organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2247-o2248

Di­ethyl 4-(4-eth­oxy­phen­yl)-2,6-di­methyl-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 18 August 2009; accepted 21 August 2009; online 26 August 2009)

In the title compound, C21H27NO5, the dihydropyridine ring adopts a boat conformation. The ethoxy­phenyl ring is oriented approximately perpendicular to the planar part of the dihydropyridine ring, making a dihedral angle of 89.45 (6)°. An intra­molecular C—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal structure, neighbouring mol­ecules are linked into chains along the a axis by N—H⋯O hydrogen bonds and the chains are inter­connected into two-dimensional networks parallel to the ab plane by C—H⋯O hydrogen bonds. The structure is further stabilized by weak C—H⋯π inter­actions.

Related literature

For general background to and applications of 1,4-dihydro­pyridine derivatives, see: Böcker & Guengerich (1986[Böcker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 29, 1596-1603.]); Cooper et al. (1992[Cooper, K., Fray, M. J., Parry, M. J., Richardson, K. & Steele, J. (1992). J. Med. Chem. 35, 3115-3129.]); Vo et al. (1995[Vo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E. & Knaus, E. E. (1995). J. Med. Chem. 38, 2851-2859.]); Gaudio et al. (1994[Gaudio, A. C., Korolkovas, A. & Takahata, Y. (1994). J. Pharm. Sci. 84, 1110-1115.]); Gordeev et al. (1996[Gordeev, M. F., Patel, D. V. & Gordon, E. M. (1996). J. Org. Chem. 61, 924-928.]); Sunkel et al. (1992[Sunkel, C. E., de Casa-Juana, M. F., Santos, L., Garcia, A. G., Artalejo, C. R., Villarroya, M., González-Morales, M. A., López, M. G., Cillero, J., Alonso, S. & Priego, J. G. (1992). J. Med. Chem. 35, 2407-2414.]). For ring conformations and ring puckering analysis, see: Boeyens (1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structure, see: Thenmozhi et al. (2009[Thenmozhi, M., Kavitha, T., Satyanarayana, V. S. V., Vijayakumar, V. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o1921-o1922.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C21H27NO5

  • Mr = 373.44

  • Triclinic, [P \overline 1]

  • a = 7.5557 (1) Å

  • b = 9.5697 (1) Å

  • c = 14.0553 (2) Å

  • α = 85.844 (1)°

  • β = 87.679 (1)°

  • γ = 81.458 (1)°

  • V = 1001.91 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.28 × 0.27 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.994

  • 20664 measured reflections

  • 5290 independent reflections

  • 3602 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.161

  • S = 1.02

  • 5290 reflections

  • 253 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2i 0.85 (2) 2.18 (2) 3.0045 (19) 165 (2)
C12—H12A⋯O4ii 0.97 2.51 3.458 (2) 166
C20—H20A⋯O3 0.96 2.14 2.7774 (19) 122
C16—H16ACg1iii 0.96 2.83 3.767 (2) 165
Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z; (iii) -x+2, -y+1, -z+2. Cg1 is the centroid of the C1–C6 benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hantzsch 1,4-dihydropyridines (1,4-DHPS) are biologically active compounds which includes various vasodilator, anti-hypertensive, bronchodilator, heptaprotective, anti-tumor, anti-mutagenic, geroprotective and anti-diabetic agents (Gaudio et al., 1994). Nifedipine, nitrendipine and nimodipine have found commercial utility as calcium channel blockers (Böcker et al., 1986; Gordeev et al., 1996). For the treatment of congestive heart failure, a number of DHP calcium antagonists have been introduced (Sunkel et al., 1992; Vo et al., 1995). Some of DHPs have been introduced as a neuroprotectant and cognition enhancer. In addition, a number of DHPs with platelet anti-aggregatory activity have also been discovered (Cooper et al., 1992).

In the title compound (Fig. 1), the dihydropyridine ring adopts a boat conformation (Boeyens, 1978; Cremer & Pople, 1975) with puckering amplitude Q = 0.2994 (16) Å, θ = 73.0 (3)° and ϕ = 181.7 (3)°. Atoms C7 and N1 deviate from the C8/C9/C10/C11 plane by 0.362 (2) and 0.143 (2) Å, respectively. The C1-C6 benzene ring is perpendicular to the C8-C11 plane, making a dihedral angle of 89.45 (6)°. An intramolecular C20—H20A···O3 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). Bond lengths (Allen et al., 1987) and angles are comparable to a related structure (Thenmozhi et al., 2009).

In the crystal structure (Fig. 2), neighbouring molecules are linked into chains along the a-axis by N1—H1N1···O2 hydrogen bonds (Table 1). These chains are interconnected into two-dimensional networks parallel to the ab plane by C12—H12A···O4 hydrogen bonds. The crystal structure is further stabilized by weak C16—H16A···Cg1 interactions (Table 1).

Related literature top

For general background to and applications of 1,4-dihydropyridine derivatives, see: Böcker & Guengerich (1986); Cooper et al. (1992); Vo et al. (1995); Gaudio et al. (1994); Gordeev et al. (1996); Sunkel et al. (1992). For ring conformations and ring puckering analysis, see: Boeyens (1978); Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For a related structure, see: Thenmozhi et al. (2009). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1 is the centroid of the C1–C6 benzene ring.

Experimental top

The title compound was prepared according to Hantzsch pyridine synthesis. A mixture of 4-ethoxybenzaldehyde (10 mmol), ethylacetoacetate (20 mmol) and ammonium acetate (10 mmol) were heated at 353 K for 3 h (monitored by TLC). After completion of the reaction, the mixture was cooled to room temperature and kept for 2 days to get the solid product. The solid formed was washed using diethyl ether. After washing, the solid and the liquid was collected separately and the liquid was kept for solidification. The purity of the crude product was checked through TLC and recrystallized using acetone and ether (m.p. 377–379 K).

Refinement top

Atom H1N1 was located from a difference Fourier map and allowed to refine freely. The other H-atoms were placed in calculated positions, with C-H = 0.93 Å, and Uiso = 1.2Ueq(C) for aromatic, and C-H = 0.96 Å and Uiso = 1.5Ueq(C) for methyl group. A rotating group model was used for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 25% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Two-dimensional network parallel to the ab plane, viewed along the c axis. Intermolecular hydrogen bonds are shown as dashed lines.
Diethyl 4-(4-ethoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate top
Crystal data top
C21H27NO5Z = 2
Mr = 373.44F(000) = 400
Triclinic, P1Dx = 1.238 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5557 (1) ÅCell parameters from 5893 reflections
b = 9.5697 (1) Åθ = 2.5–30.2°
c = 14.0553 (2) ŵ = 0.09 mm1
α = 85.844 (1)°T = 296 K
β = 87.679 (1)°Plate, colourless
γ = 81.458 (1)°0.28 × 0.27 × 0.07 mm
V = 1001.91 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5290 independent reflections
Radiation source: fine-focus sealed tube3602 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 29.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.976, Tmax = 0.994k = 1113
20664 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0714P)2 + 0.3075P]
where P = (Fo2 + 2Fc2)/3
5290 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C21H27NO5γ = 81.458 (1)°
Mr = 373.44V = 1001.91 (2) Å3
Triclinic, P1Z = 2
a = 7.5557 (1) ÅMo Kα radiation
b = 9.5697 (1) ŵ = 0.09 mm1
c = 14.0553 (2) ÅT = 296 K
α = 85.844 (1)°0.28 × 0.27 × 0.07 mm
β = 87.679 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5290 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3602 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.994Rint = 0.027
20664 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.32 e Å3
5290 reflectionsΔρmin = 0.24 e Å3
253 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.73624 (18)0.59395 (15)0.53338 (9)0.0547 (4)
O21.01269 (16)0.23542 (17)0.96209 (10)0.0603 (4)
O30.81388 (15)0.34092 (15)1.06441 (9)0.0511 (3)
O40.5806 (2)0.10910 (17)0.71435 (11)0.0672 (4)
O50.85133 (17)0.04519 (14)0.72123 (9)0.0525 (3)
N10.41011 (18)0.18714 (16)0.92272 (10)0.0402 (3)
C10.8807 (2)0.28106 (19)0.68730 (11)0.0416 (4)
H1A0.97200.20430.68700.050*
C20.8726 (2)0.3840 (2)0.61279 (12)0.0452 (4)
H2A0.95830.37610.56330.054*
C30.7373 (2)0.49899 (19)0.61149 (11)0.0412 (4)
C40.6152 (2)0.5125 (2)0.68730 (13)0.0479 (4)
H4A0.52670.59110.68860.058*
C50.6254 (2)0.40778 (19)0.76151 (12)0.0431 (4)
H5A0.54210.41750.81200.052*
C60.7553 (2)0.28953 (17)0.76285 (10)0.0333 (3)
C70.7547 (2)0.16927 (17)0.84131 (10)0.0328 (3)
H7A0.87500.11440.84340.039*
C80.7073 (2)0.22640 (17)0.93892 (10)0.0330 (3)
C90.5348 (2)0.24150 (17)0.97270 (10)0.0347 (3)
C100.4537 (2)0.09203 (17)0.85327 (11)0.0373 (4)
C110.6234 (2)0.07125 (17)0.81710 (10)0.0352 (3)
C120.5781 (3)0.6937 (2)0.51790 (14)0.0552 (5)
H12A0.55850.75720.56920.066*
H12B0.47480.64470.51590.066*
C130.6041 (4)0.7752 (3)0.42475 (17)0.0825 (8)
H13A0.49900.84270.41200.124*
H13B0.62420.71120.37460.124*
H13C0.70560.82410.42780.124*
C140.8579 (2)0.26575 (18)0.98833 (11)0.0365 (4)
C150.9594 (2)0.3755 (2)1.11817 (13)0.0532 (5)
H15A1.03880.42481.07650.064*
H15B1.02800.28971.14610.064*
C160.8798 (3)0.4675 (3)1.19452 (16)0.0695 (6)
H16A0.97300.48741.23360.104*
H16B0.79640.41981.23310.104*
H16C0.81850.55461.16600.104*
C170.6761 (2)0.03516 (18)0.74743 (11)0.0411 (4)
C180.9092 (3)0.1407 (3)0.64637 (16)0.0676 (6)
H18A0.83610.11440.59090.081*
H18B0.89600.23700.66870.081*
C191.0976 (4)0.1317 (4)0.6207 (2)0.1091 (12)
H19A1.13660.19320.57060.164*
H19B1.16940.16010.67550.164*
H19C1.10980.03600.59930.164*
C200.4542 (2)0.3115 (2)1.05970 (12)0.0461 (4)
H20A0.54520.31021.10560.069*
H20B0.36130.26141.08700.069*
H20C0.40460.40781.04210.069*
C210.2974 (2)0.0239 (2)0.82690 (14)0.0506 (5)
H21A0.33810.07250.81300.076*
H21B0.24270.07480.77170.076*
H21C0.21140.02610.87920.076*
H1N10.303 (3)0.200 (2)0.9447 (15)0.063 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0620 (8)0.0562 (8)0.0433 (7)0.0086 (7)0.0050 (6)0.0103 (6)
O20.0287 (6)0.0946 (11)0.0613 (8)0.0088 (6)0.0039 (5)0.0333 (8)
O30.0326 (6)0.0773 (9)0.0471 (7)0.0096 (6)0.0008 (5)0.0263 (6)
O40.0660 (9)0.0695 (10)0.0748 (10)0.0262 (8)0.0099 (7)0.0365 (8)
O50.0489 (7)0.0514 (8)0.0592 (8)0.0065 (6)0.0092 (6)0.0238 (6)
N10.0265 (7)0.0497 (9)0.0451 (8)0.0061 (6)0.0012 (5)0.0090 (6)
C10.0363 (8)0.0457 (10)0.0419 (8)0.0037 (7)0.0077 (7)0.0057 (7)
C20.0461 (10)0.0515 (11)0.0379 (8)0.0093 (8)0.0135 (7)0.0056 (7)
C30.0469 (9)0.0434 (10)0.0352 (8)0.0143 (8)0.0019 (7)0.0016 (7)
C40.0484 (10)0.0450 (10)0.0464 (9)0.0020 (8)0.0080 (8)0.0000 (8)
C50.0427 (9)0.0446 (10)0.0394 (8)0.0015 (7)0.0118 (7)0.0024 (7)
C60.0320 (7)0.0376 (8)0.0321 (7)0.0090 (6)0.0020 (6)0.0075 (6)
C70.0282 (7)0.0370 (8)0.0326 (7)0.0019 (6)0.0023 (5)0.0058 (6)
C80.0289 (7)0.0381 (8)0.0318 (7)0.0037 (6)0.0001 (5)0.0035 (6)
C90.0304 (7)0.0394 (9)0.0340 (7)0.0040 (6)0.0003 (6)0.0020 (6)
C100.0350 (8)0.0365 (9)0.0407 (8)0.0058 (7)0.0051 (6)0.0015 (7)
C110.0373 (8)0.0347 (8)0.0333 (7)0.0046 (6)0.0018 (6)0.0016 (6)
C120.0630 (12)0.0531 (12)0.0514 (10)0.0148 (10)0.0137 (9)0.0034 (9)
C130.108 (2)0.0797 (17)0.0598 (13)0.0203 (15)0.0214 (13)0.0220 (12)
C140.0313 (8)0.0452 (9)0.0334 (7)0.0064 (7)0.0008 (6)0.0042 (6)
C150.0381 (9)0.0764 (14)0.0486 (10)0.0115 (9)0.0083 (7)0.0171 (9)
C160.0631 (13)0.0843 (17)0.0649 (13)0.0092 (12)0.0098 (10)0.0308 (12)
C170.0466 (9)0.0382 (9)0.0387 (8)0.0076 (7)0.0001 (7)0.0028 (7)
C180.0696 (14)0.0679 (15)0.0687 (13)0.0092 (11)0.0135 (11)0.0369 (11)
C190.0758 (18)0.135 (3)0.128 (3)0.0290 (18)0.0381 (17)0.086 (2)
C200.0338 (8)0.0614 (12)0.0430 (9)0.0055 (8)0.0073 (7)0.0116 (8)
C210.0377 (9)0.0557 (12)0.0617 (11)0.0132 (8)0.0060 (8)0.0110 (9)
Geometric parameters (Å, º) top
O1—C31.373 (2)C10—C111.352 (2)
O1—C121.428 (2)C10—C211.502 (2)
O2—C141.2115 (18)C11—C171.465 (2)
O3—C141.3353 (19)C12—C131.496 (3)
O3—C151.450 (2)C12—H12A0.97
O4—C171.210 (2)C12—H12B0.97
O5—C171.351 (2)C13—H13A0.96
O5—C181.455 (2)C13—H13B0.96
N1—C101.380 (2)C13—H13C0.96
N1—C91.380 (2)C15—C161.488 (3)
N1—H1N10.85 (2)C15—H15A0.97
C1—C21.382 (2)C15—H15B0.97
C1—C61.393 (2)C16—H16A0.96
C1—H1A0.93C16—H16B0.96
C2—C31.386 (3)C16—H16C0.96
C2—H2A0.93C18—C191.467 (3)
C3—C41.382 (2)C18—H18A0.97
C4—C51.389 (2)C18—H18B0.97
C4—H4A0.93C19—H19A0.96
C5—C61.383 (2)C19—H19B0.96
C5—H5A0.93C19—H19C0.96
C6—C71.535 (2)C20—H20A0.96
C7—C81.523 (2)C20—H20B0.96
C7—C111.527 (2)C20—H20C0.96
C7—H7A0.98C21—H21A0.96
C8—C91.360 (2)C21—H21B0.96
C8—C141.466 (2)C21—H21C0.96
C9—C201.501 (2)
C3—O1—C12117.87 (14)C12—C13—H13A109.5
C14—O3—C15117.18 (13)C12—C13—H13B109.5
C17—O5—C18115.21 (15)H13A—C13—H13B109.5
C10—N1—C9123.89 (13)C12—C13—H13C109.5
C10—N1—H1N1118.1 (15)H13A—C13—H13C109.5
C9—N1—H1N1116.6 (15)H13B—C13—H13C109.5
C2—C1—C6121.53 (16)O2—C14—O3121.24 (15)
C2—C1—H1A119.2O2—C14—C8123.23 (14)
C6—C1—H1A119.2O3—C14—C8115.52 (13)
C1—C2—C3120.26 (15)O3—C15—C16107.77 (15)
C1—C2—H2A119.9O3—C15—H15A110.2
C3—C2—H2A119.9C16—C15—H15A110.2
O1—C3—C4124.29 (16)O3—C15—H15B110.2
O1—C3—C2116.40 (14)C16—C15—H15B110.2
C4—C3—C2119.31 (15)H15A—C15—H15B108.5
C3—C4—C5119.52 (16)C15—C16—H16A109.5
C3—C4—H4A120.2C15—C16—H16B109.5
C5—C4—H4A120.2H16A—C16—H16B109.5
C6—C5—C4122.26 (15)C15—C16—H16C109.5
C6—C5—H5A118.9H16A—C16—H16C109.5
C4—C5—H5A118.9H16B—C16—H16C109.5
C5—C6—C1117.05 (15)O4—C17—O5120.80 (16)
C5—C6—C7121.32 (13)O4—C17—C11126.77 (16)
C1—C6—C7121.55 (14)O5—C17—C11112.43 (14)
C8—C7—C11110.43 (12)O5—C18—C19108.76 (19)
C8—C7—C6111.55 (12)O5—C18—H18A109.9
C11—C7—C6109.65 (12)C19—C18—H18A109.9
C8—C7—H7A108.4O5—C18—H18B109.9
C11—C7—H7A108.4C19—C18—H18B109.9
C6—C7—H7A108.4H18A—C18—H18B108.3
C9—C8—C14124.96 (14)C18—C19—H19A109.5
C9—C8—C7120.06 (13)C18—C19—H19B109.5
C14—C8—C7114.94 (12)H19A—C19—H19B109.5
C8—C9—N1118.44 (14)C18—C19—H19C109.5
C8—C9—C20129.12 (15)H19A—C19—H19C109.5
N1—C9—C20112.44 (13)H19B—C19—H19C109.5
C11—C10—N1119.10 (15)C9—C20—H20A109.5
C11—C10—C21128.03 (15)C9—C20—H20B109.5
N1—C10—C21112.87 (14)H20A—C20—H20B109.5
C10—C11—C17120.26 (15)C9—C20—H20C109.5
C10—C11—C7119.61 (14)H20A—C20—H20C109.5
C17—C11—C7119.84 (13)H20B—C20—H20C109.5
O1—C12—C13107.53 (18)C10—C21—H21A109.5
O1—C12—H12A110.2C10—C21—H21B109.5
C13—C12—H12A110.2H21A—C21—H21B109.5
O1—C12—H12B110.2C10—C21—H21C109.5
C13—C12—H12B110.2H21A—C21—H21C109.5
H12A—C12—H12B108.5H21B—C21—H21C109.5
C6—C1—C2—C30.3 (3)C9—N1—C10—C1114.2 (2)
C12—O1—C3—C415.4 (3)C9—N1—C10—C21166.34 (16)
C12—O1—C3—C2165.31 (16)N1—C10—C11—C17176.38 (14)
C1—C2—C3—O1178.08 (16)C21—C10—C11—C174.2 (3)
C1—C2—C3—C42.6 (3)N1—C10—C11—C79.8 (2)
O1—C3—C4—C5178.09 (17)C21—C10—C11—C7169.58 (16)
C2—C3—C4—C52.7 (3)C8—C7—C11—C1029.0 (2)
C3—C4—C5—C60.4 (3)C6—C7—C11—C1094.32 (16)
C4—C5—C6—C11.9 (3)C8—C7—C11—C17157.19 (13)
C4—C5—C6—C7174.85 (16)C6—C7—C11—C1779.49 (17)
C2—C1—C6—C51.9 (3)C3—O1—C12—C13174.91 (18)
C2—C1—C6—C7174.78 (16)C15—O3—C14—O24.4 (3)
C5—C6—C7—C840.9 (2)C15—O3—C14—C8176.84 (15)
C1—C6—C7—C8142.47 (15)C9—C8—C14—O2170.76 (18)
C5—C6—C7—C1181.70 (18)C7—C8—C14—O211.3 (2)
C1—C6—C7—C1194.88 (17)C9—C8—C14—O310.5 (2)
C11—C7—C8—C928.3 (2)C7—C8—C14—O3167.43 (14)
C6—C7—C8—C993.93 (17)C14—O3—C15—C16175.95 (18)
C11—C7—C8—C14153.64 (13)C18—O5—C17—O44.9 (3)
C6—C7—C8—C1484.16 (16)C18—O5—C17—C11175.20 (16)
C14—C8—C9—N1173.78 (15)C10—C11—C17—O42.0 (3)
C7—C8—C9—N18.3 (2)C7—C11—C17—O4171.78 (17)
C14—C8—C9—C206.4 (3)C10—C11—C17—O5177.96 (15)
C7—C8—C9—C20171.48 (16)C7—C11—C17—O58.3 (2)
C10—N1—C9—C814.9 (2)C17—O5—C18—C19175.6 (2)
C10—N1—C9—C20165.23 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.85 (2)2.18 (2)3.0045 (19)165 (2)
C12—H12A···O4ii0.972.513.458 (2)166
C20—H20A···O30.962.142.7774 (19)122
C16—H16A···Cg1iii0.962.833.767 (2)165
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC21H27NO5
Mr373.44
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.5557 (1), 9.5697 (1), 14.0553 (2)
α, β, γ (°)85.844 (1), 87.679 (1), 81.458 (1)
V3)1001.91 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.27 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.976, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
20664, 5290, 3602
Rint0.027
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.161, 1.02
No. of reflections5290
No. of parameters253
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.85 (2)2.18 (2)3.0045 (19)165 (2)
C12—H12A···O4ii0.972.513.458 (2)166
C20—H20A···O30.962.142.7774 (19)122
C16—H16A···Cg1iii0.962.833.767 (2)165
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x+2, y+1, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and JHG thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship. VV is grateful to DST–India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBöcker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 29, 1596–1603.  PubMed Web of Science Google Scholar
First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCooper, K., Fray, M. J., Parry, M. J., Richardson, K. & Steele, J. (1992). J. Med. Chem. 35, 3115–3129.  CrossRef PubMed CAS Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGaudio, A. C., Korolkovas, A. & Takahata, Y. (1994). J. Pharm. Sci. 84, 1110–1115.  CrossRef Web of Science Google Scholar
First citationGordeev, M. F., Patel, D. V. & Gordon, E. M. (1996). J. Org. Chem. 61, 924–928.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSunkel, C. E., de Casa-Juana, M. F., Santos, L., Garcia, A. G., Artalejo, C. R., Villarroya, M., González-Morales, M. A., López, M. G., Cillero, J., Alonso, S. & Priego, J. G. (1992). J. Med. Chem. 35, 2407–2414.  CrossRef PubMed CAS Web of Science Google Scholar
First citationThenmozhi, M., Kavitha, T., Satyanarayana, V. S. V., Vijayakumar, V. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o1921–o1922.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E. & Knaus, E. E. (1995). J. Med. Chem. 38, 2851–2859.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2247-o2248
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds