supplementary materials


Acta Cryst. (2009). E65, o2101    [ doi:10.1107/S1600536809030499 ]

Ethyl 2-(2,6-difluorobenzyloxy)-4-(4,6-dimethoxypyrimidin-2-yl)quinoline-3-carboxylate

Y. Li

Abstract top

In the title compound, C25H21F2N3O5, the pyrimidine and difluorobenzyloxy rings are twisted away from the central quinoline ring system, making dihedral angles of 54.6 (1) and 74.1 (1)°, respectively. A weak C-H...O interaction links symmetry-related molecules, forming a pseudo-dimer. [pi]-[pi] interactions between the quinoline rings of symmetry-related molecules [centroid-centroid distance = 3.5479 (10) Å] link these dimers into chains parallel to [101]. Weak C-H...[pi] interactions join adjacent chains, forming a two-dimensional layer parallel to (101).

Comment top

Pyrimidine derivatives have broad biological properties: in particular pyrimidinylbenzoates is a highly effective herbicide with acetohydroxyacid synthase (AHAS) as target (Duggleby & Pang, 2000;). We herein report the crystal structure of one such pyrimidine derivative, the title compound, (I).

In the title compound (Fig.1), the pyrimidine (N2/N3/C10–C13) and difluorobenzyloxy (C20—C25) rings are twisted away from the mid quinoline ring (N1/C1—C9) with the dihedral angles of 54.6 (1)° and 74.1 (1)°, respectively. No other abnormal bond lengths and bond angles were observed in (I) in contrast with its some analogs (Li et al., 2006; Li & Huang, 2007; Li & Wang, 2007).

A weak C—H···O interactions links symmetry related molecules to form a pseudo dimer (Fig.2 and Table 1). Then π-π interactions between the quinoline rings of symmetry related molecules link these dimers into a one-dimensional chain running parallel to the [1 0 1] direction (Table 2). Furthermore, weak C—H···π interactions (Table 1) join these adjacent [101] chains to form a two-dimensional layer running parallel to the (101) plane.

Related literature top

Pyrimidinylbenzoates are highly effective herbicides with acetohydroxy acid synthase (AHAS) as target, see: Duggleby & Pang (2000). For related structures, see: Li & Huang (2007); Li & Wang (2007); Li et al. (2006).

Experimental top

A sulution of ethyl 4-(4,6-dimethoxypyrimidin-2-yl)-2-oxo-1,2-dihydroquinoline -3-carboxylate (0.35 g, 1 mmol) and NaH (60%, dispersion in mineral oil) (0.05 g, 1.2 mmol) in 10 ml N,N-dimethylformamide(DMF) was stirred at 273k for 0.5 h, and 2-(bromomethyl)-1,3-difluorobenzene (0.23 g, 1.1 mmol) was then added for 10 h.The reaction 200 ml of water, extracted with ethyl acetate (50 ml × 3), dried with anhydrous magnesium sulfate, and filtered off by suction, and the solvent was evaporated to give the crude product, which was purified by chromatography on silica using petroleum ether/acetone (8:1 v/v) as eluant to obtain the title compound as a white solid (yield 0.19 g, 47%). The product was recrystallized from an ethanol at room temperature to give crystals suitable for single-crystal X-ray diffraction.

Refinement top

All the H atoms were positioned geometrically, with C–H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl groups, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of the pseudo dimer through C-H···O hydrogen bonds. Hydrogen atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry code: (i) -x+1, -y+2, -z+1]
Ethyl 2-(2,6-difluorobenzyloxy)-4-(4,6-dimethoxypyrimidin-2-yl)quinoline-3- carboxylate top
Crystal data top
C25H21F2N3O5Z = 2
Mr = 481.45F(000) = 500
Triclinic, P1Dx = 1.390 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6623 (6) ÅCell parameters from 4454 reflections
b = 10.7044 (6) Åθ = 2.5–27.9°
c = 11.3856 (7) ŵ = 0.11 mm1
α = 84.466 (1)°T = 297 K
β = 82.251 (2)°Block, colourless
γ = 81.394 (1)°0.20 × 0.20 × 0.10 mm
V = 1150.21 (12) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4954 independent reflections
Radiation source: fine focus sealed Siemens Mo tube3541 reflections with I > 2σ(I)
graphiteRint = 0.035
0.3° wide ω exposures scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1212
Tmin = 0.959, Tmax = 0.989k = 1313
12431 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1077P)2 + 0.004P]
where P = (Fo2 + 2Fc2)/3
4954 reflections(Δ/σ)max < 0.001
319 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C25H21F2N3O5γ = 81.394 (1)°
Mr = 481.45V = 1150.21 (12) Å3
Triclinic, P1Z = 2
a = 9.6623 (6) ÅMo Kα radiation
b = 10.7044 (6) ŵ = 0.11 mm1
c = 11.3856 (7) ÅT = 297 K
α = 84.466 (1)°0.20 × 0.20 × 0.10 mm
β = 82.251 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4954 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
3541 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.989Rint = 0.035
12431 measured reflectionsθmax = 27.0°
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.170Δρmax = 0.30 e Å3
S = 1.06Δρmin = 0.23 e Å3
4954 reflectionsAbsolute structure: ?
319 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.11250 (16)1.02922 (15)0.13717 (14)0.0399 (4)
C20.20285 (19)1.12507 (18)0.08156 (17)0.0518 (4)
H20.19631.20960.08920.062*
C30.3002 (2)1.09504 (19)0.01640 (17)0.0559 (5)
H30.35961.15930.02000.067*
C40.31136 (19)0.96834 (19)0.00409 (17)0.0535 (5)
H40.37720.94900.04140.064*
C50.22682 (18)0.87332 (17)0.05793 (15)0.0467 (4)
H50.23580.78940.04960.056*
C60.12486 (16)0.90099 (15)0.12685 (13)0.0382 (4)
C70.02903 (16)0.80657 (15)0.18258 (14)0.0379 (4)
C80.07269 (16)0.84312 (14)0.23904 (14)0.0378 (4)
C90.07460 (16)0.97547 (15)0.24412 (14)0.0397 (4)
C100.03328 (16)0.66870 (15)0.17606 (13)0.0378 (4)
C110.15329 (17)0.50141 (15)0.20841 (15)0.0439 (4)
C120.03457 (18)0.42061 (16)0.17093 (16)0.0474 (4)
H120.03490.33390.17000.057*
C130.08520 (18)0.47704 (15)0.13469 (15)0.0428 (4)
C140.3984 (2)0.5352 (2)0.2799 (2)0.0682 (6)
H14A0.38290.57970.34520.102*
H14B0.47530.48740.30410.102*
H14C0.42070.59510.21450.102*
C150.3280 (2)0.4621 (2)0.0603 (2)0.0650 (5)
H15A0.31160.52460.00440.097*
H15B0.40550.39930.03540.097*
H15C0.35010.50210.12610.097*
C160.17828 (19)0.75111 (15)0.29953 (15)0.0439 (4)
C170.1993 (3)0.5997 (2)0.4653 (2)0.0774 (7)
H17A0.16140.60360.54840.093*
H17B0.29410.62200.45590.093*
C180.2047 (3)0.4705 (2)0.4309 (2)0.0838 (7)
H18A0.11050.45070.43430.126*
H18B0.25550.41190.48450.126*
H18C0.25160.46430.35140.126*
C190.17799 (19)1.13573 (16)0.31615 (18)0.0514 (5)
H19A0.08871.17280.35670.062*
H19B0.19331.18070.23840.062*
C200.29534 (18)1.14504 (15)0.38676 (16)0.0445 (4)
C210.2822 (2)1.12069 (18)0.50781 (18)0.0598 (5)
C220.3845 (3)1.1322 (2)0.5770 (2)0.0815 (8)
H220.37011.11500.65900.098*
C230.5084 (3)1.1696 (2)0.5223 (3)0.0841 (8)
H230.57921.17810.56760.101*
C240.5287 (2)1.1944 (2)0.4020 (3)0.0767 (7)
H240.61291.21950.36480.092*
C250.4223 (2)1.18172 (18)0.33639 (19)0.0555 (5)
F10.16058 (16)1.08091 (16)0.55995 (13)0.0978 (5)
F20.44154 (15)1.20738 (14)0.21759 (13)0.0900 (5)
N10.01274 (14)1.06487 (12)0.19857 (12)0.0431 (3)
N20.08787 (14)0.60077 (13)0.13662 (12)0.0415 (3)
N30.15616 (14)0.62592 (13)0.21236 (12)0.0435 (3)
O10.27320 (13)0.45076 (12)0.24386 (13)0.0572 (4)
O20.20379 (13)0.40262 (12)0.09621 (12)0.0580 (4)
O30.30275 (14)0.73618 (13)0.27045 (13)0.0606 (4)
O40.11257 (15)0.68999 (12)0.39364 (12)0.0596 (4)
O50.17624 (12)1.00344 (10)0.30413 (11)0.0485 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0371 (8)0.0391 (9)0.0455 (9)0.0126 (7)0.0069 (7)0.0001 (7)
C20.0490 (10)0.0417 (9)0.0676 (12)0.0110 (8)0.0175 (9)0.0032 (8)
C30.0509 (11)0.0558 (11)0.0623 (11)0.0051 (9)0.0198 (9)0.0044 (9)
C40.0453 (10)0.0634 (12)0.0571 (11)0.0112 (9)0.0203 (8)0.0056 (9)
C50.0449 (9)0.0472 (10)0.0533 (10)0.0138 (7)0.0150 (7)0.0063 (7)
C60.0352 (8)0.0413 (9)0.0410 (8)0.0122 (7)0.0073 (6)0.0027 (6)
C70.0390 (8)0.0360 (8)0.0419 (8)0.0137 (6)0.0069 (6)0.0029 (6)
C80.0378 (8)0.0329 (8)0.0464 (9)0.0124 (6)0.0108 (7)0.0022 (6)
C90.0385 (8)0.0357 (8)0.0495 (9)0.0154 (7)0.0119 (7)0.0020 (7)
C100.0402 (8)0.0360 (8)0.0422 (8)0.0126 (6)0.0144 (6)0.0041 (6)
C110.0468 (10)0.0412 (9)0.0512 (9)0.0201 (7)0.0213 (7)0.0019 (7)
C120.0550 (10)0.0336 (8)0.0616 (11)0.0168 (8)0.0227 (8)0.0049 (7)
C130.0476 (9)0.0376 (9)0.0492 (9)0.0106 (7)0.0182 (7)0.0085 (7)
C140.0474 (11)0.0685 (14)0.0941 (16)0.0252 (10)0.0097 (10)0.0055 (11)
C150.0515 (11)0.0654 (13)0.0776 (14)0.0086 (10)0.0020 (10)0.0108 (11)
C160.0513 (10)0.0331 (8)0.0542 (10)0.0139 (7)0.0213 (8)0.0048 (7)
C170.1054 (18)0.0602 (13)0.0727 (14)0.0146 (12)0.0449 (13)0.0172 (11)
C180.1047 (19)0.0519 (13)0.1008 (18)0.0081 (12)0.0420 (15)0.0019 (12)
C190.0514 (10)0.0326 (9)0.0774 (12)0.0126 (7)0.0247 (9)0.0068 (8)
C200.0461 (9)0.0311 (8)0.0616 (11)0.0103 (7)0.0155 (8)0.0101 (7)
C210.0686 (13)0.0479 (11)0.0653 (12)0.0085 (9)0.0097 (10)0.0141 (9)
C220.120 (2)0.0638 (14)0.0692 (14)0.0051 (14)0.0414 (14)0.0200 (11)
C230.1000 (19)0.0523 (13)0.119 (2)0.0128 (13)0.0703 (17)0.0179 (13)
C240.0579 (13)0.0531 (12)0.131 (2)0.0246 (10)0.0378 (13)0.0045 (13)
C250.0548 (11)0.0440 (10)0.0733 (13)0.0174 (8)0.0191 (9)0.0007 (9)
F10.0910 (10)0.1135 (12)0.0842 (10)0.0252 (9)0.0183 (8)0.0065 (8)
F20.0820 (9)0.1069 (12)0.0810 (9)0.0321 (8)0.0064 (7)0.0174 (8)
N10.0414 (7)0.0344 (7)0.0575 (9)0.0139 (6)0.0137 (6)0.0002 (6)
N20.0443 (8)0.0374 (7)0.0475 (8)0.0127 (6)0.0122 (6)0.0066 (6)
N30.0433 (8)0.0389 (8)0.0539 (8)0.0171 (6)0.0131 (6)0.0040 (6)
O10.0496 (7)0.0471 (7)0.0822 (9)0.0258 (6)0.0164 (6)0.0001 (6)
O20.0518 (8)0.0441 (7)0.0809 (9)0.0077 (6)0.0085 (6)0.0169 (6)
O30.0431 (7)0.0551 (8)0.0882 (10)0.0084 (6)0.0251 (6)0.0016 (7)
O40.0696 (9)0.0501 (8)0.0614 (8)0.0137 (6)0.0221 (7)0.0121 (6)
O50.0503 (7)0.0322 (6)0.0715 (8)0.0135 (5)0.0286 (6)0.0050 (5)
Geometric parameters (Å, °) top
C1—N11.381 (2)C14—H14C0.9600
C1—C21.404 (2)C15—O21.435 (2)
C1—C61.413 (2)C15—H15A0.9600
C2—C31.365 (2)C15—H15B0.9600
C2—H20.9300C15—H15C0.9600
C3—C41.398 (3)C16—O31.194 (2)
C3—H30.9300C16—O41.336 (2)
C4—C51.358 (3)C17—O41.446 (2)
C4—H40.9300C17—C181.465 (3)
C5—C61.419 (2)C17—H17A0.9700
C5—H50.9300C17—H17B0.9700
C6—C71.427 (2)C18—H18A0.9600
C7—C81.366 (2)C18—H18B0.9600
C7—C101.492 (2)C18—H18C0.9600
C8—C91.426 (2)C19—O51.4386 (18)
C8—C161.498 (2)C19—C201.496 (2)
C9—N11.295 (2)C19—H19A0.9700
C9—O51.3525 (18)C19—H19B0.9700
C10—N21.329 (2)C20—C211.370 (3)
C10—N31.336 (2)C20—C251.378 (3)
C11—N31.334 (2)C21—F11.352 (2)
C11—O11.3487 (19)C21—C221.370 (3)
C11—C121.374 (2)C22—C231.370 (4)
C12—C131.381 (2)C22—H220.9300
C12—H120.9300C23—C241.363 (4)
C13—N21.331 (2)C23—H230.9300
C13—O21.341 (2)C24—C251.380 (3)
C14—O11.435 (2)C24—H240.9300
C14—H14A0.9600C25—F21.347 (2)
C14—H14B0.9600
N1—C1—C2118.10 (14)H15A—C15—H15C109.5
N1—C1—C6122.54 (14)H15B—C15—H15C109.5
C2—C1—C6119.36 (14)O3—C16—O4124.76 (16)
C3—C2—C1120.49 (17)O3—C16—C8125.61 (16)
C3—C2—H2119.8O4—C16—C8109.61 (15)
C1—C2—H2119.8O4—C17—C18111.28 (18)
C2—C3—C4120.44 (17)O4—C17—H17A109.4
C2—C3—H3119.8C18—C17—H17A109.4
C4—C3—H3119.8O4—C17—H17B109.4
C5—C4—C3120.58 (16)C18—C17—H17B109.4
C5—C4—H4119.7H17A—C17—H17B108.0
C3—C4—H4119.7C17—C18—H18A109.5
C4—C5—C6120.53 (16)C17—C18—H18B109.5
C4—C5—H5119.7H18A—C18—H18B109.5
C6—C5—H5119.7C17—C18—H18C109.5
C1—C6—C5118.59 (14)H18A—C18—H18C109.5
C1—C6—C7117.55 (13)H18B—C18—H18C109.5
C5—C6—C7123.81 (14)O5—C19—C20107.44 (13)
C8—C7—C6119.30 (14)O5—C19—H19A110.2
C8—C7—C10119.15 (14)C20—C19—H19A110.2
C6—C7—C10121.50 (13)O5—C19—H19B110.2
C7—C8—C9118.12 (14)C20—C19—H19B110.2
C7—C8—C16123.18 (14)H19A—C19—H19B108.5
C9—C8—C16118.67 (13)C21—C20—C25115.06 (17)
N1—C9—O5120.62 (13)C21—C20—C19121.87 (17)
N1—C9—C8125.03 (14)C25—C20—C19123.05 (17)
O5—C9—C8114.34 (13)F1—C21—C20116.70 (18)
N2—C10—N3126.87 (14)F1—C21—C22119.1 (2)
N2—C10—C7115.84 (14)C20—C21—C22124.1 (2)
N3—C10—C7117.27 (14)C23—C22—C21118.3 (2)
N3—C11—O1118.56 (15)C23—C22—H22120.8
N3—C11—C12123.87 (15)C21—C22—H22120.8
O1—C11—C12117.57 (15)C24—C23—C22120.5 (2)
C11—C12—C13115.41 (15)C24—C23—H23119.8
C11—C12—H12122.3C22—C23—H23119.8
C13—C12—H12122.3C23—C24—C25118.9 (2)
N2—C13—O2119.06 (15)C23—C24—H24120.5
N2—C13—C12123.08 (16)C25—C24—H24120.5
O2—C13—C12117.86 (15)F2—C25—C20117.91 (16)
O1—C14—H14A109.5F2—C25—C24119.04 (19)
O1—C14—H14B109.5C20—C25—C24123.0 (2)
H14A—C14—H14B109.5C9—N1—C1117.38 (13)
O1—C14—H14C109.5C10—N2—C13115.82 (14)
H14A—C14—H14C109.5C11—N3—C10114.94 (14)
H14B—C14—H14C109.5C11—O1—C14117.78 (14)
O2—C15—H15A109.5C13—O2—C15117.34 (14)
O2—C15—H15B109.5C16—O4—C17117.21 (17)
H15A—C15—H15B109.5C9—O5—C19116.23 (12)
O2—C15—H15C109.5
N1—C1—C2—C3177.81 (17)C25—C20—C21—F1178.15 (16)
C6—C1—C2—C31.1 (3)C19—C20—C21—F13.6 (3)
C1—C2—C3—C40.0 (3)C25—C20—C21—C220.7 (3)
C2—C3—C4—C50.8 (3)C19—C20—C21—C22177.59 (18)
C3—C4—C5—C60.5 (3)F1—C21—C22—C23178.40 (19)
N1—C1—C6—C5177.47 (15)C20—C21—C22—C230.4 (3)
C2—C1—C6—C51.4 (2)C21—C22—C23—C240.1 (3)
N1—C1—C6—C70.2 (2)C22—C23—C24—C250.2 (4)
C2—C1—C6—C7178.70 (15)C21—C20—C25—F2179.82 (17)
C4—C5—C6—C10.6 (3)C19—C20—C25—F21.5 (3)
C4—C5—C6—C7177.72 (16)C21—C20—C25—C240.5 (3)
C1—C6—C7—C82.4 (2)C19—C20—C25—C24177.74 (17)
C5—C6—C7—C8174.76 (15)C23—C24—C25—F2179.4 (2)
C1—C6—C7—C10179.66 (14)C23—C24—C25—C200.1 (3)
C5—C6—C7—C102.5 (2)O5—C9—N1—C1179.15 (14)
C6—C7—C8—C92.7 (2)C8—C9—N1—C12.2 (2)
C10—C7—C8—C9180.00 (14)C2—C1—N1—C9176.48 (15)
C6—C7—C8—C16179.72 (15)C6—C1—N1—C92.4 (2)
C10—C7—C8—C162.4 (2)N3—C10—N2—C130.7 (2)
C7—C8—C9—N10.4 (2)C7—C10—N2—C13177.77 (13)
C16—C8—C9—N1178.08 (16)O2—C13—N2—C10179.84 (14)
C7—C8—C9—O5178.39 (14)C12—C13—N2—C100.0 (2)
C16—C8—C9—O50.7 (2)O1—C11—N3—C10179.87 (14)
C8—C7—C10—N250.7 (2)C12—C11—N3—C100.3 (2)
C6—C7—C10—N2126.58 (16)N2—C10—N3—C110.5 (2)
C8—C7—C10—N3127.95 (16)C7—C10—N3—C11177.91 (13)
C6—C7—C10—N354.8 (2)N3—C11—O1—C142.2 (2)
N3—C11—C12—C130.9 (2)C12—C11—O1—C14178.28 (16)
O1—C11—C12—C13179.53 (14)N2—C13—O2—C150.7 (2)
C11—C12—C13—N20.8 (2)C12—C13—O2—C15179.17 (16)
C11—C12—C13—O2179.41 (15)O3—C16—O4—C170.2 (3)
C7—C8—C16—O3115.1 (2)C8—C16—O4—C17178.10 (15)
C9—C8—C16—O367.3 (2)C18—C17—O4—C1696.3 (2)
C7—C8—C16—O466.5 (2)N1—C9—O5—C191.6 (2)
C9—C8—C16—O4111.05 (16)C8—C9—O5—C19177.26 (14)
O5—C19—C20—C2177.8 (2)C20—C19—O5—C9178.85 (14)
O5—C19—C20—C25104.00 (19)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N30.932.543.075 (2)117
C23—H23···O3i0.932.603.476 (2)158
C18—H18B···Cg3ii0.962.913.612 (2)131
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x, y−1, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C23—H23···O3i0.932.603.476 (2)158
C18—H18B···Cg3ii0.962.913.612 (2)131
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x, y−1, z.
Table 2
Table 2. π-π stacking in the title compound (Å, °)
top
Cg(I)–Cg(J)Cg–Cgα(CgI–CgJ)Perp(CgJ–CgI)PerpSlippage
Cg1–Cg2iii3.5479 (10)3.273.4823.4830.676
Cg1 and Cg2 are the centroids of the N1,C1,C6–C9 and C1–C6 rings, respectively, and α is the angle between the corresponding planes. Symmetry code: (iii) -x, 2-y, -z.
Acknowledgements top

The author acknowledges financial support by the Key Laboratory of Hunan Province for the Study and Utilization of Ethnic Medicinal Plant Resources, Huaihua University (No. SYSXM200911), the Project Planning of Science and Technology Department of Huaihua City (2009) and the Scientific Research Foundation of Huaihua University.

references
References top

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Duggleby, R. G. & Pang, S. S. (2000). J. Biochem. Mol. Biol. 33, 1–36.

Li, Y. & Huang, G. (2007). Acta Cryst. E63, o4667.

Li, Y. X., Luo, Y. P., Xi, Z., Niu, C. W., He, Y. Z. & Yang, G. F. (2006). J. Agric. Food Chem. 54, 9135–9139.

Li, Y.-X. & Wang, Y.-Z. (2007). Acta Cryst. E63, o873–o874.

Sheldrick, G. M. (1997). SADABS>. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.