organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis[(E)-4-nitro­benzyl­­idene]-4,4′-oxydianiline

aDepartment of Chemistry (BK21), Sungkyunkwan University, Natural Science Campus, Suwon 440-746, Republic of Korea
*Correspondence e-mail: soonwlee@skku.edu

(Received 20 August 2009; accepted 24 August 2009; online 29 August 2009)

The title compound, C26H18N4O5, can be regarded as an extended ether with two terminal nitro groups. The two aryl rings bonded to the central O atom form a dihedral angle of 75.72 (6)°, and the terminal nitro groups are slightly twisted [by 6.4 (2) and 3.3 (3)°] from the benzene rings to which they are attached. The crystal packing exhibits weak inter­molecular C—H⋯O hydrogen bonds and ππ inter­actions [centroid–centroid distances = 3.794 (3) Å].

Related literature

For applications of coordination polymers, see: Barnett & Champness (2003[Barnett, S. A. & Champness, N. R. (2003). Coord. Chem. Rev. 246, 145-168.]); Batten et al. (2009[Batten, S. R., Neville, S. M. & Turner, D. R. (2009). Coordination Polymers: Design, Analysis and Application. Cambridge: The Royal Society of Chemistry.]); Perry et al. (2009[Perry IV, J. J., Perman, J. A. & Zaworotko, M. J. (2009). Chem. Soc. Rev. 38, 1400-1417.]). For bis­(pyridine)-, bis­(furan)-, bis­(thio­phene)-, and (pyridine–amine)-type linking ligands as well as compounds that are structurally close to the title compound, see Yun et al. (2009[Yun, H. J., Lim, S. H. & Lee, S. W. (2009). Polyhedron, 28, 614-620.]) and references therein.

[Scheme 1]

Experimental

Crystal data
  • C26H18N4O5

  • Mr = 466.44

  • Triclinic, [P \overline 1]

  • a = 8.3322 (11) Å

  • b = 9.0716 (16) Å

  • c = 17.107 (2) Å

  • α = 74.714 (9)°

  • β = 78.885 (10)°

  • γ = 64.643 (10)°

  • V = 1122.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.52 × 0.32 × 0.26 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: none

  • 4200 measured reflections

  • 3909 independent reflections

  • 2972 reflections with I > 2σ(I)

  • Rint = 0.015

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.114

  • S = 1.02

  • 3909 reflections

  • 389 parameters

  • All H-atom parameters refined

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯O1i 0.956 (19) 2.57 (2) 3.375 (2) 142.4 (14)
C20—H20⋯O5ii 1.016 (19) 2.48 (2) 3.323 (2) 139.7 (14)
Symmetry codes: (i) -x+3, -y-2, -z+1; (ii) x, y-1, z.

Data collection: XSCANS (Siemens, 1995[Siemens (1995). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Coordination polymers gain continuous attention due to their desirable zeolite-like properties applicable to catalysis, nonlinear optical activity, spin crossover, luminescence, long-range magnetism, adsorption-desorption, and gas storage (Barnett & Champness, 2003; Batten et al., 2009; Perry IV et al., 2009). Carefule choice of relevant linking ligands is one of the key factors for the successful preparation of such polymers. We have continually reported long bis(pyridine)-, bis(furan)-, bis(thiophene)-, and (pyridine–amine)-type linking ligands and their coordination polymers (Yun et al., 2009). To an extension of our ongoing study of novel linking ligands and their coordination polymers, we prepared a long, potential linking ligand containing two terminal nitro groups.

The molecular structure of the title compound with the atom-numbering scheme is shown in Fig. 1. The overall structure can be regarded as a long ether possessing two terminal nitro (NO2) groups. Two bis(pyridine)-type linking ligands containing an intervening oxydianilne fragment, which are structurally close to the title compound, were recently reported by our research group: [(3-py)—CHN—C6H4—O—C6H4—NCH—(3-py)] and [(4-py)—CHN—C6H4—O—C6H4—NCH—(4-py)] (Yun et al., 2009), which, however, were not structurally characterized. In the title compound, the dihedral angle between two aryl rings (C8–13 and C14–C19) bonded to the central oxygen (O13) is 75.72 (6)°. Terminal nitro groups are not coplanar with the phenyl rings to which they are attached, with the dihedral angle 6.4 (2) (N1, O1, O2) or 3.3 (3)° (N2, O4, O5). These bonding parameters might indicate the flexibility of the title compound. The crystal packing exhibits weak intermolecular C—H···O hydrogen bonds (Table 1) and ππ interactions proved by centroid-to-centroid distances of 3.794 (3) Å.

Related literature top

For applications of coordination polymers, see: Barnett & Champness (2003); Batten et al. (2009); Perry et al. (2009). For bis(pyridine)-, bis(furan)-, bis(thiophene)-, and (pyridine–amine)-type linking ligands as well as compounds that are structurally close to the title compound, see Yun et al. (2009).

Experimental top

4-Nitrobenzaldehyde (1.12 g, 7.41 mmol) and 4,4-oxydianiline (0.67 g, 3.31 mmol) were dissolved in methanol (80 ml), to which formic acid (0.15 ml) was added. The resulting mixture was stirred at room temperature for 1 h. Dichloromethane (50 ml) was then added to the mixture, which was further stirred for 24 h. The resulting solution was filtered to give a yellow solid, which was washed with hexane (20 ml × 2). X-ray quality crystals were obtained from dichloromethane/hexane. Yield: 92%. mp: 457–459 K. IR (KBr, cm-1): 3427, 3099, 2846, 2441, 1595, 1517, 1490, 1340, 1240, 1104, 850.

Refinement top

All H atoms were located on a Fourier difference map and refined isotropically.

Computing details top

Data collection: XSCANS (Siemens, 1995); cell refinement: XSCANS (Siemens, 1995); data reduction: XSCANS (Siemens, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing 50% probability displacement ellipsoids.
N,N'-Bis[(E)-4-nitrobenzylidene]-4,4'-oxydianiline top
Crystal data top
C26H18N4O5Z = 2
Mr = 466.44F(000) = 484
Triclinic, P1Dx = 1.380 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3322 (11) ÅCell parameters from 23 reflections
b = 9.0716 (16) Åθ = 5.2–12.5°
c = 17.107 (2) ŵ = 0.10 mm1
α = 74.714 (9)°T = 293 K
β = 78.885 (10)°Block, yellow
γ = 64.643 (10)°0.52 × 0.32 × 0.26 mm
V = 1122.4 (3) Å3
Data collection top
Siemens P4
diffractometer
Rint = 0.015
Radiation source: sealed tubeθmax = 25.0°, θmin = 2.5°
Graphite monochromatorh = 09
ω scansk = 910
4200 measured reflectionsl = 1920
3909 independent reflections3 standard reflections every 97 reflections
2972 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041All H-atom parameters refined
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.1958P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3909 reflectionsΔρmax = 0.14 e Å3
389 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0142 (18)
Crystal data top
C26H18N4O5γ = 64.643 (10)°
Mr = 466.44V = 1122.4 (3) Å3
Triclinic, P1Z = 2
a = 8.3322 (11) ÅMo Kα radiation
b = 9.0716 (16) ŵ = 0.10 mm1
c = 17.107 (2) ÅT = 293 K
α = 74.714 (9)°0.52 × 0.32 × 0.26 mm
β = 78.885 (10)°
Data collection top
Siemens P4
diffractometer
Rint = 0.015
4200 measured reflections3 standard reflections every 97 reflections
3909 independent reflections intensity decay: none
2972 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.114All H-atom parameters refined
S = 1.02Δρmax = 0.14 e Å3
3909 reflectionsΔρmin = 0.19 e Å3
389 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.7461 (2)1.5786 (2)0.74989 (10)0.1006 (6)
O21.8293 (3)1.6837 (2)0.64341 (12)0.1072 (6)
O30.66294 (17)0.41925 (15)0.27173 (8)0.0675 (4)
O40.8910 (2)0.87019 (18)0.12942 (11)0.0838 (5)
O50.7292 (3)0.9709 (2)0.02700 (11)0.1184 (7)
N11.7396 (2)1.5702 (2)0.67832 (12)0.0737 (5)
N21.2107 (2)0.96099 (19)0.43282 (10)0.0631 (4)
N30.6330 (2)0.22173 (17)0.13724 (9)0.0556 (4)
N40.7983 (2)0.86027 (19)0.06546 (11)0.0667 (4)
C11.6151 (2)1.4143 (2)0.63208 (11)0.0561 (4)
C21.5930 (3)1.4084 (3)0.55334 (13)0.0697 (5)
C31.4715 (3)1.2638 (3)0.51122 (13)0.0692 (5)
C41.3747 (2)1.1275 (2)0.54727 (11)0.0567 (4)
C51.4043 (3)1.1372 (3)0.62583 (12)0.0666 (5)
C61.5244 (3)1.2814 (3)0.66859 (12)0.0646 (5)
C71.2366 (3)0.9765 (3)0.50481 (13)0.0640 (5)
C81.0753 (2)0.8152 (2)0.39338 (11)0.0557 (4)
C91.0170 (3)0.8290 (2)0.32617 (11)0.0614 (5)
C100.8827 (3)0.6950 (2)0.28467 (12)0.0603 (5)
C110.8091 (2)0.5460 (2)0.30985 (11)0.0554 (4)
C120.8703 (3)0.5267 (2)0.37428 (12)0.0640 (5)
C131.0025 (3)0.6607 (2)0.41617 (13)0.0650 (5)
C140.6656 (2)0.2624 (2)0.24132 (10)0.0527 (4)
C150.5020 (2)0.1291 (2)0.23764 (11)0.0570 (4)
C160.4942 (2)0.0295 (2)0.20338 (11)0.0560 (4)
C170.6481 (2)0.0556 (2)0.17089 (9)0.0504 (4)
C180.8120 (2)0.0792 (2)0.17666 (11)0.0565 (4)
C190.8211 (2)0.2388 (2)0.21218 (11)0.0569 (4)
C200.7171 (2)0.2500 (2)0.06917 (11)0.0534 (4)
C210.7241 (2)0.4137 (2)0.03302 (10)0.0495 (4)
C220.8183 (3)0.4350 (2)0.04281 (11)0.0580 (5)
C230.8408 (3)0.5821 (2)0.07591 (12)0.0588 (5)
C240.7657 (2)0.70731 (19)0.03286 (11)0.0527 (4)
C250.6657 (3)0.6929 (2)0.04074 (11)0.0606 (5)
C260.6447 (3)0.5455 (2)0.07374 (11)0.0567 (4)
H21.657 (3)1.501 (3)0.5313 (12)0.079 (6)*
H31.454 (3)1.258 (3)0.4561 (14)0.089 (7)*
H51.332 (3)1.034 (3)0.6515 (13)0.089 (7)*
H61.542 (3)1.293 (2)0.7242 (13)0.077 (6)*
H71.167 (3)0.892 (3)0.5362 (14)0.099 (8)*
H91.073 (3)0.939 (2)0.3098 (11)0.072 (6)*
H100.839 (3)0.707 (2)0.2398 (12)0.077 (6)*
H120.822 (3)0.421 (3)0.3907 (12)0.075 (6)*
H131.044 (2)0.650 (2)0.4595 (12)0.063 (5)*
H150.397 (3)0.151 (2)0.2596 (11)0.071 (6)*
H160.381 (3)0.125 (2)0.2019 (11)0.071 (6)*
H180.923 (3)0.061 (2)0.1556 (11)0.063 (5)*
H190.934 (3)0.331 (2)0.2162 (11)0.064 (5)*
H200.784 (3)0.161 (2)0.0355 (11)0.066 (5)*
H220.876 (3)0.342 (2)0.0724 (11)0.071 (6)*
H230.904 (3)0.597 (2)0.1244 (12)0.075 (6)*
H250.616 (3)0.777 (2)0.0689 (12)0.071 (6)*
H260.577 (3)0.528 (2)0.1242 (12)0.069 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0832 (11)0.1146 (13)0.0768 (11)0.0193 (10)0.0332 (9)0.0079 (9)
O20.1096 (14)0.0678 (10)0.1184 (14)0.0056 (10)0.0316 (11)0.0138 (10)
O30.0578 (8)0.0524 (7)0.0882 (9)0.0272 (6)0.0217 (7)0.0123 (6)
O40.0881 (11)0.0700 (9)0.0968 (11)0.0467 (8)0.0059 (9)0.0018 (8)
O50.200 (2)0.0732 (10)0.1070 (13)0.0782 (13)0.0012 (13)0.0290 (10)
N10.0614 (11)0.0742 (12)0.0796 (13)0.0268 (9)0.0185 (9)0.0020 (10)
N20.0586 (9)0.0617 (9)0.0639 (10)0.0236 (8)0.0106 (8)0.0018 (7)
N30.0617 (9)0.0480 (8)0.0558 (9)0.0231 (7)0.0096 (7)0.0031 (6)
N40.0812 (12)0.0512 (9)0.0746 (11)0.0319 (9)0.0258 (9)0.0009 (8)
C10.0512 (10)0.0583 (10)0.0584 (11)0.0253 (9)0.0112 (8)0.0007 (8)
C20.0724 (13)0.0627 (12)0.0707 (13)0.0205 (11)0.0128 (10)0.0147 (10)
C30.0763 (13)0.0713 (13)0.0579 (12)0.0268 (11)0.0163 (10)0.0073 (10)
C40.0542 (10)0.0590 (10)0.0568 (10)0.0278 (9)0.0060 (8)0.0018 (8)
C50.0674 (12)0.0655 (12)0.0615 (12)0.0217 (10)0.0082 (10)0.0108 (9)
C60.0667 (12)0.0721 (13)0.0549 (11)0.0286 (10)0.0128 (9)0.0061 (9)
C70.0611 (12)0.0633 (12)0.0619 (12)0.0249 (10)0.0042 (9)0.0045 (10)
C80.0493 (10)0.0543 (10)0.0570 (10)0.0224 (8)0.0051 (8)0.0020 (8)
C90.0598 (11)0.0569 (11)0.0606 (11)0.0197 (9)0.0048 (9)0.0074 (9)
C100.0596 (11)0.0620 (11)0.0575 (11)0.0259 (9)0.0091 (9)0.0037 (9)
C110.0492 (10)0.0511 (10)0.0598 (10)0.0242 (8)0.0069 (8)0.0071 (8)
C120.0705 (13)0.0498 (10)0.0674 (12)0.0228 (9)0.0100 (10)0.0047 (9)
C130.0733 (13)0.0614 (12)0.0618 (12)0.0294 (10)0.0179 (10)0.0022 (9)
C140.0561 (10)0.0483 (9)0.0528 (10)0.0247 (8)0.0109 (8)0.0019 (7)
C150.0475 (10)0.0582 (11)0.0636 (11)0.0237 (9)0.0086 (8)0.0025 (8)
C160.0490 (10)0.0518 (10)0.0607 (11)0.0156 (8)0.0112 (8)0.0043 (8)
C170.0575 (10)0.0481 (9)0.0454 (9)0.0227 (8)0.0089 (8)0.0033 (7)
C180.0519 (10)0.0543 (10)0.0615 (11)0.0248 (9)0.0053 (8)0.0024 (8)
C190.0484 (10)0.0509 (10)0.0634 (11)0.0176 (8)0.0083 (8)0.0003 (8)
C200.0603 (11)0.0473 (9)0.0549 (10)0.0230 (8)0.0103 (8)0.0080 (8)
C210.0536 (10)0.0456 (9)0.0499 (9)0.0201 (8)0.0122 (7)0.0048 (7)
C220.0698 (12)0.0462 (10)0.0567 (11)0.0224 (9)0.0026 (9)0.0119 (8)
C230.0635 (11)0.0524 (10)0.0573 (11)0.0245 (9)0.0026 (9)0.0057 (8)
C240.0592 (10)0.0431 (9)0.0589 (10)0.0221 (8)0.0202 (8)0.0018 (7)
C250.0757 (13)0.0463 (10)0.0595 (11)0.0190 (9)0.0140 (10)0.0137 (8)
C260.0651 (11)0.0524 (10)0.0507 (10)0.0219 (9)0.0066 (9)0.0091 (8)
Geometric parameters (Å, º) top
O1—N11.217 (2)C10—C111.373 (3)
O2—N11.211 (2)C10—H100.96 (2)
O3—C141.388 (2)C11—C121.379 (3)
O3—C111.394 (2)C12—C131.379 (3)
O4—N41.218 (2)C12—H120.97 (2)
O5—N41.216 (2)C13—H130.920 (19)
N1—C11.474 (2)C14—C191.380 (2)
N2—C71.252 (3)C14—C151.381 (2)
N2—C81.422 (2)C15—C161.381 (2)
N3—C201.262 (2)C15—H150.97 (2)
N3—C171.424 (2)C16—C171.387 (2)
N4—C241.472 (2)C16—H160.97 (2)
C1—C61.360 (3)C17—C181.389 (2)
C1—C21.378 (3)C18—C191.389 (2)
C2—C31.382 (3)C18—H180.990 (19)
C2—H20.92 (2)C19—H190.956 (19)
C3—C41.384 (3)C20—C211.472 (2)
C3—H30.97 (2)C20—H201.016 (19)
C4—C51.386 (3)C21—C261.392 (2)
C4—C71.475 (3)C21—C221.393 (2)
C5—C61.380 (3)C22—C231.383 (3)
C5—H51.03 (2)C22—H220.99 (2)
C6—H60.96 (2)C23—C241.371 (3)
C7—H70.96 (2)C23—H230.90 (2)
C8—C91.385 (3)C24—C251.378 (3)
C8—C131.397 (3)C25—C261.378 (3)
C9—C101.386 (3)C25—H250.92 (2)
C9—H90.99 (2)C26—H260.953 (19)
C14—O3—C11118.85 (13)C13—C12—H12119.3 (12)
O2—N1—O1123.39 (19)C12—C13—C8120.5 (2)
O2—N1—C1118.48 (19)C12—C13—H13120.5 (12)
O1—N1—C1118.1 (2)C8—C13—H13119.0 (12)
C7—N2—C8120.80 (18)C19—C14—C15120.83 (16)
C20—N3—C17118.44 (15)C19—C14—O3122.74 (16)
O5—N4—O4123.56 (17)C15—C14—O3116.35 (15)
O5—N4—C24117.74 (18)C14—C15—C16119.40 (17)
O4—N4—C24118.69 (16)C14—C15—H15118.0 (11)
C6—C1—C2122.07 (18)C16—C15—H15122.6 (11)
C6—C1—N1119.08 (18)C15—C16—C17120.79 (17)
C2—C1—N1118.85 (19)C15—C16—H16120.6 (12)
C1—C2—C3118.6 (2)C17—C16—H16118.6 (12)
C1—C2—H2119.0 (13)C16—C17—C18119.11 (15)
C3—C2—H2122.4 (13)C16—C17—N3118.57 (15)
C2—C3—C4120.64 (19)C18—C17—N3122.20 (16)
C2—C3—H3119.7 (13)C17—C18—C19120.35 (17)
C4—C3—H3119.6 (13)C17—C18—H18119.4 (10)
C3—C4—C5118.88 (18)C19—C18—H18120.2 (10)
C3—C4—C7121.08 (18)C14—C19—C18119.44 (17)
C5—C4—C7119.99 (19)C14—C19—H19120.4 (11)
C6—C5—C4120.9 (2)C18—C19—H19120.2 (11)
C6—C5—H5121.3 (12)N3—C20—C21122.54 (17)
C4—C5—H5117.8 (12)N3—C20—H20122.0 (10)
C1—C6—C5118.84 (19)C21—C20—H20115.4 (10)
C1—C6—H6118.9 (12)C26—C21—C22119.25 (16)
C5—C6—H6122.2 (12)C26—C21—C20121.80 (16)
N2—C7—C4121.7 (2)C22—C21—C20118.91 (16)
N2—C7—H7122.5 (14)C23—C22—C21120.78 (17)
C4—C7—H7115.8 (14)C23—C22—H22119.2 (11)
C9—C8—C13118.62 (17)C21—C22—H22120.0 (11)
C9—C8—N2116.51 (17)C24—C23—C22118.32 (18)
C13—C8—N2124.84 (17)C24—C23—H23119.8 (13)
C8—C9—C10120.91 (19)C22—C23—H23121.9 (13)
C8—C9—H9117.4 (11)C23—C24—C25122.38 (16)
C10—C9—H9121.7 (11)C23—C24—N4118.52 (17)
C11—C10—C9119.33 (19)C25—C24—N4119.07 (16)
C11—C10—H10120.1 (12)C24—C25—C26119.05 (17)
C9—C10—H10120.6 (12)C24—C25—H25121.6 (12)
C10—C11—C12120.95 (17)C26—C25—H25119.3 (12)
C10—C11—O3117.62 (17)C25—C26—C21120.13 (18)
C12—C11—O3121.29 (17)C25—C26—H26123.1 (12)
C11—C12—C13119.60 (19)C21—C26—H26116.8 (12)
C11—C12—H12121.1 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O1i0.956 (19)2.57 (2)3.375 (2)142.4 (14)
C20—H20···O5ii1.016 (19)2.48 (2)3.323 (2)139.7 (14)
Symmetry codes: (i) x+3, y2, z+1; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC26H18N4O5
Mr466.44
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.3322 (11), 9.0716 (16), 17.107 (2)
α, β, γ (°)74.714 (9), 78.885 (10), 64.643 (10)
V3)1122.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.52 × 0.32 × 0.26
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4200, 3909, 2972
Rint0.015
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.02
No. of reflections3909
No. of parameters389
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.14, 0.19

Computer programs: XSCANS (Siemens, 1995), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O1i0.956 (19)2.57 (2)3.375 (2)142.4 (14)
C20—H20···O5ii1.016 (19)2.48 (2)3.323 (2)139.7 (14)
Symmetry codes: (i) x+3, y2, z+1; (ii) x, y1, z.
 

Acknowledgements

This work was supported by the Korean Science and Engin­eering Foundation (KOSEF) grant funded by the Korean government (MEST) (grant No. 2009–007996).

References

First citationBarnett, S. A. & Champness, N. R. (2003). Coord. Chem. Rev. 246, 145–168.  Web of Science CrossRef CAS Google Scholar
First citationBatten, S. R., Neville, S. M. & Turner, D. R. (2009). Coordination Polymers: Design, Analysis and Application. Cambridge: The Royal Society of Chemistry.  Google Scholar
First citationPerry IV, J. J., Perman, J. A. & Zaworotko, M. J. (2009). Chem. Soc. Rev. 38, 1400–1417.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYun, H. J., Lim, S. H. & Lee, S. W. (2009). Polyhedron, 28, 614–620.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds