metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1045-m1046

catena-Poly[[bis­­(2-hydr­­oxy-2-phenyl­acetato-κ2O1,O2)zinc(II)]-μ-1,2-di-4-pyridylethane-κ2N:N′]

aDepartment of Fine Chemistry, and Eco-Products and Materials Education Center, Seoul National University of Technology, Seoul 139-743, Republic of Korea, bDepartment of Forest & Environmental Resources, Kyungpook National University, Sangju 742-711, Republic of Korea, and cDepartment of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
*Correspondence e-mail: chealkim@sunt.ac.kr, ymeekim@ewha.ac.kr

(Received 21 July 2009; accepted 30 July 2009; online 8 August 2009)

The title compound, [Zn(C8H6O3)2(C12H12N2)]n, consists of [Zn(Hopa)2] (H2opa = 2-hydr­oxy-2-phenyl­acetic acid or mandelic acid) units bridged by 1,2-di-4-pyridylethane (bpe) ligands, forming a polymeric chain developing parallel to the b axis. The bridging bpe ligand is arranged around a twofold axis passing through the middle of the ethane C—C bond. The geometry around the ZnII ion is distorted octa­hedral, constructed by four O atoms from two Hopa ligands and two N atoms from two bridging bpe ligands. O—H⋯O hydrogen bonds link the chains, forming a three-dimensional network.

Related literature

Transition metal ions are the major cationic contributors to the inorganic composition of natural water and biological fluids, see: Daniele et al. (2008[Daniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev. 252, 1093-1107.]). For related structures, see: Balboa et al. (2008[Balboa, S., Carballo, R., Castineiras, A., Gonzalez-Perez, J. M. & Niclos-Gutierrez, J. (2008). Polyhedron, 27, 2921-2930.]); Beghidja et al. (2005[Beghidja, A., Hallynck, S., Welter, R. & Rabu, P. (2005). Eur. J. Inorg. Chem. pp. 662-669.]); Hao et al. (2009[Hao, H.-Q., Liu, W.-T., Tan, W., Lin, Z.-J. & Tong, M.-L. (2009). CrystEngComm, 11, 967-971.]); Lee et al. (2008[Lee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286.]); Park et al. (2008[Park, B. K., Jang, K.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m1141.]); Shin et al. (2009[Shin, D. H., Han, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m658-m659.]); Wermester et al. (2007[Wermester, N., Aubin, E., Pauchet, M., Coste, S. & Coquerel, G. (2007). Tetrahedron Asymmetry, 18, 821-831.]); Yu et al. (2008[Yu, S. M., Park, C.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m881-m882.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H6O3)2(C12H12N2)]

  • Mr = 551.90

  • Hexagonal, P 61 22

  • a = 11.1360 (6) Å

  • c = 33.110 (3) Å

  • V = 3555.9 (4) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 293 K

  • 0.10 × 0.05 × 0.05 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.933, Tmax = 0.944

  • 17715 measured reflections

  • 2347 independent reflections

  • 2045 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.068

  • S = 1.04

  • 2347 reflections

  • 168 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 870 Friedel pairs

  • Flack parameter: −0.002 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13O⋯O12i 0.85 1.77 2.619 (3) 173
Symmetry code: (i) [x-y+1, x, z+{\script{1\over 6}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

A great attention has been paid to transition metal ions as the major cation contributors to the biologically active molecules such as amino acids, proteins, sugars, nucleotides etc (Daniele, et al., 2008). This interest has driven us to study on the interaction of the transition metal ions with fulvic acids or humic acids. As models to examine the interaction, therefore, we have previously used copper(II) and zinc(II) benzoates as building blocks and reported the structures of copper(II) and zinc(II) benzoates with quinoxaline, 6-methylquinoline, 3-methylquinoline, and di-2-pyridyl ketone(Lee et al., 2008; Yu et al., 2008; Park et al., 2008; Shin et al., 2009).

Mandelic acid (2-hydroxy-2-phenylacetic acid, H2opa) is also one of the simplest bioactive molecules exhibiting a variety of coordinating and supramolecular interaction abilities (Balboa et al., 2008; Beghidja et al.,2005; Hao et al., 2009; Wermester et al., 2007). In order to study the interaction of the biologically active molecule mandelic acid with zinc(II) ion, in the present work, we have employed zinc(II) mandelate as a building block and 1,2-di-4-pyridylethane (bpe) as a ligand. We report herein the structure of new zinc(II) mandelate with 1,2-di-4-pyridylethane.

The crystal structure contains [Zn(Hopa)2] units bridged by bpe ligands forming a polymeric chain developping parallel to the b axis. The bridging 1,2-di-4-pyridylethane (bpe) ligand is arranged around a two fold axis going through the middle of C26—C26ii bond (symmetry code: (ii) x, x-y+2, -z+1/6). The geometry around the ZnII ion is distorted octahedral constructed by four oxygen atoms from two Hopa- and two nitrogen atoms from two bridging bpe ligands (Fig. 1). The occurence of O-H···O hydrogen bonds links the chains to form a three dimensionnal network.

Related literature top

Transition metal ions are the major cationic contributors to the inorganic composition of natural water and biological fluids, see: Daniele et al. (2008). For related structures, see: Balboa et al. (2008); Beghidja et al. (2005); Hao et al. (2009); Lee et al. (2008); Park et al. (2008); Shin et al. (2009); Wermester et al. (2007); Yu et al. (2008).

Experimental top

38.0 mg (0.125 mmol) of Zn(NO3)2.6H2O and 38.4 mg (0.25 mmol) of 2-hydroxy-2-phenylacetic acid were dissolved in 4 ml water and carefully layered by 4 ml solution of a mixture of acetone, methanol and ethanol (2/2/2) of 1,2-di-4-pyridylethane ligand (46.0 mg, 0.25 mmol). Suitable crystals of the title compoundfor X-ray analysis were obtained in a few weeks.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.98 Å (methyne),0.97 Å (methylene) or 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(C). H atom attached to O was located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.85 (1)Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement, it was treated as riding on its parent atom.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of compound I with the atom labeling scheme. Displacement ellipsoids are drawn at the 30° probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) x, x-y+1, -z+1/6; (ii) x, x-y+2, -z+1/6].
catena-Poly[[bis(2-hydroxy-2-phenylacetato- κ2O1,O2)zinc(II)]- µ-1,2-di-4-pyridylethane-κ2N:N'] top
Crystal data top
[Zn(C8H6O3)2(C12H12N2)]Dx = 1.546 Mg m3
Mr = 551.90Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P6122Cell parameters from 1751 reflections
Hall symbol: P 61 2 (0 0 -1)θ = 2.2–18.9°
a = 11.1360 (6) ŵ = 1.09 mm1
c = 33.110 (3) ÅT = 293 K
V = 3555.9 (4) Å3Rod, colorless
Z = 60.10 × 0.05 × 0.05 mm
F(000) = 1716
Data collection top
Bruker SMART CCD
diffractometer
2347 independent reflections
Radiation source: fine-focus sealed tube2045 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1313
Tmin = 0.933, Tmax = 0.944k = 1113
17715 measured reflectionsl = 4028
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.016P)2 + 1.0575P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2347 reflectionsΔρmax = 0.22 e Å3
168 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983), 870 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.002 (16)
Crystal data top
[Zn(C8H6O3)2(C12H12N2)]Z = 6
Mr = 551.90Mo Kα radiation
Hexagonal, P6122µ = 1.09 mm1
a = 11.1360 (6) ÅT = 293 K
c = 33.110 (3) Å0.10 × 0.05 × 0.05 mm
V = 3555.9 (4) Å3
Data collection top
Bruker SMART CCD
diffractometer
2347 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2045 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.944Rint = 0.077
17715 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.068Δρmax = 0.22 e Å3
S = 1.04Δρmin = 0.21 e Å3
2347 reflectionsAbsolute structure: Flack (1983), 870 Friedel pairs
168 parametersAbsolute structure parameter: 0.002 (16)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.73603 (4)0.86802 (2)0.08330.01944 (12)
O110.76202 (18)0.84579 (18)0.02239 (5)0.0216 (4)
O120.89644 (18)0.82448 (18)0.02384 (5)0.0245 (5)
O130.89365 (17)0.81243 (17)0.08319 (5)0.0233 (4)
H13O0.95680.84330.10130.035*
N210.5928 (2)0.9386 (2)0.07376 (7)0.0223 (5)
C110.8619 (3)0.8302 (2)0.01183 (8)0.0191 (6)
C120.9540 (3)0.8194 (3)0.04470 (8)0.0179 (6)
H121.04480.90430.04380.022*
C130.9761 (3)0.6975 (3)0.03869 (8)0.0201 (6)
C141.1078 (3)0.7159 (3)0.03588 (9)0.0284 (7)
H141.18390.80520.03680.034*
C151.1293 (4)0.6038 (4)0.03167 (10)0.0394 (8)
H151.21890.61850.02950.047*
C161.0181 (4)0.4716 (4)0.03078 (10)0.0423 (9)
H161.03160.39600.02830.051*
C170.8862 (4)0.4520 (3)0.03359 (9)0.0382 (8)
H170.81050.36240.03280.046*
C180.8639 (3)0.5636 (3)0.03754 (8)0.0280 (6)
H180.77410.54860.03940.034*
C210.6235 (3)1.0429 (3)0.04786 (9)0.0310 (8)
H210.70181.07420.03170.037*
C220.5445 (3)1.1057 (3)0.04412 (10)0.0357 (8)
H220.56821.17570.02520.043*
C230.4294 (3)1.0642 (3)0.06862 (10)0.0289 (7)
C240.4001 (3)0.9599 (3)0.09618 (9)0.0288 (7)
H240.32510.92990.11360.035*
C250.4832 (3)0.9009 (3)0.09751 (8)0.0252 (6)
H250.46130.83040.11610.030*
C260.3364 (3)1.1263 (3)0.06523 (12)0.0520 (11)
H26A0.24221.05170.06070.062*
H26B0.36411.18570.04160.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0209 (2)0.01972 (17)0.0181 (2)0.01044 (12)0.0000.00108 (18)
O110.0248 (10)0.0247 (10)0.0185 (10)0.0148 (8)0.0010 (8)0.0008 (8)
O120.0311 (12)0.0325 (11)0.0154 (10)0.0200 (9)0.0007 (9)0.0017 (8)
O130.0270 (10)0.0352 (10)0.0135 (9)0.0198 (9)0.0050 (9)0.0048 (8)
N210.0218 (12)0.0224 (12)0.0213 (14)0.0101 (10)0.0011 (10)0.0006 (10)
C110.0231 (13)0.0141 (14)0.0176 (15)0.0074 (12)0.0024 (13)0.0004 (11)
C120.0190 (13)0.0189 (13)0.0142 (14)0.0083 (10)0.0012 (11)0.0025 (11)
C130.0274 (15)0.0231 (15)0.0113 (13)0.0137 (12)0.0034 (11)0.0004 (12)
C140.0297 (17)0.0309 (16)0.0296 (18)0.0189 (14)0.0055 (13)0.0065 (14)
C150.048 (2)0.057 (2)0.0319 (19)0.040 (2)0.0055 (17)0.0054 (17)
C160.080 (3)0.049 (2)0.0260 (18)0.053 (2)0.0044 (18)0.0044 (16)
C170.062 (2)0.0242 (17)0.0226 (17)0.0172 (17)0.0001 (16)0.0020 (14)
C180.0350 (16)0.0237 (16)0.0215 (15)0.0117 (14)0.0015 (14)0.0003 (13)
C210.0241 (16)0.0359 (18)0.0286 (18)0.0118 (14)0.0005 (13)0.0089 (14)
C220.0329 (18)0.0310 (18)0.0393 (19)0.0131 (16)0.0083 (15)0.0094 (14)
C230.0298 (17)0.0265 (15)0.0344 (19)0.0172 (14)0.0179 (14)0.0153 (14)
C240.0275 (17)0.0359 (18)0.0293 (17)0.0206 (14)0.0010 (13)0.0039 (14)
C250.0306 (16)0.0239 (16)0.0219 (15)0.0143 (12)0.0033 (13)0.0018 (12)
C260.039 (2)0.0319 (17)0.093 (3)0.0242 (16)0.0356 (19)0.0234 (19)
Geometric parameters (Å, º) top
Zn1—O112.0707 (17)C15—C161.371 (5)
Zn1—O11i2.0707 (17)C15—H150.9300
Zn1—N212.125 (2)C16—C171.376 (5)
Zn1—N21i2.125 (2)C16—H160.9300
Zn1—O13i2.1332 (17)C17—C181.390 (4)
Zn1—O132.1332 (17)C17—H170.9300
O11—C111.258 (3)C18—H180.9300
O12—C111.254 (3)C21—C221.376 (4)
O13—C121.425 (3)C21—H210.9300
O13—H13O0.8543C22—C231.386 (4)
N21—C251.332 (3)C22—H220.9300
N21—C211.344 (3)C23—C241.381 (4)
C11—C121.541 (4)C23—C261.511 (4)
C12—C131.509 (4)C24—C251.378 (4)
C12—H120.9800C24—H240.9300
C13—C141.379 (4)C25—H250.9300
C13—C181.387 (4)C26—C26ii1.519 (7)
C14—C151.390 (4)C26—H26A0.9700
C14—H140.9300C26—H26B0.9700
O11—Zn1—O11i166.10 (10)C13—C14—H14119.3
O11—Zn1—N2194.27 (8)C15—C14—H14119.3
O11i—Zn1—N2194.75 (8)C16—C15—C14119.8 (3)
O11—Zn1—N21i94.75 (8)C16—C15—H15120.1
O11i—Zn1—N21i94.27 (8)C14—C15—H15120.1
N21—Zn1—N21i98.92 (11)C15—C16—C17119.3 (3)
O11—Zn1—O13i92.80 (7)C15—C16—H16120.4
O11i—Zn1—O13i77.21 (7)C17—C16—H16120.4
N21—Zn1—O13i86.60 (7)C16—C17—C18121.2 (3)
N21i—Zn1—O13i170.28 (8)C16—C17—H17119.4
O11—Zn1—O1377.21 (7)C18—C17—H17119.4
O11i—Zn1—O1392.80 (7)C13—C18—C17119.8 (3)
N21—Zn1—O13170.28 (8)C13—C18—H18120.1
N21i—Zn1—O1386.60 (7)C17—C18—H18120.1
O13i—Zn1—O1389.11 (9)N21—C21—C22123.1 (3)
C11—O11—Zn1118.26 (16)N21—C21—H21118.5
C12—O13—Zn1114.85 (15)C22—C21—H21118.5
C12—O13—H13O109.5C21—C22—C23119.8 (3)
Zn1—O13—H13O120.8C21—C22—H22120.1
C25—N21—C21116.5 (2)C23—C22—H22120.1
C25—N21—Zn1122.35 (18)C24—C23—C22117.2 (3)
C21—N21—Zn1120.11 (19)C24—C23—C26120.4 (3)
O12—C11—O11125.7 (3)C22—C23—C26122.4 (3)
O12—C11—C12115.4 (2)C25—C24—C23119.3 (3)
O11—C11—C12118.9 (2)C25—C24—H24120.4
O13—C12—C13110.7 (2)C23—C24—H24120.4
O13—C12—C11108.8 (2)N21—C25—C24124.0 (3)
C13—C12—C11113.0 (2)N21—C25—H25118.0
O13—C12—H12108.1C24—C25—H25118.0
C13—C12—H12108.1C23—C26—C26ii115.7 (3)
C11—C12—H12108.1C23—C26—H26A108.4
C14—C13—C18118.5 (3)C26ii—C26—H26A108.4
C14—C13—C12121.0 (3)C23—C26—H26B108.4
C18—C13—C12120.4 (2)C26ii—C26—H26B108.4
C13—C14—C15121.4 (3)H26A—C26—H26B107.4
Symmetry codes: (i) x, xy+1, z+1/6; (ii) x, xy+2, z+1/6.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13O···O12iii0.851.772.619 (3)173
Symmetry code: (iii) xy+1, x, z+1/6.

Experimental details

Crystal data
Chemical formula[Zn(C8H6O3)2(C12H12N2)]
Mr551.90
Crystal system, space groupHexagonal, P6122
Temperature (K)293
a, c (Å)11.1360 (6), 33.110 (3)
V3)3555.9 (4)
Z6
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.10 × 0.05 × 0.05
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.933, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
17715, 2347, 2045
Rint0.077
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.068, 1.04
No. of reflections2347
No. of parameters168
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.21
Absolute structureFlack (1983), 870 Friedel pairs
Absolute structure parameter0.002 (16)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13O···O12i0.851.772.619 (3)173.3
Symmetry code: (i) xy+1, x, z+1/6.
 

Acknowledgements

Financial support from the Korea Ministry of the Environment `ET-Human Resource Development Project' and the Cooperative Research Program for Agricultural Science & Technology Development (20070301–036-019–02) is gratefully acknowledged.

References

First citationBalboa, S., Carballo, R., Castineiras, A., Gonzalez-Perez, J. M. & Niclos-Gutierrez, J. (2008). Polyhedron, 27, 2921–2930.  Web of Science CSD CrossRef CAS Google Scholar
First citationBeghidja, A., Hallynck, S., Welter, R. & Rabu, P. (2005). Eur. J. Inorg. Chem. pp. 662–669.  Web of Science CSD CrossRef Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDaniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev. 252, 1093–1107.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHao, H.-Q., Liu, W.-T., Tan, W., Lin, Z.-J. & Tong, M.-L. (2009). CrystEngComm, 11, 967–971.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPark, B. K., Jang, K.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m1141.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, D. H., Han, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m658–m659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWermester, N., Aubin, E., Pauchet, M., Coste, S. & Coquerel, G. (2007). Tetrahedron Asymmetry, 18, 821–831.  Web of Science CSD CrossRef CAS Google Scholar
First citationYu, S. M., Park, C.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m881–m882.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1045-m1046
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds