48147 (13)0.0571 (4)
H120.75150.57810.41020.068*
C130.82838 (10)0.6100 (2)0.54833 (15)0.0553 (4)
C140.83365 (10)0.6421 (3)0.65479 (15)0.0601 (4)
H140.88180.64740.70150.072*
C150.76879 (9)0.6661 (2)0.69225 (13)0.0522 (4)
H150.77330.68820.76360.063*
C160.89969 (12)0.5917 (3)0.50703 (19)0.0795 (6)
H16A0.88630.54030.43740.119*
H16B0.93590.51360.55290.119*
H16C0.92230.70970.50450.119*
N10.95110 (10)0.1062 (3)0.66326 (18)0.0917 (6)
N20.60663 (7)0.17413 (18)0.59235 (11)0.0456 (3)
N30.58876 (7)0.50612 (18)0.71366 (10)0.0448 (3)
O10.96069 (10)0.1084 (5)0.75840 (16)0.1571 (12)
O21.00420 (9)0.0954 (4)0.62016 (16)0.1183 (7)
O30.65360 (7)0.1427 (2)0.41569 (9)0.0669 (4)
O40.55334 (6)0.75149 (15)0.58460 (9)0.0479 (3)
O50.63776 (6)0.81294 (15)0.76080 (9)0.0522 (3)
S10.614192 (19)0.69488 (5)0.67146 (3)0.03887 (13)
H10.6088 (10)0.478 (2)0.7710 (14)0.048 (5)*
H1A0.5970 (12)0.176 (3)0.5235 (17)0.067 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0470 (8)0.0456 (8)0.0471 (8)0.0002 (6)0.0121 (7)0.0028 (7)
C20.0522 (9)0.0660 (10)0.0494 (9)0.0005 (8)0.0124 (7)0.0003 (8)
C30.0452 (9)0.0709 (11)0.0658 (11)0.0025 (8)0.0148 (8)0.0017 (9)
C40.0601 (11)0.0720 (12)0.0701 (12)0.0056 (9)0.0307 (9)0.0012 (10)
C50.0709 (12)0.0753 (12)0.0507 (9)0.0086 (10)0.0232 (9)0.0062 (9)
C60.0568 (10)0.0516 (9)0.0487 (9)0.0038 (7)0.0130 (7)0.0072 (7)
C70.0505 (9)0.0449 (8)0.0432 (8)0.0021 (6)0.0107 (7)0.0007 (6)
C80.0438 (8)0.0475 (8)0.0502 (9)0.0058 (6)0.0147 (7)0.0030 (7)
C90.0348 (7)0.0498 (8)0.0472 (8)0.0037 (6)0.0109 (6)0.0008 (7)
C100.0389 (7)0.0409 (7)0.0399 (7)0.0016 (6)0.0089 (6)0.0033 (6)
C110.0425 (8)0.0643 (10)0.0407 (8)0.0008 (7)0.0079 (6)0.0049 (7)
C120.0556 (10)0.0750 (12)0.0440 (9)0.0037 (8)0.0185 (7)0.0086 (8)
C130.0469 (9)0.0583 (10)0.0651 (11)0.0003 (7)0.0222 (8)0.0094 (8)
C140.0378 (8)0.0749 (12)0.0637 (11)0.0013 (8)0.0044 (7)0.0005 (9)
C150.0444 (8)0.0643 (10)0.0450 (8)0.0001 (7)0.0054 (7)0.0027 (7)
C160.0553 (11)0.0987 (16)0.0943 (15)0.0034 (11)0.0372 (11)0.0117 (13)
N10.0490 (9)0.1412 (19)0.0847 (13)0.0029 (11)0.0154 (9)0.0064 (13)
N20.0471 (7)0.0463 (7)0.0444 (7)0.0015 (5)0.0131 (6)0.0026 (6)
N30.0466 (7)0.0521 (8)0.0328 (7)0.0071 (6)0.0041 (5)0.0045 (6)
O10.0575 (10)0.327 (4)0.0791 (12)0.0105 (15)0.0021 (9)0.0096 (18)
O20.0494 (8)0.195 (2)0.1165 (14)0.0089 (11)0.0310 (9)0.0005 (14)
O30.0600 (8)0.0888 (9)0.0472 (7)0.0093 (7)0.0038 (6)0.0159 (6)
O40.0417 (5)0.0488 (6)0.0494 (6)0.0043 (4)0.0034 (5)0.0055 (5)
O50.0512 (6)0.0543 (6)0.0504 (6)0.0036 (5)0.0108 (5)0.0159 (5)
S10.03696 (19)0.0403 (2)0.0382 (2)0.00009 (14)0.00693 (14)0.00238 (14)
Geometric parameters (Å, º) top
C1—C21.393 (2)C10—C151.387 (2)
C1—C71.414 (2)C10—S11.7631 (15)
C1—C61.440 (2)C11—C121.381 (2)
C2—C31.362 (2)C11—H110.93
C2—H20.93C12—C131.378 (3)
C3—C41.399 (3)C12—H120.93
C3—N11.448 (3)C13—C141.390 (3)
C4—C51.350 (3)C13—C161.507 (2)
C4—H40.93C14—C151.376 (2)
C5—C61.427 (2)C14—H140.93
C5—H50.93C15—H150.93
C6—O31.272 (2)C16—H16A0.96
C7—N21.292 (2)C16—H16B0.96
C7—H70.93C16—H16C0.96
C8—N21.4529 (19)N1—O11.212 (3)
C8—C91.507 (2)N1—O21.219 (2)
C8—H8A0.97N2—H1A0.87 (2)
C8—H8B0.97N3—S11.5976 (16)
C9—N31.4537 (19)N3—H10.777 (18)
C9—H9A0.97O4—S11.4325 (11)
C9—H9B0.97O5—S11.4329 (12)
C10—C111.381 (2)
C2—C1—C7118.18 (15)C10—C11—C12119.13 (15)
C2—C1—C6120.72 (15)C10—C11—H11120.4
C7—C1—C6121.10 (15)C12—C11—H11120.4
C3—C2—C1120.26 (16)C13—C12—C11121.97 (16)
C3—C2—H2119.9C13—C12—H12119.0
C1—C2—H2119.9C11—C12—H12119.0
C2—C3—C4120.93 (17)C12—C13—C14117.95 (15)
C2—C3—N1118.96 (18)C12—C13—C16121.15 (18)
C4—C3—N1120.11 (17)C14—C13—C16120.87 (17)
C5—C4—C3119.81 (16)C15—C14—C13121.12 (16)
C5—C4—H4120.1C15—C14—H14119.4
C3—C4—H4120.1C13—C14—H14119.4
C4—C5—C6122.64 (17)C14—C15—C10119.75 (16)
C4—C5—H5118.7C14—C15—H15120.1
C6—C5—H5118.7C10—C15—H15120.1
O3—C6—C5122.91 (16)C13—C16—H16A109.5
O3—C6—C1121.46 (15)C13—C16—H16B109.5
C5—C6—C1115.63 (16)H16A—C16—H16B109.5
N2—C7—C1124.73 (15)C13—C16—H16C109.5
N2—C7—H7117.6H16A—C16—H16C109.5
C1—C7—H7117.6H16B—C16—H16C109.5
N2—C8—C9111.47 (12)O1—N1—O2122.7 (2)
N2—C8—H8A109.3O1—N1—C3118.65 (18)
C9—C8—H8A109.3O2—N1—C3118.7 (2)
N2—C8—H8B109.3C7—N2—C8122.67 (14)
C9—C8—H8B109.3C7—N2—H1A114.1 (14)
H8A—C8—H8B108.0C8—N2—H1A123.0 (14)
N3—C9—C8112.72 (13)C9—N3—S1123.98 (11)
N3—C9—H9A109.0C9—N3—H1118.3 (13)
C8—C9—H9A109.0S1—N3—H1117.4 (13)
N3—C9—H9B109.0O4—S1—O5119.20 (8)
C8—C9—H9B109.0O4—S1—N3107.39 (7)
H9A—C9—H9B107.8O5—S1—N3107.26 (8)
C11—C10—C15120.07 (14)O4—S1—C10107.82 (7)
C11—C10—S1120.62 (11)O5—S1—C10106.12 (7)
C15—C10—S1119.29 (12)N3—S1—C10108.74 (7)
C7—C1—C2—C3179.67 (16)C12—C13—C14—C150.7 (3)
C6—C1—C2—C30.0 (3)C16—C13—C14—C15177.35 (18)
C1—C2—C3—C40.2 (3)C13—C14—C15—C100.3 (3)
C1—C2—C3—N1179.76 (18)C11—C10—C15—C140.1 (3)
C2—C3—C4—C50.4 (3)S1—C10—C15—C14178.20 (13)
N1—C3—C4—C5179.6 (2)C2—C3—N1—O12.3 (4)
C3—C4—C5—C60.3 (3)C4—C3—N1—O1177.7 (3)
C4—C5—C6—O3180.00 (19)C2—C3—N1—O2177.8 (2)
C4—C5—C6—C10.0 (3)C4—C3—N1—O22.2 (4)
C2—C1—C6—O3179.83 (16)C1—C7—N2—C8178.27 (14)
C7—C1—C6—O30.2 (3)C9—C8—N2—C796.71 (17)
C2—C1—C6—C50.1 (2)C8—C9—N3—S1131.22 (13)
C7—C1—C6—C5179.75 (16)C9—N3—S1—O414.65 (14)
C2—C1—C7—N2179.17 (15)C9—N3—S1—O5143.88 (12)
C6—C1—C7—N21.2 (3)C9—N3—S1—C10101.76 (13)
N2—C8—C9—N363.94 (17)C11—C10—S1—O421.41 (15)
C15—C10—C11—C120.1 (2)C15—C10—S1—O4156.87 (13)
S1—C10—C11—C12178.14 (13)C11—C10—S1—O5150.18 (13)
C10—C11—C12—C130.3 (3)C15—C10—S1—O528.09 (15)
C11—C12—C13—C140.7 (3)C11—C10—S1—N394.72 (14)
C11—C12—C13—C16177.38 (18)C15—C10—S1—N387.00 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O3i0.78 (2)2.06 (2)2.833 (2)170 (2)
N2—H1A···O30.87 (2)1.94 (2)2.648 (2)137 (2)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H17N3O5S
Mr363.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)17.915 (5), 7.342 (5), 13.055 (5)
β (°) 103.928 (5)
V3)1666.7 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.68 × 0.50 × 0.26
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.887, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
22908, 3272, 2845
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.094, 1.07
No. of reflections3272
No. of parameters236
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.27

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O3i0.78 (2)2.06 (2)2.833 (2)170 (2)
N2—H1A···O30.87 (2)1.94 (2)2.648 (2)137 (2)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationAli, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, o913.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCalligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385–403.  CrossRef CAS Web of Science Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHadjoudis, E., Vitterakis, M., Moustakali, I. & Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationKarabıyık, H., Ocak İskeleli, N., Petek, H., Albayrak, Ç. & Ağar, E. (2008). J. Mol. Struct. 873, 130–136.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds