metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bromido(2,2′:6′,2′′-terpyridine)platinum(II) di­bromidoaurate(I) di­methyl sulfoxide solvate

aChemistry Department, Boston University, 590 Commonwealth Ave., Boston, Massachusetts 02215, USA, bDepartment of Chemistry and Biochemistry, University of Massachusetts–Dartmouth, North Dartmouth, Massachusetts 02747, USA, and cDepartment of Chemistry and Biochemistry, University of California–San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, USA
*Correspondence e-mail: doerrer@bu.edu

(Received 18 August 2009; accepted 20 August 2009; online 26 August 2009)

The crystal structure of the title compound, [PtBr(C15H11N3)][AuBr2]·(CH3)2SO, exhibits infinite chains of {PtAuPt} metallophilic inter­actions along the b axis. Two cations and one anion stack in a trimer with a unique Pt⋯Au distance of 3.3361 (5) Å and Pt⋯Pt contacts of 3.4335 (6) Å. The remaining [AuBr2] anion forms no close contacts.

Related literature

For the related chloride structure, [Pt(tpy)Cl][AuCl2] (tpy=2,2′:6′,2"-terpyridine), see Hayoun et al. (2006[Hayoun, R., Zhong, D. K., Rheingold, A. L. & Doerrer, L. H. (2006). Inorg. Chem. 45, 6120-6122.]). For the related [Pt(tpy)I][AuI2] complex, see Angle et al. (2007[Angle, C. S., Woolard, K. J., Kahn, M. I., Golen, J. A., Rheingold, A. L. & Doerrer, L. H. (2007). Acta Cryst. C63, m231-m234.]). For a review of double salts with metallophilic inter­actions, see Doerrer (2008[Doerrer, L. H. (2008). Comments Inorg. Chem. 29, 93-127.]). The synthesis of [Pt(tpy)X]X complexes (X = Cl, Br, I) is discussed in Annibale et al. (2004[Annibale, G., Pitteri, B., Wilson, M. H. & McMillin, D. (2004). Inorg. Synth. 34, 76-81.]), and the preparation of [AuX2] in Braunstein & Clark (1973[Braunstein, P. & Clark, R. J. H. (1973). J. Chem. Soc. Dalton Trans. pp. 1845-1848.]). For background to metallophilic inter­actions, see: Pyykkö (1997[Pyykkö, P. (1997). Chem. Rev. 97, 597-636.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [PtBr(C15H11N3)][AuBr2]·C2H6OS

  • Mr = 943.18

  • Triclinic, [P \overline 1]

  • a = 8.1463 (11) Å

  • b = 10.0930 (14) Å

  • c = 13.9624 (19) Å

  • α = 81.905 (2)°

  • β = 87.675 (2)°

  • γ = 68.532 (3)°

  • V = 1057.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 19.31 mm−1

  • T = 208 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.068, Tmax = 0.160

  • 7511 measured reflections

  • 4826 independent reflections

  • 4312 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.103

  • S = 1.01

  • 4826 reflections

  • 249 parameters

  • H-atom parameters constrained

  • Δρmax = 2.01 e Å−3

  • Δρmin = −4.14 e Å−3

Table 1
Selected geometric parameters (Å, °) in [Pt(tpy)X][AuX2], X = Cl, Br, I

  Cl Br I    
Au—Pt 3.2684 (1) 3.3361 (5) 4.2546 (4)    
Pt—X 2.305 (3) 2.4319 (8) 2.5930 (5)    
Au—X 2.271 (3) 2.3984 (9) 2.5581 (5)    
Pt—Pt 3.4535 (7) 3.4335 (6) 3.5278 (3)    
           
  Cl Br      
X2—Au1—Pt1 88.63 (7) 81.70 (2)      
  91.37 (7) 98.30 (2)      
X1—Pt1—Au1 97.62 (7) 84.08 (2)      
Au1—Pt1—Pt1(1 − x, 2 − y, −z) 165.10 (2) 173.94 (1)      

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound, (I), is the bromide analog of the previously published chloride (Hayoun et al., 2006) and iodide (Angle et al., 2007) derivatives.

There are no previous structural characterizations of [Pt(tpy)Br]+ (tpy=2,2':6',2"-terpyridine), but the interatomic distances within the [Pt(tpy)]2+ are unexceptional and unperturbed by the intermolecular interactions. According to the Cambridge Structural Database (Version 5.30, May 2009; Allen, 2002), the linear [AuBr2]- anion has been structurally characterized 32 times with an average Au—Br distance of 2.376 (3) Å and Br—Au—Br angle of 179.3 (2)°, with which the anions in (I) compare favorably. The structure of (I) is analogous to that of [Pt(tpy)Cl]+[AuCl2]-, with metallophilic interactions forming among two platinum(II) and one gold(I) centers to form {[Pt(tpy)Br]2[AuBr2]}+ cations (Figure 1). These cations also form metallophilic interactions among each other resulting in an infinite chain of {PtAuPt} metallophilic interactions along the b-axis with the remaining [AuBr2]- counteranion found outside of the chain (Figure 2). A solvent DMSO molecule was also found in the lattice. The bromide ligands are small enough to allow for metallophilic interactions between gold(I) and platinum(II) centers (Figure 1). No extended metallophilic chains exist in the iodide derivative, which exhibits only pairwise contacts between the cations and between the anions.

As seen in Table 1, the Pt(II)···Pt(II) distances in the bromide derivative are the shortest of all three halogenated species, at 3.4335 (6) Å. The chloride and iodide derivatives exhibit 3.4535 (7) and 3.5278 (3) Å Pt···Pt metallophilic distances, respectively. Evidently the bromide ligand promotes shorter Pt···Pt bonds than the chloride or iodide derivatives, consistent with expectations that more electron rich metal centers promote metallophilic interactions (Pyykkö, 1997). As bromide is softer and less electronegative than chloride, its adjacent platinum center is less electron deficient and bromide is small enough to allow stacking for metallophilic bonding. The gold-platinum distances increase slightly with halogen size from Cl to Br. The Au···Pt···Pt angle is more linear in the bromide derivative at 173.9°, compared to the chloride derivative with an angle of 165.1°. These distances and angles, along with other potentially interesting geometrical values, are collected in Table 1.

The structure of compound (I), therefore, completes a study of the [Pt(tpy)X][AuX2] systems and demonstrates that the halide constituent in the [Pt(tpy)X]+ ion has a determining effect on the length of the Pt···Pt metallophilic contacts for steric and electronic reasons.

Related literature top

For the related chloride structure, [Pt(tpy)Cl][AuCl2] (tpy=2,2':6',2"-terpyridine), see Hayoun et al. (2006). For the related [Pt(tpy)I][AuI2] complex, see Angle et al. (2007). For a review of our double salts with metallophilic interactions, see Doerrer (2008). The synthesis of [Pt(tpy)X]X complexes is discussed in Annibale et al. (2004), and the preparation of [AuX2]- in Braunstein & Clark (1973). For background to metallophilic interactions, see: Pyykkö (1997). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

[Pt(tpy)Br]Br, prepared according to the literature (Annibale et al., 2004), was mixed with potassium tetrabromoaurate, KAuBr4. Dry acetone was added to the mixture to reduce the gold(III) in KAuBr4 to gold(I) in [AuBr2]-, as expected from the literature (Braunstein and Clark, 1973). This resulted in a maroon solution which turned light orange after stirring for three minutes at 30°C. The solution was allowed to mix at 30°C for four h, resulting in KBr, bromoacetone, and the orange powder [Pt(tpy)Br]+ [AuBr2]- (in 66% yield) as the products. The orange powder [Pt(tpy)Br]+ [AuBr2]- was dissolved in DMSO and layered with chloroform to form red block-like crystals.

Refinement top

The crystal was mounted on a CryoLoop with Paratone-N oil and immediately placed under a stream of N~2~ on a Bruker SMART APEX CCD system. All H atoms were positioned geometrically (C—H = 0.94–0.97 Å), and allowed to ride on their parent atoms, with Uĩso~ = 1.2–1.5 U~eq~(C). The highest residual peak [2.01 e Å-3] and deepest hole [-4.13 e Å-3] are situated 0.11 and 0.87 Å from Pt1, respectively.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure and stacking of two [Pt(tpy)Br]+ cations and one [AuBr2]- anion into a single cation with the second [AuBr2]- anion showing the atomic numbering [symmetry code: (i) -x, 1 - y, -z]. Metallophilic contacts are indicated with dotted lines. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms and one molecule of DMSO has been omitted for clarity.
[Figure 2] Fig. 2. A view of the stacking and structure in (I). Close contacts between {Pt2Au}+ units are shown as dotted lines. Displacement ellipsoids are drawn at the 50% probability level.
Bromido(2,2':6',2''-terpyridine)platinum(II) dibromidoaurate(I) dimethyl sulfoxide solvate top
Crystal data top
[PtBr(C15H11N3)][AuBr2]·C2H6OSZ = 2
Mr = 943.18F(000) = 852
Triclinic, P1Dx = 2.962 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1463 (11) ÅCell parameters from 5521 reflections
b = 10.0930 (14) Åθ = 2.5–28.2°
c = 13.9624 (19) ŵ = 19.31 mm1
α = 81.905 (2)°T = 208 K
β = 87.675 (2)°Block, red
γ = 68.532 (3)°0.30 × 0.20 × 0.15 mm
V = 1057.6 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4826 independent reflections
Radiation source: fine-focus sealed tube4312 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 28.2°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 810
Tmin = 0.068, Tmax = 0.160k = 1310
7511 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0756P)2] P = (Fo2 + 2Fc2)/3
4826 reflections(Δ/σ)max = 0.001
249 parametersΔρmax = 2.01 e Å3
0 restraintsΔρmin = 4.14 e Å3
Crystal data top
[PtBr(C15H11N3)][AuBr2]·C2H6OSγ = 68.532 (3)°
Mr = 943.18V = 1057.6 (3) Å3
Triclinic, P1Z = 2
a = 8.1463 (11) ÅMo Kα radiation
b = 10.0930 (14) ŵ = 19.31 mm1
c = 13.9624 (19) ÅT = 208 K
α = 81.905 (2)°0.30 × 0.20 × 0.15 mm
β = 87.675 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4826 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
4312 reflections with I > 2σ(I)
Tmin = 0.068, Tmax = 0.160Rint = 0.019
7511 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.01Δρmax = 2.01 e Å3
4826 reflectionsΔρmin = 4.14 e Å3
249 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au11.00000.50001.00000.03631 (12)
Au20.50000.50000.50000.03754 (12)
Pt10.01155 (3)0.82805 (2)0.005856 (15)0.02023 (9)
Br10.25578 (8)0.87221 (7)0.08893 (5)0.03042 (15)
Br20.98737 (9)0.44194 (7)1.17203 (6)0.03918 (18)
Br30.75978 (12)0.32173 (10)0.45033 (6)0.0514 (2)
S10.3410 (3)1.1786 (2)0.55776 (14)0.0477 (5)
N10.1935 (6)0.7291 (5)0.1004 (4)0.0220 (10)
N30.0990 (6)0.9177 (5)0.1372 (4)0.0212 (9)
N20.2244 (6)0.7937 (5)0.0823 (4)0.0196 (9)
O10.3110 (10)1.0395 (7)0.5756 (6)0.079 (2)
C10.1657 (9)0.6989 (7)0.1947 (5)0.0292 (13)
H1A0.04930.72570.21720.035*
C20.3038 (10)0.6292 (8)0.2598 (5)0.0363 (15)
H2A0.28090.60860.32560.044*
C30.4751 (10)0.5900 (8)0.2277 (5)0.0356 (15)
H3A0.57000.54200.27130.043*
C40.5057 (9)0.6221 (7)0.1305 (5)0.0313 (14)
H4A0.62160.59760.10720.038*
C50.3634 (8)0.6908 (6)0.0682 (4)0.0239 (12)
C60.3808 (8)0.7276 (7)0.0365 (5)0.0275 (13)
C70.5327 (8)0.7028 (6)0.0895 (5)0.0274 (13)
H7A0.64400.65680.05920.033*
C80.5184 (8)0.7467 (7)0.1880 (5)0.0307 (14)
H8A0.62150.72950.22490.037*
C90.3560 (8)0.8153 (7)0.2337 (4)0.0270 (12)
H9A0.34750.84530.30080.032*
C100.2060 (8)0.8385 (6)0.1780 (4)0.0237 (12)
C110.0209 (8)0.9105 (6)0.2094 (4)0.0241 (12)
C120.0334 (9)0.9673 (7)0.3032 (5)0.0306 (14)
H12A0.05080.96370.35190.037*
C130.2089 (9)1.0288 (7)0.3261 (5)0.0344 (15)
H13A0.24701.06620.39030.041*
C140.3288 (9)1.0348 (8)0.2530 (5)0.0356 (15)
H14A0.45021.07750.26720.043*
C150.2725 (8)0.9788 (6)0.1592 (5)0.0270 (13)
H15A0.35590.98330.11000.032*
C160.2828 (11)1.2500 (9)0.4364 (5)0.0473 (19)
H16A0.35721.18380.39450.071*
H16B0.29871.34140.42220.071*
H16C0.16031.26420.42550.071*
C170.1620 (13)1.3074 (11)0.6114 (7)0.063 (3)
H17A0.17991.29240.68090.094*
H17B0.05251.29650.59690.094*
H17C0.15601.40350.58560.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.02295 (18)0.0324 (2)0.0533 (3)0.00747 (15)0.00103 (16)0.01197 (17)
Au20.0434 (2)0.0484 (2)0.0243 (2)0.02176 (18)0.00643 (16)0.00001 (16)
Pt10.01865 (13)0.02448 (13)0.01805 (14)0.00871 (9)0.00074 (9)0.00222 (9)
Br10.0254 (3)0.0345 (3)0.0311 (3)0.0109 (3)0.0069 (2)0.0054 (3)
Br20.0306 (3)0.0323 (3)0.0542 (5)0.0095 (3)0.0011 (3)0.0097 (3)
Br30.0499 (5)0.0579 (5)0.0436 (5)0.0160 (4)0.0025 (4)0.0072 (4)
S10.0383 (9)0.0678 (13)0.0308 (10)0.0188 (9)0.0043 (8)0.0137 (9)
N10.021 (2)0.027 (2)0.019 (2)0.0096 (19)0.0004 (19)0.0027 (19)
N30.017 (2)0.022 (2)0.022 (2)0.0041 (18)0.0033 (18)0.0013 (19)
N20.018 (2)0.021 (2)0.020 (2)0.0077 (18)0.0020 (18)0.0030 (19)
O10.081 (5)0.057 (4)0.079 (5)0.020 (4)0.013 (4)0.033 (4)
C10.034 (3)0.035 (3)0.021 (3)0.017 (3)0.003 (3)0.002 (3)
C20.042 (4)0.045 (4)0.023 (3)0.020 (3)0.001 (3)0.005 (3)
C30.039 (4)0.038 (4)0.029 (4)0.015 (3)0.012 (3)0.006 (3)
C40.030 (3)0.034 (3)0.032 (4)0.013 (3)0.004 (3)0.004 (3)
C50.023 (3)0.025 (3)0.024 (3)0.011 (2)0.000 (2)0.001 (2)
C60.024 (3)0.030 (3)0.028 (3)0.010 (2)0.001 (2)0.003 (3)
C70.023 (3)0.029 (3)0.029 (3)0.008 (2)0.002 (2)0.004 (3)
C80.024 (3)0.036 (3)0.032 (4)0.011 (3)0.007 (3)0.005 (3)
C90.027 (3)0.035 (3)0.020 (3)0.013 (3)0.002 (2)0.002 (2)
C100.025 (3)0.023 (3)0.025 (3)0.010 (2)0.001 (2)0.003 (2)
C110.022 (3)0.026 (3)0.025 (3)0.008 (2)0.001 (2)0.007 (2)
C120.036 (3)0.029 (3)0.026 (3)0.013 (3)0.003 (3)0.001 (3)
C130.035 (3)0.036 (3)0.029 (4)0.010 (3)0.009 (3)0.001 (3)
C140.027 (3)0.042 (4)0.035 (4)0.010 (3)0.010 (3)0.002 (3)
C150.022 (3)0.030 (3)0.029 (3)0.009 (2)0.003 (2)0.003 (3)
C160.057 (5)0.060 (5)0.028 (4)0.025 (4)0.001 (3)0.001 (3)
C170.070 (6)0.084 (7)0.049 (5)0.040 (5)0.016 (5)0.025 (5)
Geometric parameters (Å, º) top
Au1—Br2i2.3981 (9)C4—H4A0.9400
Au1—Br22.3981 (9)C5—C61.471 (9)
Au2—Br32.3753 (9)C6—C71.375 (9)
Au2—Br3ii2.3753 (9)C7—C81.381 (9)
Pt1—N21.944 (5)C7—H7A0.9400
Pt1—N32.015 (5)C8—C91.383 (9)
Pt1—N12.018 (5)C8—H8A0.9400
Pt1—Br12.4320 (7)C9—C101.385 (8)
S1—O11.497 (7)C9—H9A0.9400
S1—C161.757 (8)C10—C111.468 (8)
S1—C171.782 (9)C11—C121.376 (9)
N1—C11.338 (8)C12—C131.365 (9)
N1—C51.369 (7)C12—H12A0.9400
N3—C151.348 (7)C13—C141.376 (10)
N3—C111.366 (8)C13—H13A0.9400
N2—C61.342 (7)C14—C151.376 (9)
N2—C101.345 (8)C14—H14A0.9400
C1—C21.382 (10)C15—H15A0.9400
C1—H1A0.9400C16—H16A0.9700
C2—C31.379 (10)C16—H16B0.9700
C2—H2A0.9400C16—H16C0.9700
C3—C41.385 (9)C17—H17A0.9700
C3—H3A0.9400C17—H17B0.9700
C4—C51.380 (9)C17—H17C0.9700
Br2i—Au1—Br2180.0C6—C7—H7A120.7
Br3—Au2—Br3ii180.000 (1)C8—C7—H7A120.7
N2—Pt1—N380.7 (2)C7—C8—C9121.5 (6)
N2—Pt1—N180.8 (2)C7—C8—H8A119.2
N3—Pt1—N1161.5 (2)C9—C8—H8A119.2
N2—Pt1—Br1179.63 (16)C8—C9—C10118.2 (6)
N3—Pt1—Br198.95 (14)C8—C9—H9A120.9
N1—Pt1—Br199.58 (14)C10—C9—H9A120.9
O1—S1—C16107.0 (4)N2—C10—C9118.9 (5)
O1—S1—C17106.8 (4)N2—C10—C11113.0 (5)
C16—S1—C1797.3 (4)C9—C10—C11128.2 (6)
C1—N1—C5118.9 (5)N3—C11—C12120.8 (6)
C1—N1—Pt1127.8 (4)N3—C11—C10114.7 (5)
C5—N1—Pt1113.3 (4)C12—C11—C10124.4 (6)
C15—N3—C11119.1 (5)C13—C12—C11120.3 (7)
C15—N3—Pt1127.2 (4)C13—C12—H12A119.8
C11—N3—Pt1113.6 (4)C11—C12—H12A119.8
C6—N2—C10123.9 (5)C12—C13—C14118.4 (6)
C6—N2—Pt1118.2 (4)C12—C13—H13A120.8
C10—N2—Pt1117.9 (4)C14—C13—H13A120.8
N1—C1—C2121.7 (6)C13—C14—C15120.6 (6)
N1—C1—H1A119.2C13—C14—H14A119.7
C2—C1—H1A119.2C15—C14—H14A119.7
C3—C2—C1119.7 (6)N3—C15—C14120.7 (6)
C3—C2—H2A120.1N3—C15—H15A119.7
C1—C2—H2A120.1C14—C15—H15A119.7
C2—C3—C4119.2 (6)S1—C16—H16A109.5
C2—C3—H3A120.4S1—C16—H16B109.5
C4—C3—H3A120.4H16A—C16—H16B109.5
C5—C4—C3118.9 (6)S1—C16—H16C109.5
C5—C4—H4A120.5H16A—C16—H16C109.5
C3—C4—H4A120.5H16B—C16—H16C109.5
N1—C5—C4121.6 (6)S1—C17—H17A109.5
N1—C5—C6115.0 (5)S1—C17—H17B109.5
C4—C5—C6123.4 (6)H17A—C17—H17B109.5
N2—C6—C7119.0 (6)S1—C17—H17C109.5
N2—C6—C5112.7 (5)H17A—C17—H17C109.5
C7—C6—C5128.3 (6)H17B—C17—H17C109.5
C6—C7—C8118.6 (6)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[PtBr(C15H11N3)][AuBr2]·C2H6OS
Mr943.18
Crystal system, space groupTriclinic, P1
Temperature (K)208
a, b, c (Å)8.1463 (11), 10.0930 (14), 13.9624 (19)
α, β, γ (°)81.905 (2), 87.675 (2), 68.532 (3)
V3)1057.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)19.31
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.068, 0.160
No. of measured, independent and
observed [I > 2σ(I)] reflections
7511, 4826, 4312
Rint0.019
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.103, 1.01
No. of reflections4826
No. of parameters249
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.01, 4.14

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, °) in [Pt(tpy)X][AuX2], X = Cl, Br, I. top
ClBrI
Au—Pt3.2684 (1)3.3361 (5)4.2546 (4)
Pt—X2.305 (3)2.4319 (8)2.5930 (5)
Au—X2.271 (3)2.3984 (9)2.5581 (5)
Pt—Pt3.4535 (7)3.4335 (6)3.5278 (3)
ClBr
X2—Au1—Pt188.63 (7)81.70 (2)
91.37 (7)98.30 (2)
X1—Pt1—Au197.62 (7)84.08 (2)
Au1—Pt1—Pt1(1-x, 2-y, -z)165.10 (2)173.94 (1)
 

Acknowledgements

We thank Boston University and the National Science Foundation (NSF-CCF 829890 to LHD) for financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAngle, C. S., Woolard, K. J., Kahn, M. I., Golen, J. A., Rheingold, A. L. & Doerrer, L. H. (2007). Acta Cryst. C63, m231–m234.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAnnibale, G., Pitteri, B., Wilson, M. H. & McMillin, D. (2004). Inorg. Synth. 34, 76–81.  CAS Google Scholar
First citationBraunstein, P. & Clark, R. J. H. (1973). J. Chem. Soc. Dalton Trans. pp. 1845–1848.  CrossRef Web of Science Google Scholar
First citationBruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDoerrer, L. H. (2008). Comments Inorg. Chem. 29, 93–127.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHayoun, R., Zhong, D. K., Rheingold, A. L. & Doerrer, L. H. (2006). Inorg. Chem. 45, 6120–6122.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPyykkö, P. (1997). Chem. Rev. 97, 597–636.  CrossRef PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds